1 Identity Testing

Given algebraic expressions \(p(x_1, x_2, \ldots, x_n), q(x_1, x_2, \ldots, x_n) \) decide is \(p \equiv q \)?

We can interpret equivalence in two different ways: as formal polynomials or as functions from \(\mathbb{Z}^n \rightarrow \mathbb{Z} \). For polynomials over \(\mathbb{Z} \), these two interpretations are the same.

We gave the following randomized algorithm to solve the problem:

1. Let \(m = \max\{|p|, |q|\}, M = 2^m, S = \{1, \ldots, M\} \).
2. Randomly choose \(\alpha_1, \alpha_2, \ldots, \alpha_n \leftarrow S \).
3. Accept if \(p(x_1, x_2, \ldots, x_n) = q(x_1, x_2, \ldots, x_n) \).

Proposition 1

if \(p \equiv q \) then algorithm always accepts.

if \(p \not\equiv q \) then algorithm accepts with probability \(\leq \frac{m}{M} = 2^{-\Omega(m)} \) (over its coin tosses).

1) is obvious.
2) follows from the 2 lemmas below.
Definition 2. The total degree of a polynomial is the maximum of the sums of coefficients in each term (when written in canonical form $\sum_{i_1, \ldots, i_n \in \mathbb{N}} c_{i_1, \ldots, i_n} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$).

Example 3. The total degree of $f(x, y) = x^2 y^3 + x^4$ is 5.

Lemma 4. The total degree of expression $p(x_1, x_2, \ldots, x_n)$ is at most $|p|$.

Proof:
(by induction on $|p|$)

$$\deg(p_1 \cdot p_2) = \deg(p_1) + \deg(p_2) \leq (\text{by inductive hypothesis}) |p_1| + |p_2| \leq |p_1 \cdot p_2|. \text{ A similar argument shows that } \deg(p_1 + p_2) \leq |p_1 + p_2|. \qed$$

Lemma 5 (Schwartz–Zippel). If r is a nonzero polynomial,

$$\Pr_{(\alpha_1, \alpha_2, \ldots, \alpha_n) \leftarrow S}[r(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0] \leq \frac{\deg r}{|S|}$$

where $\deg r$ is the total degree of r.

Proof: (By induction on n, the number of variables)

Base case: $n = 1$. $\Pr_{\alpha \leftarrow S}[r(\alpha) = 0] \leq \frac{\deg r}{|S|}$. This follows from a fundamental theorem of algebra that states the the number of solutions to a non-zero polynomial is at most the degree of the polynomial.

Inductive step. Observe that

$$r(x_1, \ldots, x_n) = \sum_{i=0}^k r_i(x_1, x_2, \ldots, x_{n-1})x_n^i,$$

where $r_k \neq 0$. Then

$$\Pr[r(\hat{\alpha}) = 0] \leq \Pr[r_k(\alpha_1, \alpha_2, \ldots, \alpha_{n-1}) = 0] + \Pr[r(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0|r_k(\alpha_1, \alpha_2, \ldots, \alpha_{n-1}) \neq 0]$$

$$\leq \frac{\deg r_k}{|S|} + \frac{k}{|S|}$$

The first term follows from the inductive hypothesis, while the second term is a result of the same algebraic property we used in the base case. Note now that $\deg r_k + k \leq \deg r$, by Equation (1). \qed
With these two lemmas, to prove proposition just take \(r = p - q \).

Remark 6 This works over any field or integral domain (because those have property that a polynomial of degree \(d \) has at most \(d \) roots).

Definition 7 An integral domain is a set with addition (+) and multiplication (\(\cdot \)) such that \(a \cdot b = 0 \iff [a = 0 \text{ or } b = 0] \).

Example 8 For example the integers modulo a prime \(p \). \(a \cdot b \equiv 0 \pmod{p} \iff p | a \cdot b \iff a \equiv 0 \pmod{p} \text{ or } b \equiv 0 \pmod{p} \).

