
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 24

April 26, 2010 Scribe: Michael Jemison

1 Recap

A sequence of polynomials (pn) = (pn(x1, . . . , xn)) is in AlgP/poly if for all n:

• deg(pn) ≤ poly(n).

• pn is computable by an algebraic circuit of size poly(n).

It also will be useful for us to consider a quasipolynomial analogue of the above. A quasipoly-
nomial function is one of the form 2polylog(n), which we’ll abbreviate as p̃oly(n). Let ˜AlgP/poly
denote the class obtained by replacing all the poly(n)’s above with p̃oly(n).

2 AlgNP/poly

Recall that a sequence (pn) is defined to be in AlgNP/poly if there is a sequence (qn) ∈ AlgP/poly
and a polynomial t(n) such that

pn(x1, . . . , xn) =
∑

en+1,...,et(n)∈{0,1}

qt(n)(x1, . . . , xn, en+1, . . . , et(n)).

To get a better feel for the kinds of polynomials captured by this definition, we provide a
sufficient condition for being in AlgNP/poly: that the coefficients of pn are efficiently computable.

Lemma 1 Suppose (pn) has the following properties for every n:

1. deg(pn) ≤ poly(n) and

2. There exists a poly(n)-sized boolean circuit Cn such that pn(x1, ..., xn) =
∑

i1,...,in
Cn(i1, ..., in)xi11 ...x

in
n .

(Here Cn takes as input the binary representations of i1, . . . , in and outputs the binary representa-
tion of a coefficient.) Then (pn) ∈ AlgNP/poly.

Corollary 2 Permn×n(X) =
∑

σ∈Sn
X1σ(1)...Xnσ(n) ∈ AlgNP/poly.

Proof: Let Cn×n(i11, . . . , inn) output 1 if its input is a permutation matrix and 0 otherwise.

Proof of Lemma 1: Separate Cn into circuits computing the different bits of the binary
representation: Cn(i1, ..., in) =

∑
j Cn,j(i1, ..., in) ∗ 2j . (For simplicity we consider nonnegative

coefficients only, but the argument easily generalizes to Cn that also output a sign bit.)

1



Produce via the Cook-Levin reduction, for every n, j a formula φn,j(i1, ..., in, en+1, ..., em), for
m = poly(n), such that

Cn,j =
∑

en+1,...,em∈{0,1}

φn,j(i1, ..., in, en+1, ..., em).

(Recall that φn,j(i1, . . . , in, en+1, . . . , em) = 1 iff en+1, . . . , em are the values at the gates of Cn,j in
an accepting computation on input i1, . . . , in. So if Cn,j(i1, . . . , in) = 1 there exactly one way to
set the ej ’s to make φn,j accept and otherwise there is no way to make φn,j accept.)

Now we arithmetize φn,j in the same way as in the IP = PSPACE proof, replacing AND with
multiplication and NOT with 1−x. This yields an algebraic formula φ̂n,j of size and degree poly(n)
that agrees with φn,j on boolean inputs.

By substitution, we have

pn(x1, ..., xn) =
∑

i1,...,in,en+1,...,em

∑
j

φ̂n,j(i1, ..., in, en+1, ..., em)2jxi11 ...x
in
n

 .

We’re almost done, except that xivv is not a polynomial in the binary representation of iv. To handle
this, observe that for say v = 1, if we write i1 = i1,0 + i1,12 + i1,222 + ..., we can replace

xi11 =
∏
k

(i1,kx2k

1 + 1− i1,k).

3 Projection Reductions

Definition 3 For two polynomials p(x1, . . . , xn) and q(y1, . . . , ym) over F, we write p(x1, ..., xn) ≤proj

q(y1, ..., ym) if there is a substitution σ : {y1, ..., ym} → {x1, ..., xn} ∪ F such that p(x1, ..., xn) =
q(σ(y1), ..., σ(ym)).

