
CS 221: Computational Complexity Prof. Salil Vadhan

Problem Set 3

Assigned: Fri. Mar. 5, 2010 Due: Thu. Mar. 25, 2010 (5 PM sharp)

• You must type your solutions. LATEX, Microsoft Word, and plain ascii are all acceptable. Sub-
mit your solutions via email to cs221-hw@seas.harvard.edu. If you use LATEX, please submit
both the compiled file (.pdf) and the source (.tex). Please name your files PS3-yourlastname.*.

• Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included
to stimulate your thinking and for your enjoyment, not to overwork you. *’ed problems are
extra credit.

Problem 1. (regular expression problems) Consider regular expressions R with concate-
nation, union, Kleene star, and exponentiation. Recall that in class we showed the language
ALLREX↑ = {R : L(R) = Σ∗} is EXPSPACE-complete. Here we classify the complexity of
variants of this problem.

1. Show that if we do not allow exponentiation, the problem becomes PSPACE-complete.

2. Show that the equivalence problem {(R1, R2) : L(R1) = L(R2)} where R1 and R2 are regular
expressions with exponentiation but no Kleene stars is co-NEXP-complete.

Problem 2. (circuit complexity of a threshold function) Consider the threshold function
Th2(x1, . . . , xn), defined to be 1 iff at least two of the input variables are 1.

1. Prove that size{∧,∨,¬}(Th2) ≤ 4n+O(1). (Recall that our measure of circuit size includes the
input variables.)

2. Prove that sizeB2(Th2) ≥ 3n−O(1), where B2 is the full binary basis. (Hint: show that if two
variables are inputs to some binary gate, then at least one of them must be used elsewhere
in the circuit.)

Problem 3. (branching programs) A branching program over variables {x1, . . . , xn} is a
directed acyclic graph where every node is labelled with a variable xi, or is labelled with an output
in {0, 1}. Variable nodes are required to have outdegree 2 and output nodes must have outdegree 0.
The two edges leaving every variable node are also labelled 0 and 1. One of the nodes is designated
as the start node. Such a branching program defines a function f : {0, 1}n → {0, 1}, where f(α)
is defined as follows. We begin at the start node, then follow the path determined by taking the
outgoing edge from each variable node v according to the value α assigns to the variable labelling
v. Eventually we reach an output node, and set f(α) to be the value at that node.

1



1. Characterize the class of languages decidable by polynomial-sized branching programs in
terms of one of the complexity classes we have seen, augmented with advice.

2. A branching program has width w if its nodes can be partitioned into layers L1, L2, . . . each
of size up to w, such that every edge leaving a node in layer Li leads to a node in Li+1.

Show that every language decidable by a constant-width, polynomial-sized branching program
is in NC1. (Barrington’s Theorem says that the converse is also true, giving a surprising
alternate characterization of NC1. Students who took AM106/206 in Fall 2009 saw this as
an application of permutation groups on a problem set.)

Problem 4. (circuit lower bounds for high classes)

1. Prove that EXPSPACE 6⊆ SIZE(2n/2n).

2. Prove that for every constant c, PH 6⊆ SIZE(nc).

3. Prove that for every constant c, Σp
2 6⊆ SIZE(nc).

Recall that the best circuit lower bound we have for a function in NP is only 6n− o(n).

Problem 5. (one-sided error vs. two-sided error) Show that if NP ⊆ BPP, then NP =
RP.

Problem 6. (refined hierarchy theorem for circuit size*) In Arora–Barak (Thm 6.22), a
hierarchy theorem for circuit size is proven, showing that a polynomial or even multiplicative factor
in circuit size allows computing more functions. Tighten this hierarchy theorem as much as you
can; the amount of extra credit will depend on how tight a hierarchy theorem you get.

2


