## Lecture Notes 14

March 22, 2010
Scribe: Kyu Bok Lee

## 1 Agenda

- \#P-completeness (cont.)
- Toda's Theorem
- Approximate Counting vs. Uniform Sampling (more on next lecture)


## 2 \#P-Completeness (cont.)

Definition 1 For an $n \times n$ matrix $M$, the permanent of $M$ is defined to be

$$
\operatorname{perm}(M)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} M_{i \sigma(i)}
$$

where $S_{n}$ is the group of permutations from $[n]$ to $[n]$.
Definition 2 In a graph $G=(V, E)$, a matching is a subset of edges $E^{\prime} \subseteq E$ such that each vertex in $V$ is incident to at most one edge in $E^{\prime}$. A perfect matching is when each vertex is incident to exactly one edge in $E^{\prime}$.

Theorem 3 (Valiant) Computing the permanent of $\{0,1\}$-matrices is $\mathbf{\# P}$-complete.
Proof: First we show that the problem is in $\# \mathbf{P}$. Note
$\{0,1\}$-matrix $\longleftrightarrow$ bipartite graph with $n$ vertices on each side, nonzero term in perm $(M) \longleftrightarrow$ perfect matching in $G$.

So we have $\operatorname{perm}(M)=$ the number of perfect of matchings in $G$. (More generally, if $M$ is not necessarily a $\{0,1\}$ matrix, then we can think of $M$ as describing a weighted bipartite graph, and then $\operatorname{perm}(M)$ is a weighted sum of perfect matchings, where the weight of a matching is the product of the edge weights in it.) And the problem of counting perfect matchings in an arbitrary bipartite graph $G$ is clearly in $\# \mathbf{P}$.

We now proceed to show it is \#P-hard:

1. \#SAT $\leq$ permanent of integer matrices
2. integer matrices $\leq$ nonnegative integer matrices
3. nonnegative integer matrices $\leq\{0,1\}$-matrices

We discuss each step below:

1. Step 1 uses fancy gadgetry, and we will not discuss details here. (See Arora-Barak if you are interested.)
2. Given $M \in \mathbb{Z}^{n \times n}$, let $v=\max _{i, j}\left|M_{i j}\right|$ and define $Q:=2 v^{n} n!>2 \cdot|\operatorname{perm}(M)|$. Then $\operatorname{perm}(M)$ can be computed from $\operatorname{perm}(M) \bmod Q$. We can replace every negative entry $M_{i j}$ with $Q+M_{i j}$. This nonnegative matrix $M^{\prime}$ has the property that $\operatorname{perm}\left(M^{\prime}\right) \bmod Q=\operatorname{perm}(M)$ $\bmod Q$.
3. We replace weighted edges with unweighted ones as follows:

where $w=2^{i 1}+\cdots+2^{i k}$.
The $L$ 's and $R$ 's indicate which vertices are on the left or right side of the bipartite graph. The first gadget is equivalent to a single edge of weight two, because there are two ways to match all the vertices of the gadget (including the original vertices $i$ and $j$ ), but only one way to match the four "internal" vertices of the gadget without matching the "external" vertices $(i, j)$. Thus, each matching in the graph that uses edge $i, j$ gets mapped to two matchings in the new graph, and each matching in the graph that doesn't use $i, j$ gets mapped to one matching in the new graph.

## 3 Toda's Theorem

Theorem 4 (Toda) $\mathbf{P H} \subseteq \mathbf{P}^{\# P}$.
Proof Outline::

1. $\mathbf{P H} \leq_{r} \bigoplus \mathbf{P}$ (randomized karp reduction with exponentially small error)
$\oplus \mathbf{P}$ is a problem of deciding whether or not there are an even or odd number of witnesses.
2. If $L \leq_{r} \bigoplus \mathbf{P}$ with exponentially small error, then $L \in \mathbf{P}^{\# \mathbf{P}}$. Intuitively, counting is more powerful than both computing parities and randomization.

Remark 5 NP $\leq_{r} \bigoplus \mathbf{P}$ by Valiant-Vazirani Theorem.
\# $\mathbf{P}$ vs. $\mathbf{P P}$
Definition $6 L \in \mathbf{P P}$ if there exists a polynomial-time machine $M$ and a polynomial $p$ such that

$$
x \in L \Longleftrightarrow\left|\left\{y \in\{0,1\}^{p(|x|)}: M(x, y)=1\right\}\right|>\frac{2^{p(|x|)}}{2}
$$

Proposition $7 \mathbf{P}^{\text {PP }}=\mathbf{P}^{\# P}$.
Proof: One direction $\subseteq$ is easy since we can count exactly in $\mathbf{P}^{\# \mathbf{P}}$. It remains to show $\mathbf{P}^{f} \in \mathbf{P}^{\mathbf{P P}}$ for any $f \in \# \mathbf{P}$. Let $M$ be the verifier and $p$ a polynomial associated with $f$.

1. Define $L:=\left\{(x, t):\left|\left\{y \in\{0,1\}^{p(|x|)}: M(x, y)=1\right\}\right|>t\right\}$. This language is in $\mathbf{P P}$ since we can let our polynomial-time machine in the definition be

$$
M^{\prime}((x, t),(y, b))= \begin{cases}1 & b=0 \text { and } M(x, y)=1 \text { or } \\ & b=1 \text { and } y \leq \frac{2^{p(x \mid x)+1}}{2}-t \\ 0 & \text { otherwise }\end{cases}
$$

2. Now $\mathbf{P}^{f} \subseteq \mathbf{P}^{L}$ by binary search.

So now we have:


## 4 Approximate Counting

Definition 8 Let $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ and $\alpha \geq 1$. An $\alpha$-approximation algorithm for $f$ is an algorithm A such that

$$
f(x) \leq A(x) \leq \alpha \cdot f(x)
$$

for all $x$.
Definition 9 If $A$ is a probabilistic algorithm such that

$$
\operatorname{Pr}[f(x) \leq A(x) \leq \alpha \cdot f(x)] \geq 2 / 3
$$

for all $x$, then we call $A$ a randomized $\alpha$-approximation algorithm.
Definition 10 An approximation scheme for $f$ is a set of $(1+\varepsilon)$-approximation algorithms for all $\varepsilon>0$.

Definition $11 A$ fully polynomial approximation scheme for $f$ is a set of $(1+\varepsilon)$-approximation algorithms $A_{\varepsilon}(x)$ running in time poly $(|x|, 1 / \varepsilon)$ for all $x \in\{0,1\}^{*}$ and all $\varepsilon>0$.

It turns out that there are many $\# \mathbf{P}$-complete functions with fully polynomial approximation schemes. Thus, even though exact counting is usually hard, approximate counting is often much easier.

