1 Announcements

- PS 2 due 10/24
- Monday 10/28 4PM MD G-125 CS colloquium with Joan Feigenbaum
- Friday 11/1 11AM - CS colloquium: Primes in P, MD G-125, no lecture
- The relevant parts of Papadimitriou for this lecture are Problems 7.4.17, 14.5.12, Chapter 20, and Problem 20.2.13.

2 More intuition for PPST

Theorem 1 (Paul, Pippenger, Szemeredi, Trotter): \(\text{TIME}(f(n)) \subseteq \Sigma_4 \text{TIME}(o(f(n)))\).

Corollary 2 \(\text{NTIME}(n) \neq \text{TIME}(n)\)

Main idea: Break time \(f(n)\) computation into subcomputations of “size” \(o(f(n))\), use alternation to check all of these at price \(o(f(n))\).

Our first attempt:

- Split \(f(n)\) into \(a(n), b(n)\) such that \(f(n) = a(n) \cdot b(n)\).
- Delimit computation time intervals of length \(b(n)\) by \(t_0, t_1, \ldots, t_{a(n)}\).
- \(\exists\): guess existentially configurations of TM at times \(t_0, t_1, \ldots, t_{a(n)}\); call them \(c_0, c_1, \ldots, c_{a(n)}\)
- \(\forall\): verify that \(c_i \rightarrow c_{i+1}\) in \(b(n)\) steps.

The problem with this is that each configuration is of size \(f(n)\), so even the guessing takes time \(a(n) \cdot f(n) > f(n)\), and we’ve gained nothing.

Observation: In one time segment, the TM touches only \(O(b(n))\) tape cells. Maybe we could guess \(O(b(n))\) “relevant” cells for each \(t_i\). However, this creates the difficulty that to verify consistency, it no longer suffices to look only at adjacent pairs!

There exists then, a graph-theoretic lemma where the real magic occurs. We identify \(o(a(n))\) times \(t_{i_1}, t_{i_2}, \ldots, t_{i_{o(a(n)}}\) such that configurations at each \(t_{i_j}\) only “depends” on only \(o(a(n))\) of the others. (This exploits some structural properties of the computation graph of a block-respecting TM.)
• Guess $c_1, c_2, \ldots, c_{o(a(n))}$ (Takes time $o(a(n)) \cdot b(n) = o(f(n))$).

• $\forall j$ will verify if c_{ij} consistent with those configurations on which it depends (we use another two quantifiers for this).

Remarks:

• Ideas originated in valiant, Hopcroft-Paul-Valiant: $\text{TIME}(f(n)) \subseteq \text{SPACE}(\frac{f(n)}{\log f(n)})$.

• These results depend heavily on the Turing Machine model.

• Can actually prove something like $\text{NTIME}(n) \subset \text{TIME}(n(\log^* n)^{1/4})$ with this approach.

3 Provably intractable problems

For natural problems, so far our best lower bounds are showing that GGE0, GO, QBF, etc. are not in L by their PSPACE-completeness and the space hierarchy theorem. To get problems not in P, it is sufficient to find problems complete for EXP (or higher!).

3.1 EXP and NEXP-complete problems

One general method is to find succinct versions of P, NP-complete problems. But what is a succinct representation of a graph?

Definition 3 A succinct representation of a graph is a circuit $C : \{0, 1\}^n \times \{0, 1\}^n \rightarrow \{0, 1\}$ defining $G_C = (V, E)$, $V = \{0, 1\}^n$, $E = \{(u, v) : C(u, v) = 1\}$

We then have a potentially succinct representation of the graph, since it can represent something exponentially larger than its description length (the circuit).

This yields succinct versions of familiar graph problems.

Definition 4 Succinct Hamiltonian Path: $\text{SHP} = \{C : G_C \text{ has a Hamiltonian path}\}$.

Proposition 5 $\text{SHP} \in \text{NEXP}$

Proof: Given C, can construct G_C in exponential time. We then can run our NP algorithm on G_C. ■

We can also look at problems like $\text{Succinct Circuit Value}$, $\text{Succinct Circuit SAT}$, Succinct 3-SAT, etc. In these, the succinct representation of a circuit C describes an exponentially bigger circuit \tilde{C}.

Theorem 6 $\text{Succinct Circuit Value}$ is EXP-complete. Also, $\text{Succinct Circuit SAT}$ is NEXP-complete.
Proof: This is a use of the Cook-Levin reduction, on a $2^n \times 2^n$ tableau. The key point is that the circuit produced by Cook-Levin has a very regular structure (mostly the same constant-size circuit repeated many times) so can be succinctly described by a smaller circuit. See Papadimitriou, Thm 20.2.

In fact, succinct versions of most familiar \textbf{P}-complete or \textbf{NP}-complete problems are \textbf{EXP}-complete or \textbf{NEXP}-complete, respectively, including \textsc{Succinct Hamiltonian Path}. But these succinct problems are not totally “natural” in that they still refer explicitly to computation (namely circuits). Next we’ll see an even more natural intractable problem.

\subsection{Regular Expressions with Exponentiation (r.e.e.’s)}

$R(\Sigma, \circ, \cup, *, \uparrow)$ is the set of regular expressions with the exponentiation operation $R \uparrow n$ (n given in binary), whose semantics are given by $L(R \uparrow n) \equiv L(RR\cdots R)$, there being n occurrences of R. These are also equivalent to regular expressions with squaring (i.e. $L(R^2) = L(RR)$).

Thus, a natural language/problem spawns from this: $\text{REE} = \{r.e.e.R | L(R) = \Sigma^*\}$.

\textbf{Theorem 7 (Meyer–Stockmeyer)} \textbf{REE} is \textbf{EXPSPACE} complete

\textbf{Corollary 8} Any deterministic algorithm deciding \text{REE} takes space (and time, as a consequence) $\geq 2^{O(n)}$ (for infinitely many n), by Space Hierarchy Theorem