CS208: Applied Privacy for Data Science Reidentification & Reconstruction Attacks

James Honaker & Salil Vadhan School of Engineering & Applied Sciences Harvard University

February 1, 2019

Reidentification via Linkage

Uniquely identify > 60% of the US population [Sweeney `00, Golle `06]

Q: What's your response to the Personal Genome Project re-identification?

Some Possible Responses

- Privacy is dead, informed consent is enough
- Informed consent is a fiction
- Value of the research trumps privacy
- Public sharing not needed for research purposes

Deidentification via Generalization

- Def (generalization): A generalization mechanism is an algorithm *A* that takes a dataset $x = (x_1, ..., x_n) \in \mathcal{X}^n$ and outputs $A(x) = (S_1, ..., S_n)$ where $x_i \in S_i \subseteq \mathcal{X}$ for all *i*.
- Example:

Name	Sex	Blood	•••	HIV?
*	F	В	•••	Y
*	Μ	А	•••	Ν
*	М	0	•••	Ν
*	Μ	0	•••	Y
*	F	А	•••	Ν
*	Μ	В	•••	Y

 $S_i = \{\text{all strings}\} \times \{x_{i2}\} \times \cdots \times \{x_{im}\}$

K-Anonymity [Sweeney `02]

- Def (generalization): A generalization mechanism A satisfies k-anonymity (across all fields) if for every dataset x = (x₁, ..., x_n) ∈ Xⁿ the output A(x) = (S₁, ..., S_n) has the property that every set S that occurs at all occurs at least k times.
- Example: a 4-anonymous output

Zip code	Age	Nationality
130**	<30	*
130**	<30	*
130**	<30	*
130**	<30	*
130**	>40	*
130**	>40	*
130**	> 40	*
130**	\ge 40	*
130**	3*	*
130**	3*	*
130**	3*	*
130**	3*	*

Intuition: your privacy is protected if I can't isolate you.

Quasi-Identifiers

Typically, *k*-anonymity only applied on "quasi-identifiers"

attributes that might be linked with an external dataset.
i.e. X = Y × Z, where Y is domain of quasi-identifiers,
and S_i = T_i × U_i, where each T_i occurs at least k times.

• Example:

Zip code	Age	Nationality	Condition
130**	<30	*	AIDS
130**	<30	*	Heart Disease
130**	<30	*	Viral Infection
130**	<30	*	Viral Infection
130**	<u>≥40</u>	*	Cancer
130**	>40	*	Heart Disease
130**	\geq 40	*	Viral Infection
130**	≥40	*	Viral Infection
130**	3*	*	Cancer
130**	3*	* Cancer	
130**	3*	* Cancer	
130**	3*	*	Cancer

Q: what could go wrong?

Failure of Composition

[Ganti-Kasiviswanathan-Smith `08]

Suppose two *k*-anonymous datasets are released, and we know the quasi-identifiers in someone in both...

Zip code	Age	Nationality	Condition	Zip code	Age	Nationality	Condition
130**	<30	*	AIDS	130**	<35	*	AIDS
130**	<30	*	Heart Disease	130**	<35	*	Tuberculosis
130**	<30	*	Viral Infection	130**	<35	*	Flu
130**	<30	*	Viral Infection	130**	<35	*	Tuberculosis
130**	>40	*	Cancer	130**	<35	*	Cancer
130**	>40	*	Heart Disease	130**	<35	*	Cancer
130**	\geq 40	*	Viral Infection	130**	<u>>35</u>	*	Cancer
130**	\geq 40	*	Viral Infection	130**	≥ <mark>3</mark> 5	*	Cancer
130**	3*	*	Cancer	130**	\geq 35	*	Cancer
130**	3*	*	Cancer	130**	\geq 35	*	Tuberculosis
130**	3*	*	Cancer	130**	>35	*	Viral Infection
130**	3*	*	Cancer	130**	≥35	*	Viral Infection

k-anonymity across all fields

- Utility concerns?
 - Significant bias even when applied on quasiidentifiers, cf. [Daries et al. `14]
- Privacy concerns?
 - Consider mechanism A(x): if Salil is in x and has tuberculosis, generalize starting with rightmost attribute. Else generalize starting on left.

- Message: privacy is not only a property of the output.

Netflix Challenge Re-Identification

[Narayanan-Shmatikov `08]

Identified NetFlix Data

Narayanan-Shmatikov Set-Up

- Dataset: *x* = set of records *r* (e.g. Netflix ratings)
- Adversary's inputs:
 - $-\hat{x}$ = subset of records from *x*, possibly distorted slightly
 - aux = auxiliary information about a record $r \in D$ (e.g. a particular user's IMDB ratings)
- Adversary's goal: output either
 - -r' = record that is "close" to r, or
 - \perp = failed to find a match

Narayanan-Shmatikov Algorithm

- 1. Calculate score(aux, r') for each $r' \in \hat{x}$, as well as the standard deviation σ of the calculated scores.
- 2. Let r_1' and r_2' be the records with the largest and second-largest scores.
- 3. If score(aux, r_1') score(aux, r_2') > $\phi \cdot \sigma$, output r_1' , else output \perp .

eccentricity $\phi = 1.5$

Narayanan-Shmatikov Results

- For the \$1m Netflix Challenge, a dataset of ~.5 million subscribers' ratings (less than 1/10 of all subscribers) was released (total of ~\$100m ratings over 6 years).
- Out of 50 sampled IMBD users, two standouts were found, with eccentricities of 28 and 15.
- Reveals all movies watched from only those publicly rated on IMDB.
- Class action lawsuit, cancelling of Netflix Challenge II.