Note this property doesn’t hold modulo a composite: \(2 \cdot 3 \equiv 0 \pmod{6} \).

Remark 9 The algorithm only requires that we are given a polynomial in a form such that:

- can bound the degree of the polynomial (even exponentially is fine).
- can evaluate the polynomial in polynomial time.

Example 10 We can test identities like Vandemonde:

\[
\det\begin{bmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\
1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & x_n & x_n^2 & \cdots & x_n^{n-1}
\end{bmatrix} = \pm \prod_{i<j}(x_i - x_j)
\]

Note: we can bound the degree and can evaluate it in polynomial time.

2 Randomized Complexity Classes

Definition 11 A probabilistic TM is a TM \(M \) with a special "coin flip" state \(q_{\text{flip}} \) such that when \(M \) goes into \(q_{\text{flip}} \) the current cell is replaced randomly with a 0 or 1.

Alternatively: we can start the TM with an extra "random tape" filled with random bits.

Definition 12 (Random Polynomial Time) \(L \in \text{RP} \) if \(\exists \) a probabilistic polynomial-time TM \(M \) such that
1. If \(x \in L \Rightarrow \Pr_{\text{coin flips}}[M(x) \text{ accepts }] \geq \frac{1}{2} \).

2. If \(x \notin L \Rightarrow \Pr_{\text{coin flips}}[M(x) \text{ accepts }] = 0 \)

Thus, the algorithm can make errors only on \textit{yes} instances. We stress that the above holds for \textit{all} inputs; the randomness is only over the algorithm’s coin tosses. We have shown:

\textbf{Theorem 13} \textit{IdentityTest} is in \textit{co-RP}.

\textbf{Lemma 14 (RP Amplification)} \textit{If} \(L \in \text{RP} \Rightarrow \forall \text{ polynomial } p \exists \text{ an RP algorithm for } L \text{ with error probability } \leq 2^{-p(n)} \)

\textbf{Proof:} Given error \(\frac{1}{2} \) algorithm \(M \) for \(L \), run \(M(x) \) \(p(n) \) times and accept if \(M \) ever accepts, otherwise reject.

The probability that \(M \) accepts if \(x \notin L \) is still 0. But if \(x \in L \) the probability that it rejects is at most \((\frac{1}{2})^{p(n)} \).

What about 2-sided error?

\textbf{Definition 15 (Bounded-error probabilistic polynomial time)} \(L \in \text{BPP} \) if \(\exists \) a polynomial time probabilistic TM \(M \) such that

1. If \(x \in L \Rightarrow \Pr_{\text{coin flips}}[M(x) \text{ accepts }] \geq \frac{2}{3} \).

2. If \(x \notin L \Rightarrow \Pr_{\text{coin flips}}[M(x) \text{ accepts }] \leq \frac{1}{3} \).

\textbf{Lemma 16 (BPP Amplification)} \textit{If} \(L \in \text{BPP} \Rightarrow \forall \text{ polynomial } p \exists \text{ a probabilistic polynomial-time algorithm for } L \text{ with error probability } \leq 2^{-p(n)} \)

\textbf{Proof:} Given a \textit{BPP} algorithm \(M \) and input \(x \), run \(M \) on \(x \) \(k \) times and decide by majority vote.

Fact: The error decreases as \(2^{-\Omega(k)} \). This is proved using a fact from probability known as the Chernoff Bound (Lemma 11.9 in Pap.). So by picking an appropriate \(k \) (polynomial in the length of \(x \)) we get the desired bound.

Does \(\text{BPP} = \text{P} \)? We don’t yet know but there is a lot of evidence that if they are not equal they are very close.
We do know that \(\text{RP} \subseteq \text{NP} \) because the certificate could just be the flips that give you an accepting computation. For the same reason \(\text{co-RP} \subseteq \text{co-NP} \). We will prove that \(\text{BPP} \subset \Sigma_2^P \) next time.