
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 14

March 22, 2010 Scribe: Kyu Bok Lee

1 Agenda

• #P-completeness (cont.)

• Toda’s Theorem

• Approximate Counting vs. Uniform Sampling (more on next lecture)

2 #P-Completeness (cont.)

Definition 1 For an n× n matrix M , the permanent of M is defined to be

perm(M) =
∑
σ∈Sn

n∏
i=1

Miσ(i)

where Sn is the group of permutations from [n] to [n].

Definition 2 In a graph G = (V,E), a matching is a subset of edges E′ ⊆ E such that each vertex
in V is incident to at most one edge in E′. A perfect matching is when each vertex is incident to
exactly one edge in E′.

Theorem 3 (Valiant) Computing the permanent of {0, 1}-matrices is #P-complete.

Proof: First we show that the problem is in #P. Note

{0, 1}-matrix←→ bipartite graph with n vertices on each side,
nonzero term in perm(M)←→ perfect matching in G.

So we have perm(M) = the number of perfect of matchings in G. (More generally, if M is not nec-
essarily a {0, 1} matrix, then we can think of M as describing a weighted bipartite graph, and then
perm(M) is a weighted sum of perfect matchings, where the weight of a matching is the product
of the edge weights in it.) And the problem of counting perfect matchings in an arbitrary bipartite
graph G is clearly in #P.

We now proceed to show it is #P-hard:

1. #SAT ≤ permanent of integer matrices

2. integer matrices ≤ nonnegative integer matrices

1

3. nonnegative integer matrices ≤ {0, 1}-matrices

We discuss each step below:

1. Step 1 uses fancy gadgetry, and we will not discuss details here. (See Arora–Barak if you are
interested.)

2. Given M ∈ Zn×n, let v = max
i,j
|Mij | and define Q := 2vnn! > 2 · |perm(M)|. Then perm(M)

can be computed from perm(M) mod Q. We can replace every negative entry Mij with
Q+Mij . This nonnegative matrix M ′ has the property that perm(M ′) mod Q = perm(M)
mod Q.

3. We replace weighted edges with unweighted ones as follows:

2

i j

R LRLRL

2^i

i j

RL

w

i j

RL L R

2 1 2

RL RLL

2^i1

2^ik

where w = 2i1 + · · ·+ 2ik.

The L’s and R’s indicate which vertices are on the left or right side of the bipartite graph. The
first gadget is equivalent to a single edge of weight two, because there are two ways to match all
the vertices of the gadget (including the original vertices i and j), but only one way to match the
four “internal” vertices of the gadget without matching the “external” vertices (i, j). Thus, each
matching in the graph that uses edge i, j gets mapped to two matchings in the new graph, and each
matching in the graph that doesn’t use i, j gets mapped to one matching in the new graph.

3 Toda’s Theorem

Theorem 4 (Toda) PH ⊆ P#P.

Proof Outline::

2

1. PH ≤r
⊕

P (randomized karp reduction with exponentially small error)⊕
P is a problem of deciding whether or not there are an even or odd number of witnesses.

2. If L ≤r
⊕

P with exponentially small error, then L ∈ P#P. Intuitively, counting is more
powerful than both computing parities and randomization.

Remark 5 NP ≤r
⊕

P by Valiant-Vazirani Theorem.

#P vs. PP

Definition 6 L ∈ PP if there exists a polynomial-time machine M and a polynomial p such that

x ∈ L ⇐⇒
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1}

∣∣∣ > 2p(|x|)

2
.

Proposition 7 PPP = P#P.

Proof: One direction ⊆ is easy since we can count exactly in P#P. It remains to show Pf ∈ PPP

for any f ∈ #P. Let M be the verifier and p a polynomial associated with f .

1. Define L := {(x, t) :
∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1}

∣∣ > t}. This language is in PP since we
can let our polynomial-time machine in the definition be

M ′((x, t), (y, b)) =

1 b = 0 and M(x, y) = 1 or

b = 1 and y ≤ 2p(|x|)+1

2 − t
0 otherwise

2. Now Pf ⊆ PL by binary search.

So now we have:

NP coNP

P

PH

P^{#P} = P^{PP}

PSPACE

3

4 Approximate Counting

Definition 8 Let f : {0, 1}∗ → N and α ≥ 1. An α-approximation algorithm for f is an algorithm
A such that

f(x) ≤ A(x) ≤ α · f(x)

for all x.

Definition 9 If A is a probabilistic algorithm such that

Pr[f(x) ≤ A(x) ≤ α · f(x)] ≥ 2/3

for all x, then we call A a randomized α-approximation algorithm.

Definition 10 An approximation scheme for f is a set of (1 + ε)-approximation algorithms for all
ε > 0.

Definition 11 A fully polynomial approximation scheme for f is a set of (1 + ε)-approximation
algorithms Aε(x) running in time poly(|x|, 1/ε) for all x ∈ {0, 1}∗ and all ε > 0.

It turns out that there are many #P-complete functions with fully polynomial approximation
schemes. Thus, even though exact counting is usually hard, approximate counting is often much
easier.

4