Message: any attribute can be a "quasi-identifier"

Attacks on Aggregate Statistics

• Stylized set-up:

- Dataset $x \in \{0,1\}^n$.
- (Known) person *i* has sensitive bit x_i .
- Adversary gets $q_S(x) = \sum_{i \in S} x_i$ for various $S \subseteq [n]$.
- How to attack if adversary can query chosen sets S?
- What if we restrict to sets of size at least n/10?

This attack has been used on Israeli Census Bureau! (see [Ziv `13])

ID	US?		
1	1		
2	0		
3	0		
4	1		
÷	:		
n	1		

Attacks on Exact Releases

- What if adversary cannot choose subsets, but q_S(x) is released for "innocuous" sets S?
- Example: uniformly random $S_1, S_2, ..., S_m \subseteq [n]$ are chosen, and adversary receives: $(S_1, a_1 = q_{S_1}(x)), (S_2, a_2 = q_{S_2}(x)), ..., (S_m, a_m = q_{S_m}(x))$
- Claim: for m = n, with prob. 1 o(1) adversary can reconstruct entire dataset!
- Proof?

Attacks on Approximate Statistics

- What if we release statistics $a_i \approx q_{S_i}(x)$?
- Thm [Dinur-Nissim `03]: given m = n uniformly random sets S_j and answers a_j s.t. $|a_j q_{S_j}(x)| \le E = o(\sqrt{n})$, whp adversary can reconstruct 1 o(1) fraction of the bits x_i .
- Proof idea: $A(S_1, a_1, ..., S_m, a_n)$ = any $y \in \{0,1\}^n$ s.t. $\forall j | a_j - q_{S_j}(y) | \le E$.

(Show that whp, for all *y* that differs from *x* in a constant fraction of bits, $\exists i$ such that $|q_{S_i}(y) - q_{S_i}(x)| > 2E$.)

Integer Programming Implementation

 $A(S_1, a_1, ..., S_m, a_n)$:

1. Find a vector $y \in \mathbb{Z}^n$ such that:

$$- 0 \le y_i \le 1$$
 for all $i = 1, ..., n$

$$- -E \le a_j - \sum_{i \in S_j} y_i \le E$$
 for all $j = 1, ..., m$

2. Output *y*.

Linear Programming Implementation

 $A(S_1, a_1, ..., S_m, a_n)$:

1. Find a vector $y \in \mathbb{R}^n$ such that:

$$- 0 \le y_i \le 1$$
 for all $i = 1, ..., n$

$$- -E \le a_j - \sum_{i \in S_j} y_i \le E$$
 for all $j = 1, ..., m$

2. Output round(y). [coordinate-wise rounding]

Linear Programming Implementation for Average Error

 $A(S_1, a_1, ..., S_m, a_n)$:

- 1. Find vectors $y \in \mathbb{R}^n$ and $E \in \mathbb{R}^m$
 - Minimizing $\sum_{j=1}^{m} E_j$ and such that
 - $\quad 0 \le y_i \le 1 \text{ for all } i = 1, \dots, n$

$$- -E_j \le a_j - \sum_{i \in S_j} y_i \le E_j$$
 for all $j = 1, ..., m$

2. Output round(y).

Least-Squares Implementation for MSE

 $A(S_1, a_1, ..., S_m, a_n)$:

1. Find vector $y \in \mathbb{R}^n$ minimizing

$$\sum_{j=1}^{m} \left(a_j - \sum_{i \in S_j} y_i \right)^2 = \|a - M_S y\|^2$$

2. Output round(y).

Also works for random S_i 's, and is much faster than LP!

Overall Message

- Every statistic released yields a (hard or soft) constraint on the dataset.
- Releasing too many statistics with too much accuracy necessarily determines almost the entire dataset.
- This works in theory and in practice (see readings, ps1).
- We need a quantitative theory that tells us "how much is too much" → differential privacy!

On the Level of Accuracy

- The theorems require the error per statistic to be $o(\sqrt{n})$. This is necessary for reconstructing almost all of x.
- Q: How could we defend against reconstruction attacks if we allow error $\Omega(\sqrt{n})$?

On the Level of Accuracy

Q: How could we defend against reconstruction attacks if we allow error $\Omega(\sqrt{n})$?

- 1. Always release $a_j = (\sum_{i=1}^n x_i)/2$. For random S_j has expected error $O(\sqrt{n})$ per query and expected maximum error $O(\sqrt{n \cdot \log m})$.
- 2. Always release $a_j = (n/t) \cdot (\sum_{i \in T \cap S_j} x_i)/2$ where *T* is a random set of *t* rows chosen once. For arbitrary *S* has expected error $O(n/\sqrt{t})$ per query and expected maximum error $O(n/\sqrt{t})$.
- 3. Add random noise, e.g. $a_j = (\sum_{i \in S_j} x_i) + e_j$ where $e_j \sim \mathcal{N}(0, \sigma^2)$ for an appropriate $\sigma = \Omega(\sqrt{n})$. For arbitrary *S* has expected error $O(\sigma)$ per query and expected maximum error $O(\sigma\sqrt{\log m})$.

How to Make Subset Sum Queries?

US? ID Stylized set-up: 1 1 − Dataset *x* ∈ $\{0,1\}^n$. 2 0 - (Known) person *i* has sensitive bit x_i . 3 0 - Adversary gets $a_S \approx q_S(x) = \sum_{i \in S} x_i$ for various 4 1 $S \subseteq [n]$. : 1 n

- Q: How to attack if the subjects aren't numbered w/ ID's?
 - If we know the set of people but not their IDs? (e.g. current Harvard students)
 - If we only know the size n of the dataset?