Lecture Notes 19

January 25, 2010
Scribe: Richard Liu

1 Recap

Recall from last time that we have the following:

- $\mathbf{I P}[k(n)]=$ interactive proofs with $\leq k(n)$ msgs. $\mathbf{I P}:=\mathbf{I P}[$ poly $]$.
- $\mathbf{A M}[k(n)]=$ public coin interactive proofs with $\leq k(n)$ msgs starting with A (verifier).

AM := AM[2].

- MA $[k(n)]=$ public coin interactive proofs with $\leq k(n)$ msgs starting with M (prover).

MA $:=$ MA $[2]$.
Facts: for $k(n) \geq 2$

- $\mathbf{M A}[k(n)] \subseteq \mathbf{A M}[k(n)] \subseteq \mathbf{I P}[k(n)]$
- $\mathbf{A M}[2 k(n)] \subseteq \mathbf{A M}[k(n)]$
- Assume perfect completeness wlog.

You'll prove these inclusions for constant k in PS5 and in section.

2 AM vs. Alternation

Public coin interactive proof:

Perfect Completeness: \exists verifier strategy s.t. A always accepts.
$x \in L \Longrightarrow \forall r_{1} \exists m_{1}$
$\forall r_{2} \exists m_{2}$
\vdots
$\forall r_{k} \exists m_{k}$
$A\left(x, r_{1}, m_{1}, \ldots, r_{k}, m_{k}\right)=1$
Soundness (assume error $2^{-k n}$, wlog by parallel repetitions): $x \notin L \Longrightarrow$ for most $r_{1} \exists m_{1}$
for most $r_{2} \exists m_{2}$
:
for most $r_{k} \exists m_{k}$
$A\left(x, r_{1}, m_{1}, \ldots, r_{k}, m_{k}\right)=0$
"Strong negation of TQBF"

AM games

One unbounded player M
One randomized player A
Does M have winning strategy or is M far from having one?

Alternation

Two unbounded players
Which one has winning strategy?

3 AM vs. IP

$$
\mathbf{I P}=\underset{\text { poly } \# \text { of alternations }}{\text { PSPACE }}=\underset{\text { poly \# rounds of AM games }}{\mathbf{A M}[\text { poly }]}
$$

Recall: Let $f \in \# \mathbf{P}$ so

$$
\forall x f(x)=|S(x)| \text { where } \underbrace{S(x)=\left\{y \in\{0,1\}^{p(|x|)}: M(x, y)=1\right\}}_{\text {NP search problem }}
$$

Theorem $1 \forall$ poly $p, \mathrm{GAP}_{1+1 / p(n)}-f$ is in $\mathbf{p r A M}$
Proof: Last time, we showed this for $\mathrm{GAP}_{\alpha} f$ with $\alpha=8$

$$
\begin{aligned}
\operatorname{GAP}_{\alpha} f_{Y} & =\{(x, t):|S(x)|>t\} \\
\operatorname{GAP}_{\alpha} f_{N} & =\{(x, t):|S(x)|<t / \alpha\}
\end{aligned}
$$

Trick: to improve approximation factor, apply " 8 -approx set-size lower bound protocol" to

$$
S^{\prime}(x)=S(x)^{k}=\left\{\left(y_{1}, \ldots, y_{k}\right): \forall i M\left(x, y_{i}\right)=1\right\}
$$

Approximating $\left|S^{\prime}(x)\right|$ to within a factor of $8 \Longrightarrow$ approximating $|S(x)|$ to under $8^{1 / k}=1+O(1 / k)$. Take $k=\operatorname{poly}(n)$.

Now we will prove the following.
Theorem $2 \mathbf{I P}[2] \subseteq \mathbf{A M}[4] \stackrel{\text { PS5 }}{=} \mathbf{A M}$.
Corollary 3 Graph Nonisomorphism is in AM.

Proof Sketch:

Idea: Prove that there are "many" m s.t. $\exists a$, for "many" $r \in V_{x}^{-1}(m)$, $V(x, a, r)=1$

$r \in\{0,1\}^{l}$
accept if $V(x, a, r)=1$

M
A

Assume WLOG P, V has completeness $\geq 3 / 4$ and soundness $\leq 2^{-n}$.
When $x \in L$, the completeness of (P, V) tells us that:
w.p. $\geq 1 / 2$ over $m \leftarrow V_{x}\left(U_{l}\right)$,
$\exists a$ s.t. w.p. $\geq 1 / 2$ over $r \stackrel{R}{\leftarrow} V_{x}^{-1}(m)$, $V(x, a, r)=1$.

