CS 221: Computational Complexity Prof. Salil Vadhan
Problem Set 4

Assigned: Wed. Mar. 24, 2010 Due: Thu. Apr. 8, 2010 (5 PM sharp)

e You must type your solutions. IATEX, Microsoft Word, and plain ascii are all acceptable. Sub-
mit your solutions via email to cs221-hw@seas.harvard.edu. If you use IXTEX, please submit
both the compiled file (.pdf) and the source (.tex). Please name your files PS4-yourlastname. *.

e Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included
to stimulate your thinking and for your enjoyment, not to overwork you. *’ed problems are
extra credit.

Problem 1. (one-sided error vs. two-sided error) Show that if NP C BPP, then NP =
RP.

Problem 2. (Cook reductions to promise problems) Note that for a promise problem II,
“running an algorithm with oracle II” is not in general well-defined, because it is not specified what
the oracle should return if the input violates the promise.! Thus, when we say that a problem I'
can be solved in polynomial time with oracle access to II, we mean that there is a polynomial-time
oracle algorithm A such that for every oracle O : {0,1}* — {0,1} that solves II (i.e. O is correct
on ITy UTIy), it holds that A? solves I.

1. Let II be the promise problem

Iy = {(p,%): ¢ €SAT,y ¢ SAT}
Iy = {(Qpad)) L P ¢ SAT,’Q& € SAT}

Show that IT € prNP N prcoNP but SAT € prP.

This implies that prNP C prPP™NPMPreoNP “Note that an analogous inclusion seems unlikely
for language classes, since PNPN€oNP — NP 0 coNP, as shown in an earlier section.

2. (*) Show that prBPP C prRPP*RP and thus prRP = prP iff prBPP = prP. (Hint: look
at the proof that BPP C PH.)

LA similar issue comes up with problems where there are multiple valid answers on a given input, such as search or
approximation problems. Again, in such cases, we should require that the algorithm works correctly for every oracle
that solves the problem.



Problem 3. (#MATCHINGS and #INDEPENDENT SETS)

1. A matching in a graph is a set S of edges such that every vertex touches at most one edge in
S (as opposed to exactly one, as required in a perfect matching). Show that #MATCHINGS,
the problem of counting all the matchings in a graph, is #P-complete. (Hint: reduce from
#PERFECT MATCHINGS. Given a graph G, consider the graph G} obtained by attaching k
new edges to each vertex of G. G has n + nk vertices, where n is the number of vertices in
G. Show that the number of perfect matchings in G can be recovered from the number of
matchings in each of Gy,...,G,.)

2. An independent set in a graph G is a set S of vertices such that no two elements of S are
connected by an edge in G. Prove that #INDEPENDENT SETS, the problem of counting the
number of independent sets in a graph, is #P-complete.

3. Prove that a fully polynomial randomized approximation scheme for #MATCHINGS implies a
fully polynomial almost-uniform sampler for MATCHINGS. (This is the converse of what we
showed in class.)

4. Show that approximating #INDEPENDENT SETS to within any constant factor is NP-hard. In
contrast, there are a fully polynomial randomized approximation schemes known for #PER-
FECT MATCHINGS and #MATCHINGS.

Problem 4. (parallel search vs. decision)

1. Recall that we can solve the SAT-SEARCH problem in polynomial time given an oracle for
deciding SAT. Note that this reduction algorithm makes adaptive queries to the SAT oracle,
i.e. its i’th query depends on the answers to its first ¢ — 1 queries. Show that the reduction
can be made nonadaptive if we allow it to be randomized. (Hint: Use Valiant-Vazirani)

2. Suppose that there is a 1/poly(n)-hard NP search problem S (see PS0 for definition). That
is, there is a polynomial p such that for every probabilistic polynomial-time machine A and
sufficiently large n,

%E)fl}n[fl(w) ¢ S(x)] = 1/p(n).

Show that there is a 1/poly(n)-hard language in NP.



