1 Characterizing IP

Recall that in an interactive proof for a language \(L \) we have a computationally unbounded prover \(P \) and a verifier \(V \) with the properties:

- Efficiency: \(V \) runs in time \(\text{poly}(|x|) \)
- Completeness: \(x \in L \rightarrow \Pr[V \text{ accepts in } (P,V)(x)] \geq 2/3 \)
- Soundness: \(x \notin L \rightarrow \forall P^*, \Pr[V \text{ accepts in } (P^*,V)(x)] \leq 1/3 \)

Last time we showed that \(\text{P}^\#P \subseteq \text{IP} \). In fact:

Theorem 1 \(\text{IP} = \text{PSPACE} \)

Proof: (sketch)

\(\subseteq \): Homework, PS5

\(\supseteq \): The proof is similar to \(\text{P}^\#P \subseteq \text{IP} \), using similar arithmetic techniques to transform the problem into one of polynomials over finite fields, except we use TQBF instead of \#SAT. In contrast to the summation in \#SAT, handling quantifiers in TQBF causes the degree of polynomial to increase exponentially, so a clever “degree reduction” trick is needed to keep it small.

1.1 Nice Properties of \#SAT and TQBF Proof Systems

1. The prover for both can be implemented in \(\text{P}^L \) - there is no need for anything stronger. This does not appear to be true for all languages with interactive proofs.

2. Perfect completeness - In both systems if \(x \in L \), the verifier accepts always. This implies that every language in \(\text{IP} \) has a perfectly complete interactive proof. (Since \(\text{IP} \subseteq \text{PSPACE} \), every language \(L \in \text{IP} \) reduces to TQBF, so we can obtain a new, perfectly complete interactive proof that \(x \in L \) by reducing \(x \) to an instance of TQBF and applying the protocol for TQBF.)

3. Public coins - The verifier in either case needs no hidden randomness. This implies that every language in \(\text{IP} \) has a public-coin protocol, including graph nonisomorphism. (Although public coins may come at the cost of efficiency). Note that the prover still cannot see future coins of the verifier.
2 Consequences for Program Checking

Definition 2
A program checker (a.ka. instance checker) for \(f : \{0,1\}^* \rightarrow \{0,1\}^* \) is a PPT \(M \) such that for all inputs \(x \):

1. Completeness: \(\Pr[M^f(x) \text{ accepts}] \geq 2/3 \) (or \(= 1 \) for perfect completeness)
2. \(\forall g \text{ such that } g(x) \neq f(x), \Pr[M^g(x) \text{ accepts}] \leq 1/3 \)

Idea: someone claims that a program \(g \) computes the the function \(f \). We want to use \(g \) to compute \(f \) on an input \(x \), but we are concerned that \(g \) may be incorrect (either due to bugs or to being malware). By running \(M^g(x) \) we can be confident that we won’t accept an incorrect value \(g(x) \).

Proposition 3
If \(L \) and \(\overline{L} \) have interactive proof systems where the prover can be implemented in \(P^L \) (or equivalently \(P^{\overline{L}} \)), then \(L \) has a program checker.

Proof:
Given an oracle \(L^* \) to be checked, our program checker is \(M^{L^*}(x) : \)

- Query \(L^*(x) \) and let \(y \in \{0,1\} \) be the result.
- If \(y = 1 \) simulate the IP for \(L \) to verify that \(x \in L \).
- If \(y = 0 \) simulate the IP for \(\overline{L} \) to verify that \(x \notin L \)
- Accept/reject accordingly

As a result, Graph Isomorphism, \#SAT, TQBF all have program checkers because of this. Note that the above does not show that all of \(IP = PSPACE \) has program checkers, because we require that the prover be implementable with oracle access to \(L \), rather than to a \(PSPACE \)-complete problem. In fact, it is an open problem whether SAT has a program checker, and the best known interactive proof for \(coNP \) still requires a \(\#P \) oracle!

3 Arthur–Merlin Games

Definition 4
A public-coin interactive proof is an interactive proof \((P,V) \) where each message from \(V \) consists of uniformly random coins and at the end \(V \) accepts by a deterministic poly-time function of \(x \) and the transcript of communications between \(P \) and \(V \).
This is also sometimes known as an Arthur-Merlin protocol, where we imagine Merlin, an all-powerful prover, trying to convince Arthur, the limited verifier, of something.
Definition 5
For a function $k : \mathbb{N} \rightarrow \mathbb{N}$…

$\text{IP}[k(n)] = \{ L : L \text{ has interactive proofs with } \leq k(n) \text{ messages} \}$

$\text{IP} = \bigcup_n \text{IP}[n^c]$

$\text{AM}[k(n)] = \{ L : L \text{ has public-coin interactive proofs with } \leq k(n) \text{ messages and Arthur speaks first} \}$

$\text{MA}[k(n)] = \{ L : L \text{ has public-coin interactive proofs with } \leq k(n) \text{ messages and Merlin speaks first} \}$

$\text{AM} = \text{AM}[2]$

$\text{MA} = \text{MA}[2]$

We present the following facts:

• $\text{IP}[\text{poly}(n)] = \text{AM}[\text{poly}(n)]$ because only public-coins were needed in $\text{IP} = \text{PSPACE}$.