The above is almost like the condition we want to establish, but saying that something happens with probability at least $1 / 2$ over m does not quite tell us for how many m this occurs (since the distribution $V_{x}\left(U_{l}\right)$ may be complicated), and saying that something happens with probability at least $1 / 2$ over $r \stackrel{\mathrm{R}}{\leftarrow} V_{x}^{-1}(m)$, since we do not know the size of $V_{x}^{-1}(m)$ (note that this equals $\left.2^{l} \cdot \operatorname{Pr}\left[V_{x}\left(U_{l}\right)=m\right]\right)$.

To solve the above problems, we group the m 's into buckets each of which have roughly the same size. Specifically, define $B_{i}=\left\{m: V_{x}^{-1}(m) \in\left[2^{i}, 2^{i+1}\right)\right\}$ for $i=0, \ldots, l$. Call $m i$-good, if $m \in B_{i}$ and there exists an a such that with probability at least $1 / 2$ over $r \stackrel{\mathrm{R}}{\leftarrow} V_{x}^{-1}(m)$, we have $V(x, a, r)=1$.

Since m is i-good for some i with probability at least $1 / 2$ (as above) and there are only $1 /(l+1)$ buckets, there must be a fixed i_{x} such that m is i_{x}-good with probability at least $1 / 2(l+1)$. Then we have:

$$
\# i_{x}-\operatorname{good} m \geq \frac{2^{l}}{2(l+1)} \cdot \underbrace{\frac{1}{2^{i_{x}+1}}}_{\text {\# of coins corr. to good } m \text { 's }}=2^{l-i_{x}-\log l-3}
$$

Moreover, if m is i_{x}-good, then there exists an a such that there are at least $(1 / 2) \cdot 2^{i_{x}}$ values of $r \in V_{x}^{-1}(m)$ for which $V(x, a, r)=1$. Thus, if M sets $k_{1}=l-i_{x}-\log l-3$ and $k_{2}=i_{x}-1, A$ will accept with at least constant probability (by the analysis of the set-size lower bound protocol from last time).

Now we analyze soundness. Let $x \notin L$. Suppose that some M^{*} can make A accept with constant probability by sending k_{1}, k_{2} in the first message. Then there exists $\geq 2^{k_{1}-\log l-O(1)} m$'s s.t. $\exists a$ s.t. there are $\geq 2^{k_{2}-O(1)}$ s.t. $V(x, a, r)=1$. (Here the $O(1)$'s are arbitrarily large constants.) Then we have a strategy P^{*} making V accept with probability at least

$$
\frac{2^{k_{1}-\log l-O(1)} \cdot 2^{k_{2}-O(1)}}{2^{l}}
$$

By soundness, V accepts with probability at most 2^{-n}. So we have $k_{1}+k_{2}-\log l \leq l-n+O(1) \ll$ $l-\log l-3$, which means that A will reject.

The ideas above can be extended to prove the following, more general theorem:

Theorem 4 For every $k(n) \geq 2$, $\mathbf{I P}[k(n)]=\mathbf{A M}[k(n)]$.

Combined with the Collapse Theorem for AM (PS5), we have:
Corollary 5 AM equals the class of languages having constant-round interactive proofs.

4 AM vs. PH

Can Graph Isomorphism be NP-complete (under Karp reduction)?
If Y, then GNI is coNP-complete, and hence $\mathbf{c o N P} \subseteq \mathbf{I P}[2]=\mathbf{A M}$.
Theorem 6 If $\mathbf{c o N P} \subseteq \mathbf{A M}$, then $\mathbf{P H}=\mathbf{A M} \subseteq \mathbf{\Pi}_{\mathbf{2}}^{\mathrm{p}}$.
Proof: Since $\mathbf{A M} \subseteq \mathbf{\Pi}_{\mathbf{2}}^{\mathbf{p}}$, it suffices to show that $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{p}} \subseteq \mathbf{A M}$. To get an $\mathbf{A M}$ protocol to prove $\exists x \forall y \varphi(x, y)$, we have the prover send x, and then prove the coNP statement $\forall y \varphi(x, y)$ using the assumption that coNP $\subseteq \mathbf{A M}$.

Corollary 7 GNI is not $\mathbf{N P}$-complete unless $\mathbf{P H}=\mathbf{A M} \subseteq \mathbf{\Pi}_{\mathbf{2}}^{\mathbf{p}}$.

