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1 Recap

Recall from last time that we have the following:

• IP[k(n)] = interactive proofs with ≤ k(n) msgs. IP := IP[poly].

• AM[k(n)] = public coin interactive proofs with ≤ k(n) msgs starting with A (verifier).
AM := AM[2].

• MA[k(n)] = public coin interactive proofs with ≤ k(n) msgs starting with M (prover).
MA := MA[2].

Facts: for k(n) ≥ 2

• MA[k(n)] ⊆ AM[k(n)] ⊆ IP[k(n)]

• AM[2k(n)] ⊆ AM[k(n)]

• Assume perfect completeness wlog.

You’ll prove these inclusions for constant k in PS5 and in section.

2 AM vs. Alternation

Public coin interactive proof:
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r1 //

oo m1

r2 //
oo m2

M

...
rk //

oo mk

Perfect Completeness: ∃ verifier strategy s.t. A always accepts.
x ∈ L =⇒ ∀r1 ∃m1

∀r2 ∃m2
...
∀rk ∃mk

A(x, r1,m1, ..., rk,mk) = 1

Soundness (assume error 2−kn, wlog by parallel repetitions):
x /∈ L =⇒ for most r1 ∃m1

for most r2 ∃m2
...
for most rk ∃mk

A(x, r1,m1, ..., rk,mk) = 0
“Strong negation of TQBF”
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AM games Alternation
One unbounded player M Two unbounded players
One randomized player A Which one has winning strategy?
Does M have winning strategy
or is M far from having one?

3 AM vs. IP

IP = PSPACE
poly # of alternations

= AM[poly]
poly # rounds of AM games

Recall: Let f ∈ #P so

∀x f(x) = |S(x)| where S(x) = {y ∈ {0, 1}p(|x|) : M(x, y) = 1}︸ ︷︷ ︸
NP search problem

Theorem 1 ∀poly p, Gap1+1/p(n)-f is in prAM

Proof: Last time, we showed this for Gapα f with α = 8

Gapα fY = {(x, t) : |S(x)| > t}
Gapα fN = {(x, t) : |S(x)| < t/α}

Trick : to improve approximation factor, apply “8-approx set-size lower bound protocol” to

S′(x) = S(x)k = {(y1, ..., yk) : ∀i M(x, yi) = 1}

Approximating |S′(x)| to within a factor of 8 =⇒ approximating |S(x)| to under 81/k = 1+O(1/k).
Take k = poly(n).

Now we will prove the following.

Theorem 2 IP[2] ⊆ AM[4] PS5= AM.

Corollary 3 Graph Nonisomorphism is in AM.

Proof Sketch:
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P

oo m=Vx(r)

a //

V

Idea: Prove that
there are “many” m
s.t. ∃a, for “many” r ∈ V −1

x (m),
V (x, a, r) = 1

r ∈ {0, 1}l
accept if V (x, a, r) = 1

M
k1,k2 //

oo h1:{0,1}l→{0,1}k1

m //
a //

oo h2:{0,1}l→{0,1}k2

r //

A
where A accepts if:
h1(m) = 0k1
h2(r) = 0k2
Vx(r) = m
V (x, a, r) = 1
k1 + k2 ≥ l − log l − 3
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Assume WLOG P, V has completeness ≥ 3/4 and soundness ≤ 2−n.

When x ∈ L, the completeness of (P, V ) tells us that:
w.p. ≥ 1/2 over m← Vx(Ul),

∃a s.t. w.p. ≥ 1/2 over r R← V −1
x (m),

V (x, a, r) = 1.

The above is almost like the condition we want to establish, but saying that something happens
with probability at least 1/2 over m does not quite tell us for how many m this occurs (since
the distribution Vx(Ul) may be complicated), and saying that something happens with probability
at least 1/2 over r R← V −1

x (m), since we do not know the size of V −1
x (m) (note that this equals

2l · Pr[Vx(Ul) = m]).
To solve the above problems, we group the m’s into buckets each of which have roughly the

same size. Specifically, define Bi = {m : V −1
x (m) ∈ [2i, 2i+1)} for i = 0, ..., l. Call m i-good, if

m ∈ Bi and there exists an a such that with probability at least 1/2 over r R← V −1
x (m), we have

V (x, a, r) = 1.
Since m is i-good for some i with probability at least 1/2 (as above) and there are only 1/(l+1)

buckets, there must be a fixed ix such that m is ix-good with probability at least 1/2(l+ 1). Then
we have:

# ix-good m ≥ 2l

2(l + 1)
· 1

2ix+1︸ ︷︷ ︸
# of coins corr. to good m’s

= 2l−ix−log l−3

Moreover, if m is ix-good, then there exists an a such that there are at least (1/2) · 2ix values of
r ∈ V −1

x (m) for which V (x, a, r) = 1. Thus, if M sets k1 = l− ix− log l− 3 and k2 = ix− 1, A will
accept with at least constant probability (by the analysis of the set-size lower bound protocol from
last time).

Now we analyze soundness. Let x /∈ L. Suppose that some M∗ can make A accept with constant
probability by sending k1, k2 in the first message. Then there exists ≥ 2k1−log l−O(1) m’s s.t. ∃a s.t.
there are ≥ 2k2−O(1) s.t. V (x, a, r) = 1. (Here the O(1)’s are arbitrarily large constants.) Then we
have a strategy P ∗ making V accept with probability at least

2k1−log l−O(1) · 2k2−O(1)

2l

By soundness, V accepts with probability at most 2−n. So we have k1 +k2− log l ≤ l−n+O(1)�
l − log l − 3, which means that A will reject. �

The ideas above can be extended to prove the following, more general theorem:
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Theorem 4 For every k(n) ≥ 2, IP[k(n)] = AM[k(n)].

Combined with the Collapse Theorem for AM (PS5), we have:

Corollary 5 AM equals the class of languages having constant-round interactive proofs.

4 AM vs. PH
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Can Graph Isomorphism be NP-complete (under Karp reduction)?
If Y, then GNI is coNP-complete, and hence coNP ⊆ IP[2] = AM.

Theorem 6 If coNP ⊆ AM, then PH = AM ⊆ Πp
2 .

Proof: Since AM ⊆ Πp
2 , it suffices to show that Σp

2 ⊆ AM. To get an AM protocol to prove
∃x ∀y ϕ(x, y), we have the prover send x, and then prove the coNP statement ∀yϕ(x, y) using the
assumption that coNP ⊆ AM.

Corollary 7 GNI is not NP-complete unless PH = AM ⊆ Πp
2 .
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