• $\forall k(n) \geq 2$, $\text{IP}[k(n)] = \text{AM}[k(n)]$. In particular, GNI $\in \text{AM}[2]$. Loosely, “public coins = private coins”. (We’ll prove the case $k(n) = 2$ next time.)

• $\forall k(n) \geq 2$, $\text{MA}[k(n)] \subseteq \text{AM}[k(n)]$. (PS 5)

• $\forall k(n) \geq 2$, $\text{AM}[k(n)]$ with perfect completeness. (Possibly to be done in section.)

• $\forall k(n) \geq 2$, $\text{MA}[k(n)]$ with perfect completeness. (Possibly to be done in section.)

• $\forall k(n) \geq 2$, $\forall c$ constant, $\text{AM}[ck(n)] = \text{AM}[k(n)]$. In particular, $\text{AM}[c] = \text{AM}[2]$. (PS 5)

3.1 Relationships of AM and MA to NP

In MA, we have M sending m, then A tossing coins r, and then a deterministic verifier $A(x, m, r)$. By completeness and soundness:

$x \in L \rightarrow \Pr_r[\exists m, A(x, r, m) = 1] \geq 2/3$

$x \notin L \rightarrow \Pr_r[\exists m, A(x, r, m) = 1] \leq 1/3$

This is exactly NP except with a BPP verifier, instead of a P verifier!

In AM, we have A sending coins r, then M sending M, and then a deterministic verifier $A(x, m, r)$. By completeness and soundness:

$x \in L \rightarrow \Pr_r[\exists m_r, A(x, r, m) = 1] \geq 2/3$

$x \notin L \rightarrow \Pr_r[\exists m_r, A(x, r, m) = 1] \leq 1/3$

This is a randomized version of NP, where we have some randomness at the beginning, and then afterwards, check an NP-like condition that depends on the randomness.

On PS5 you will show $\text{MA} \subseteq \text{AM}$, and thus we have inclusions:
4 Approximate Counting $\in \text{AM}$

Theorem 6
For every $f \in \#P$ and every constant $\alpha > 1$ (or even $\alpha = 1 + 1/\text{poly}(n)$), we have $\text{GAP}_\alpha f \in \text{prAM}$, where $\text{GAP}_\alpha f$ is the promise problem:

yes: $\{(x,t) : f(x) \geq t\}$
no: $\{(x,t) : f(x) < t/\alpha\}$

Corollary 7
Approximate counting and almost-uniform sampling are both in BPP^{NP}.

Proof:
We show the theorem true for $\alpha = 4$. Next time we’ll show how to deduce it for $\alpha = 1 + 1/\text{poly}(n)$.

$f \in \#P$, so by definition $f(x) = |S(x)|$ for some NP search problem S. We give a prAM protocol using hashing. Given (x, t):

1. Arthur chooses $m \in \mathbb{N}$ such that $2^{m-1} > t \geq 2^{m-2}$, picks pairwise-independent hash $h : \{0,1\}^{\text{poly}(n)} \rightarrow \{0,1\}^m$ and sends h to Merlin.

2. Merlin finds $y \in S(x)$ such that $h(y) = 0^m$ and sends y.

3. Arthur accepts if $h(y) = 0^m$ and $y \in S(x)$.

Completeness: If $|S(x)| \geq t \geq 2^{m-2}$ then by the Valiant-Vazirani analysis, with probability $\geq 1/8$ there exists some element in $S(x)$ mapping to 0.

Soundness: If $|S(x)| < t/\alpha < 2^{m-1}/\alpha = 2^{m-3}$ then the probability that there exists some element in $S(x)$ mapping to 0 is, by union bound, $\leq \sum_{y \in S(x)} \Pr_{h}[h(y) = 0^m] = |S(x)|/2^m \leq 2^{m-3}/2^m \leq 1/16$.

4
Since we have a finite gap $1/8$ to $1/16$, we can amplify as desired, giving us an prAM protocol.