
CS 221: Computational Complexity

Problem Set 6 (Take-Home Final)

Assigned: Wed. Apr. 21, 2010 Due: Thu. May. 6, 2010 (5 PM)

Exam Policies. You must work on this exam alone. The only references you may use are notes
from lecture and section, the problems sets and solutions, and the Arora–Barak . You may quote
any result proven in class or in the text. Except on Problem 1, you may not use results that
were only stated without proof (unless you provide justification of your own). No late days are
permitted, and no credit will be given for work turned in after the deadline.

You must type your solutions. LATEX, Microsoft Word, and plain ascii are all acceptable. Submit
your solutions via email to cs221-hw@seas.harvard.edu. If you use LATEX, please submit both
the compiled file (.pdf) and the source (.tex). Please name your files PS6-yourlastname.*.

Problem 1. (Various relations) In this problem, you will describe everything that we know
(from this course) about the pairwise relationships between the following statements. In doing so,
you may use results stated without proof in class or in the texts. First, identify whether any of
the statements below are known to be true or false. For the remaining statements, draw a directed
graph showing all of the implications that follow from the results we have seen in class. (You do
not need to consider negations of the statements. And if you have implications A⇒ B and B ⇒ C,
you do not need to draw the implication A⇒ C.) Briefly justify your answers.

1. Every function computable in exponential time can be computed in probabilistic polynomial
time on all but a 1/nlog n fractions of the inputs of length n, for all n.

2. The polynomial-time hierarchy collapses.

3. NTIME(n2) 6= TIME(n4).

4. TQBF can be solved by logspace-uniform, polynomial-size boolean formulas.

5. AM = coAM.

6. Unique SAT is in prP.

7. There is a fully polynomial almost-uniform sampler for Independent Sets.

Problem 2. (2-CSPs and 2-Query PCPs)

1. Give a (1/4)-approximation algorithm for Max-2CSP.

2. Show that there are constants 1 > c > s > 0 such that Gapc,sMax-2SAT is NP-hard.

[Hint: consider the gadget

(x1∨x2∨x3) 7→ (x1)∧(x2)∧(x3)∧(¬x1∨¬x2)∧(¬x2∨¬x3)∧(¬x3∨¬x1)∧(y)∧(x1∨¬y)∧(x2∨¬y)∧(x3∨¬y).]
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3. Prove that for every s < c/4, PCPc,s(log n, 2) = P.

4. Prove that for some s < c, PCPc,s(log n, 2) = NP.

5. Prove that for every s < 1, PCP1,s(log n, 2) = P.

Problem 3. (Testing Graph Properties) A graph G = (V,E) is a biclique if there is a
partition (V1, V2) of V such that E = V1 × V2. Consider the following promise problem:

(TestεBiClique)Y = {G : G is a biclique}.
(TestεBiClique)N = {G : G is ε-far from every biclique},

where we represent the graph G by its adjacency matrix, consisting of N = n2 bits, and we say
that two graphs are ε-far if their adjacency matrices differ on at least ε ·N entries.

1. Show that for every constant ε > 0, TestεBiClique is in prBPTIME(O(log N)), if we
work in a computational model where the algorithm has random access (equivalently, oracle
access) to its input. (Hint: fix an arbitrary vertex v0 ∈ V , randomly pick u, w

R←V , and check
which of the edges (v0, u), (v0, w), and (u, w) are in G.)

2. Show that for some constant ε > 0, TestεBiClique is not in prDTIME(o(N)), if we work
in a computational model where the algorithm has random access (equivalently, oracle access)
to its input.

Thus, even though there is evidence that BPP = P (and also prBPP = prP), when we con-
sider sublinear time, randomization provably provides an exponential savings over deterministic
algorithms.

Problem 4. (Depth Reduction for AlgP/poly) A polynomial p(x1, . . . , xn) over a field
F is homogeneous of degree d if every nonzero term in p has degree exactly d. (Hence the zero
polynomial is homogeneous of every degree.) Rvery polynomial p(x1, . . . , xn) of degree at most d
can be written uniquely as p = p0 + · · ·+ pd, where pi is homogeneous of degree i; pi is called the
homogeneous degree i part of p. An algebraic circuit C is homogeneous if every gate in C computes
a homogeneous polynomial. Below you may assume F = Q, but the results hold over any field.

1. Show that if p(x1, . . . , xn) is a degree d polynomial computable by an algebraic circuit of
size s, then there is a a homogeneous algebraic circuit of size O(d2s) computing each of the
homogeneous parts of p(x1, . . . , xn).

2. Show that if p(x1, . . . , xn) is a (homogeneous) degree d polynomial (for d ≥ 2) computable by
a homogeneous algebraic circuit of size s, then p =

∑s
i=1 qiri, where each of the qi’s and ri’s

are homogeneous polynomials of degree at most 2d/3 computable by homogeneous algebraic
circuits of size O(s). (Hint: write p = p0 + p1q + p2q

2, where q is the polynomial computed
by an appropriately chosen gate in the circuit, and induct on s.)

3. Deduce that if p(x1, . . . , xn) is a degree d polynomial computable by an algebraic circuit of
size s, then p is computable by an algebraic circuit of depth O((log d) · (log s + log d) + log n).

2


