
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 25

April 28, 2010 Scribe: Kevin Lee

1 Agenda

1. Lower Bounds for Algebraic Circuits

2. Survey of Algebraic Circuit Lower Bounds

3. Survey of Boolean Circuit Lower Bounds

2 An Algebraic Circuit Lower Bound

Theorem 1 The smallest algebraic circuit over any field F computing p (x1, . . . , xn) = xd
1 + · · ·xd

n

has size Θ (n log d) provided char (F) - d where char (F) is the characteristic of the field F (i.e. the
smallest positive integer k such that k

def= 1 + 1 + · · ·+ 1 = 0 in F, or zero if no such k exists).

Proof of Upper Bound: We can always compute p (x1, . . . , xn) with size O (n log d) circuits
by performing fast exponentiation via repeated squaring for each term, and then adding the terms
up. (Note that if char (F) = d, then

xd
1 + · · ·xd

n = (x1 + · · ·+ xn)d

gives a faster way of computing the polynomial, motivating the additional condition in the theorem.)

Proof of Lower Bound: Proving the lower bound uses the “Method of Partial Derivatives,”
which is the idea that the complexity of the partial derivatives of a function explains something
about the complexity of the function itself. For a polynomial p(x1, . . . , xn) =

∑
i1,...,in≥0 ci1,...,inxi1

1 · · ·xin
n ,

the partial derivative ∂p/∂xj is defined to be the polynomial

∂p

∂xj
(x1, . . . , xn) =

∑
i1,...,in≥0,ij≥1

ij · ci1,...,in · x
i1
1 · · ·x

ij−1
j · · ·xin

n .

This formal definition of derivative for polynomials doesn’t require taking limits, and thus even
makes sense over finite fields. It can be verified to satisfy the familiar properties of derivatives,
such as the product rule and chain rule.

Before we prove the lower bound, we need to develop some techniques involving partial deriva-
tives.

1



Lemma 2 If p (x1, . . . , xn) is computable by an algebraic circuit with s binary gates, then there is
an algebraic circuit with 5s binary gates computing

p (x1, . . . , xn) ,
∂p

∂x1
(x1, . . . , xn) , . . . ,

∂p

∂xn
(x1, . . . , xn)

simultaneously.

Note that here we are converting a circuit computing a single polynomial to one computing n + 1
related polynomials with only a constant-factor blow-up in size. The intuition for why this is
possible is that each gate of the circuit has constant arity, so only has a constant number of
nontrivial partial derivatives (when viewed as a function of the earlier gates in the circuit).

Proof: We induct on s.
Base case: There are no binary gates. Which means that p (x1, . . . , xn) = xi or p (x1, . . . , xn) =

c. (Note: We are only counting the binary gates, not the inputs) In the former case, we have that

∂p

∂xj
(x1, . . . , xn) =

{
1 j = i

0 j 6= i

All of these can be computed with no binary gates. In the latter case (where p is a constant), all
of the partial derivatives are zero.

Induction step: We have C computing p (x1, . . . , xn). Pick a gate g (xi, xj) just above the
leaves. We have four cases:

g = xi + xj

g = xixj

g = xi + c

g = xic

We are only going to do the multiplication case because it is the most interesting. The proof for
the other cases is similar.

Let C ′ (x1, . . . , xn, z) be circuit C with g replaced by a new variable z. It computes a polynomial
q (x1, . . . , xn, z) that has one fewer binary gate, so by induction we have a circuit C ′′ (x1, . . . , xn, z)
that computes q and all of its n + 1 partial derivatives. We now show how to use C ′′ plus 5 more
binary gates to compute p and all its n partial derivatives.

Since
p (x1, x2, . . . , xn) = q (x1, . . . , xn, g (xi, xj))

computing p (x1, x2, . . . , xn) can be done first computing g(xi, xj), evaluating C ′′ on (x1, . . . , xn, g(xi, xj)),
and taking the first output.

For the partial derivatives of p, we use the chain rule to obtain:

∂p

∂xl
(x1, . . . , xn) =

(
∂q

∂xl
+

∂q

∂z

∂g

∂xl

)
(x1, . . . , xn, g(xi, xj)).

2



Note we have already computed (∂q/∂xl)(x1, . . . , xn, g(xi, xj)) and (∂q/∂z)(x1, . . . , xn, g(xi, xj))
in evaluating C ′′(x1, . . . , xn, g(xi, xj)). Moreover, ∂g/∂xl is 0 unless l ∈ {i, j}, so no additional
computation is needed for most of the partial derivatives of p. In case l ∈ {i, j}, we have:

∂g

∂xl
=

{
xj l = i

xi l = j

In these cases, we can compute the partial ∂p/∂xl by adding a multiplication gate and an addition
gate.

