
CS 221: Computational Complexity Prof. Salil Vadhan

Problem Set 5

Assigned: Wed. Apr. 7, 2010 Due: Thu. Apr. 22, 2010 (5 PM sharp)

• You must type your solutions. LATEX, Microsoft Word, and plain ascii are all acceptable. Sub-
mit your solutions via email to cs221-hw@seas.harvard.edu. If you use LATEX, please submit
both the compiled file (.pdf) and the source (.tex). Please name your files PS5-yourlastname.*.

• Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included
to stimulate your thinking and for your enjoyment, not to overwork you. *’ed problems are
extra credit.

Problem 1. (Quadratic Residuosity) For a number n, the group of units modulo n is
Z∗
n = {m ∈ {1, . . . , n − 1} : gcd(m,n) = 1}. The group of quadratic residues modulo n is Qn =
{m2 mod n : m ∈ Z∗

n}. Quadratic Residuosity is the language QR = {(n,m) : m ∈ Qn}. There
are no known polynomial-time algorithms for this problem, and indeed there are cryptographic
algorithms based on its conjectured hardness.

1. Show that the following protocol is an interactive proof for Quadratic Residuosity.
Protocol (P, V )(n,m):

(a) P finds (or gets as an auxiliary input) a number k ∈ Z∗
n such that k2 mod n = m,

(b) P chooses a random element r
R← Z∗

n, sets s = m · r2 mod n, and sends s to V .

(c) V flips a coin b
R←{0, 1}, and sends b to P .

(d) If b = 0, P sends t = r to V . If b = 1, P sends t = kr to V .

(e) If b = 0, V accepts if (t2 ·m) mod n = s. If b = 1, V accepts if t2 mod n = s.

2. Show that the above protocol is zero knowledge in the sense that when (n,m) ∈ QR, every-
thing V sees, it could have generated efficiently on its own. That is, there is a probabilistic
polynomial-time “simulator” S such that when (n,m) ∈ QR, the output distribution S(n,m)
is identical to the distribution of V ’s view of the protocol (P, V )(n,m) (namely the triple
(s, b, t)).

Problem 2. (Randomness in interactive proofs) Unlike Arora–Barak, in our definition of
IP we allowed the prover to be randomized.

1. (The verifier’s randomness is essential) Show that IP with deterministic verifiers collapses to
NP. (This is shown in Arora-Barak for the case where the prover is deterministic.)

1



2. (The prover’s randomness is inessential) Show that for every interactive proof, there is a
deterministic prover strategy that is “optimal” (i.e. maximizes the verifier’s acceptance prob-
ability), and in fact this strategy can be computed in polynomial space. Conclude that
IP ⊆ PSPACE.

Problem 3. (Random self-reducibility) A function f : {0, 1}∗ → {0, 1}∗ is random self-
reducible under a sequence Dn of distributions (where Dn is a distribution on {0, 1}n) if there is a
probabilistic polynomial-time oracle algorithm M such that for every n and every x ∈ {0, 1}n,

1. Mf (x) = f(x), and

2. The oracle queries made by Mf (x) are each distributed according to Dn.

If in addition M ’s oracle calls are nonadaptive, we say that f is nonadaptively random self-reducible.

1. Show that if f is random self-reducible under Dn and f /∈ BPP, then there is a polynomial
p(n) such that f is not (1− 1/p(n))-easy under Dn.

2. Explain why there are #P-complete, PSPACE-complete, and EXP-complete problems that
are randomly self-reducible under the uniform distribution Un.

3. Show that if there were a nonadaptively random self-reducible NP-complete problem (under
any distribution Dn), then coNP ⊆ prAM/poly. The latter class is prAM with polynomial
advice. We use the promise class rather than the language class for technical reasons that you
need not worry about. (Hint: run M many times, take as advice the quantity Pr[Dn ∈ L].)

4. (*) Show that if coNP ⊆ prAM/poly, then thePH collapses. HenceNP-complete problems
cannot be random self-reducible unless PH collapses.

Problem 4. (Collapse of the AM hierarchy)

1. For a class C of promise problems, we define prΣ ·C to be the class of promise problems Π
such that there exists a promise problem Π′ ∈ C and a polynomial p for which

x ∈ ΠY ⇒ ∃y ∈ {0, 1}p(n)(x, y) ∈ Π′
Y

x ∈ ΠN ⇒ ∀y ∈ {0, 1}p(n)(x, y) ∈ Π′
N

Similarly, we define prBP ·C to be the class of promise problems Π such that there exists a
promise problem Π′ ∈ C and a polynomial p for which

x ∈ ΠY ⇒ Pr
y∈{0,1}p(n)

[(x, y) ∈ Π′
Y ] ≥ 2/3

x ∈ ΠN ⇒ Pr
y∈{0,1}p(n)

[(x, y) ∈ Π′
N ] ≥ 2/3

Show that for every integer k ≥ 1, prMA[k] = prΣ · prAM[k − 1] and prAM[k] = prBP ·
prMA[k − 1], where prMA[0] = prAM[0] = prP (by definition).

2. Prove that prMA ⊆ prAM. (Hint: First do error-reduction.)

3. Prove that for all k ≥ 2, prAM[k] = prAM. Conclude that AM[k] = AM.

4. Where in the above parts was it important that we were working with promise problems?

2