For two sequences of polynomials (pn) and (qn), we write (pn) ≤proj (qn) if there is a t(n) =
poly(n) such that for all n, pn ≤proj qt(n).

We write (pn) ≤
p̃roj

(qn) if there is a t(n) = p̃oly(n) such that for all n, pn ≤proj qt(n).

Projection reductions also occur in boolean complexity. On Problem Set 1, you showed that
Linear Programming is complete for P/poly under (boolean) projection reductions. However,
in algebraic complexity, they turn out to lead to a mathematically very clean formulation of the P
vs. NP problem.

4 The Permanent vs. Determinant Problem

Theorem 4 Over fields of characteristic other than 2, Permanent is complete for AlgNP/poly
under ≤proj.

(The restriction to characteristic other than 2 is essential, for otherwise the Permanent is the
same as the Determinant.)

2



Theorem 5 Over every field, Determinant is complete for ˜AlgP/poly under ≤
p̃roj

.

Thus the relationship between AlgNP/poly and ˜AlgP/poly is equivalent to asking whether
the Permanent is a projection of a quasipolynomially larger Determinant:

Corollary 6 AlgNP/poly ⊆ ˜AlgP/poly iff Perm ≤
p̃roj

Det.

This latter question makes no direct reference to computation, and one might hope to approach
it using methods from algebraic geometry. Indeed, Mulmuley’s “Geometric Complexity Theory”
program is one major effort at attacking this problem using algebraic geometry and representation
theory.

We now prove the completeness of the determinant.

Lemma 7 (PS6) If (pn) ∈ ˜AlgP/poly then (pn) has algebraic circuits of depth polylog(n), and
hence algebraic formulas of size 2polylog(n) = p̃oly(n)

In fact, it is known how to do the depth reduction (but not necessarily the transformation to
formulas) while preserving polynomial size. Thus, in the algebraic world, P = NC2, something
that we do not expect for boolean complexity.

The above lemma (transforming circuits to formulas) is the only reason we use quasipolynomial
rather than polynomial bounds here. Given the lemma, to prove Theorem 5, it suffices to prove
the following.

Lemma 8 If p(x1, ..., xn) is computable by algebraic formula of size s, then p ≤proj det(s+2)×(s+2).

Proof: We will give a recursive mapping from

formulas F (x1, ..., xn) 7→ matrices M(x1, ..., xn) = ,

where r and c denote the first row and column of M . The mapping will satisfy the following
properties:

1. The entries of M(x1, . . . , xn) are from {x1, . . . , xn} ∪ F,

2. F (x1, ..., xn) = det(M(x1, ..., xn)),

3. det(M ′(x1, ..., xn)) = 1, and

4. If F has size s, then M is of size at most (s+ 2)× (s+ 2).

3



We recursively define the mapping as follows:

xi 7→

c ∈ F 7→

F1 · F2 7→M =

F1 + F2 7→M = .

In the case of F1∗F2 we see that det(M) = det(M1) det(M2) and det(M ′) = det(M ′1) det(M ′2) =
1. For F1 + F2, we see that det(M) = det(M1) · det(M ′2) + det(M2) · det(M ′1) = F1 + F2 and we
still have det(M ′) = det(M ′1) · det(M ′2) = 1. It is clear that this mapping gives the result.

5 Connection to Boolean Complexity

Proposition 9 If AlgNP/poly ⊆ AlgP/poly over Q, then P#P ⊆ P/poly.

Proof: Implement the addition and multiplication gates using the grade-school algorithms. The
only issue is that the bit-lengths of numbers may blow up exponentially during the computation of
the circuit. This can be handled by working modulo a randomly chosen poly(n)-bit prime — with
high probability such a prime will not divide any of the poly(n) numerators or denominators (each
of magnitude at most 2poly(n)) occurring in the computation of the circuit, and being larger than
n! will not affect the computation of a 0-1 permanent.

Thus proving algebraic lower bounds might be easier than proving boolean lower bounds, and
this is one motivation to work on them (in addition to the model being natural in its own right).

4