We have added 5 gates total as desired, so we are done.

Lemma 3 Any algebraic circuit computing
(
xd

1, . . . , x
d
n

)
must have at least Ω (n log d) multiplication

gates.

Proof: Say we have circuit of size s computing
(
xd

1, . . . , x
d
n

)
. Introduce a new variable yi for each

ith gate of circuit. We can write equations describing the computation. e.g

yi = yj + yk, yi = yj + yk, yi = xj , or yi = c

For the outputs ys−n+1, . . . , ys, let’s also add equations ys−n+1 = 1, . . . , ys = 1. The number of
solutions to this is the number of solutions to xd

1 = xd
2 = · · · = xd

n = 1 since our system of equations
effectively computes those values, and our constraints set them equal to 1. The number of solutions
is dn, if our field is algebraically closed (like C), which we can assume without loss of generality,
since every field is contained in an algebraically closed one and an algebraic circuits can always be
evaluated over extension fields.

Bezout’s Theorem from algebraic geometry states that if f1 (y1, . . . , ys) , . . . , ft (y1, . . . , ys) are
polynomials, the number of solutions to f1 (y) = · · · = ft (y) = 0 over an algebraically closed field
is either infinite or at most Πi deg (fi)).

In our case, all equations have degree one except for those corresponding to multiplication gates,
which have degree two. Therefore, dn ≤ 2#mult gates. Taking the logarithm of both sides gives us

n log d ≤ #mult gates

as desired.

These two lemmas imply the theorem because ∂
∂xi

(
xd

1 + xd
2 + · · ·+ xd

n

)
= dxd−1

i . We can divide
out by d if char (F) - d. So we can compute (xd−1

1 , . . . , xd−1
n ) with 5s gates. Thus, 5s ≥ n log d.

3 Overview of Algebraic Circuit Lower Bounds

Not much is known for the general class of algebraic circuits, but more lower bounds are known if
we restrict the model.

• Θ (n log d) is the best lower bound known for general algebraic circuits computing a function
in AlgNP/poly.

• Most polynomials of deg d in n variables require algebraic circuits of size Ω
((

n+d+1
d+1

))
. This

is approximately how many coefficients are needed, and is analogous to the idea that most
binary functions require as many gates as the size of the truth table.

3



• In the Bounded Coefficients Model (all constants from C have magnitude at most 1): the
Discrete Fourier Transform requires size Ω (n log n), which is tight.

• In the Monotone Arithmetic Circuits Model (all constants are nonnegative): Only monotone
polynomials (where all coefficients are nonnegative) are computable. Perm requires size 2Ω(n).

• In Multilinear Circuits: Perm and Det require size nΩ(log n).

• Constant Depth Algebraic Circuits (with unbounded fan-in on +,×)

– Depth 2: Exponential lower bounds are easy.

– Depth d: We have lower bounds 2Ω(n1/d) over F = Z2.

– Depth 3: Lower bounds of Ω
(
n2
)

are known over larger fields.

– Depth O (1): Slightly superlinear lower bounds are known for polynomials of constant
degree.

– nΩ(d) lower bound for depth 4 =⇒ nΩ(d) lower bound for general arithmetic circuits.

There are also algebraic computation models for decision problems: allow branching on equality
and/or inequality. More on this in the Arora–Barak text.

4 Overview of Boolean Circuit Lower Bounds

We can also give an overview of boolean circuits with respect to various restricted models.

• For general circuits, the best known lower bound is 5n− o (n) over (∧,∨,¬).

• For boolean formulas, we have lower bounds of the form Ω
(
n2
)
. This is the lower bound for

Majority.

• For monotone circuits (no negation): 2nΩ(1)
. This is proved for Clique and Perfect Match-

ing.

• Constant depth circuits (with unbounded fan-in on ∧, ∨).

– Depth d: 2Ω(n1/d). This is once again the lower bound for Majority, and also Parity.
Holds for majority even if we allow unbounded fan-in ⊕. Note that proving lower bounds
with ⊕ also gives lower bounds for algebraic circuits over the field F2, which is how the
lower bounds mentioned earlier are obtained.

There are also Time-Space tradeoffs

• We have explicit problems that cannot be solved simultaneously in time O (n) and space
polylog (n) even nonuniformly (this amounts to length vs log (width) lower bounds for branch-
ing programs).

4


