Lecture Notes 27

May 5, 2010
Scribe: James Williamson

1 Recap of Quantum Computation

- the state of an n-qubit register is given by:

$$
\phi=\sum_{s \in\{0,1\}^{n}} \alpha_{s}|s\rangle \in \mathbb{C}^{2^{n}}, \quad \sum_{s}\left|\alpha_{s}\right|^{2}=1
$$

- starts in the state $|x\rangle\left|0^{k}\right\rangle\left|0^{m}\right\rangle$
- apply a sequence of local unitary operators, each on $O(1)$ qubits.
- measure the final state $\sum_{s} \alpha_{s}|s\rangle$ and get $s \in\{0,1\}^{n+k+m}$ with probability $\left|\alpha_{s}\right|^{2}$.
- output the last m bits of s.

2 Quantum Fourier Transform

2.1 Discrete Fourier Transform

Take $f: \mathbb{Z}_{M} \rightarrow \mathbb{C}$ and map to $\hat{f}: \mathbb{Z}_{M} \rightarrow \mathbb{C}$ where below we assume that $M=2^{m}$.
The transform takes the form:

$$
\hat{f}(x)=\frac{1}{\sqrt{M}} \sum_{y \in \mathbb{Z}_{M}} f(y) \omega^{x y}, \quad \omega=e^{2 \pi i / M}
$$

Now taking $x \in \mathbb{Z}_{M / 2}$ define $f_{\text {even }}=f(x 0), f_{\text {odd }}=f(x 1)$ where we are fixing the least significant bit to separate even and odd inputs. As derived in the previous lecture it is possible to write \hat{f} recursively in terms of the odd and even parts as follows:

$$
\begin{align*}
& \hat{f}(0 x)=\widehat{f_{\text {even }}}(x)+\omega^{x} \widehat{f_{\text {odd }}}(x) \tag{1}\\
& \hat{f}(1 x)=\widehat{f_{\text {even }}}(x)-\omega^{x} \widehat{f_{\text {odd }}}(x) \tag{2}
\end{align*}
$$

Using this recursive definition we can give the well known Fast Fourier Transform algorithm or FFT:

1. Compute $\widehat{f_{\text {even }}}$ and $\widehat{f_{\text {odd }}}$ recursively.
2. Recombine according to the recurrence stated above.

If the whole algorithm has (algebraic) complexity $T(M)$, then the first step has complexity $2 T(M / 2)$ and the second is $O(M)$ since we need to do vector operations over vectors of length up to M. Therefore $T(M)=2 T(M / 2)+O(M)$ which when solved gives us a complexity of $O(M \log M)$. In the classical case this is provably optimal for algebraic circuits over \mathbb{C} with bounded coefficients (i.e. all constants have magnitude $O(1)$, such as the roots of unity used above).

2.2 Quantum Fourier Transfrom

The Quantum Fourier Transform operates on an $m=\log M$ qubit state taking

$$
\sum_{x \in \mathbb{Z}_{M}} f(x)|x\rangle \mapsto \sum_{x \in \mathbb{Z}_{M}} \hat{f}(x)|x\rangle
$$

Note that we do not get the values of $\hat{f}(x)$ explicitly. However, we can measure the transformed state and get x with probability $|\hat{f}(x)|^{2}$, so this enables us to sample the frequencies of the function f.

Note that the recurrences above imply that the QFT can be split into even and odd parts as follows:

$$
\sum_{x \in \mathbb{Z}_{M}} \hat{f}(x)|x\rangle=\frac{1}{\sqrt{2}} \sum_{x \in \mathbb{Z}_{M / 2}}\left[\left(\widehat{f_{\text {even }}}(x)+\omega^{x} \widehat{f_{\text {odd }}}(x)\right)|0 x\rangle+\left(\widehat{f_{\text {even }}}(x)-\omega^{x} \widehat{f_{\text {odd }}}(x)\right)|1 x\rangle\right]
$$

Now similarly to the classical DFT we give a recursive algorithm for QFT_{M}. We can use quantum mechanics to enable us to use only one recursive call and hence to lower the complexity from $O(M \log M)$ to $O\left(\log ^{2} M\right)=O\left(m^{2}\right)$.

The algorithm is as follows:

1. Start with $\sum_{x \in \mathbb{Z}_{M}} f(x)|x\rangle$ and rewrite as:

$$
\sum_{x \in \mathbb{Z}_{M / 2}}\left(f_{\text {even }}(x)|x 0\rangle+f_{\text {odd }}(x)|x 1\rangle\right)
$$

2. Apply $\mathrm{QFT}_{M / 2}$ to the first $m-1$ qubits to obtain

$$
\sum_{x \in \mathbb{Z}_{M / 2}}\left(\widehat{f_{\text {even }}}(x)|x 0\rangle+\widehat{f_{\text {odd }}}(x)|x 1\rangle\right)
$$

3. For $j=0, \ldots, m-2$ with $|x b\rangle=\left|x_{m-2} \cdots x_{0} b\right\rangle$, apply the following 2-qubit operation:

$$
\left|x_{j}\right\rangle|b\rangle \rightarrow \begin{cases}\omega^{2^{j}}\left|x_{j}\right\rangle|b\rangle & x_{j}=b=1 \\ \left|x_{j}\right\rangle|b\rangle & \text { otherwise }\end{cases}
$$

Observe the effect of these $m-1$ operations is the following:

$$
\begin{aligned}
|x 0\rangle & \mapsto|x 0\rangle \\
|x 1\rangle & \mapsto\left(\prod_{j: x_{j}=1} \omega^{2^{j}}\right)|x 1\rangle=\omega^{x}|x 1\rangle
\end{aligned}
$$

So our state now is:

$$
\sum_{x \in \mathbb{Z}_{M / 2}}\left[\widehat{f_{\text {even }}}(x)|x 0\rangle+\omega^{x} \widehat{f_{\text {odd }}}(x)|x 1\rangle\right] .
$$

4. Apply the Hadamard gate to the last qubit to obtain state:

$$
\frac{1}{\sqrt{2}} \sum_{x \in \mathbb{Z}_{M / 2}}\left[\left(\widehat{f_{\text {even }}}(x)+\omega^{x} \widehat{f_{\text {odd }}}(x)\right)|x 0\rangle+\left(\widehat{f_{\text {even }}}(x)-\omega^{x} \widehat{f_{\text {odd }}}(x)\right)|x 1\rangle\right]
$$

5. Swap the least significant qubit and the most significant qubit to obtain state.

$$
\frac{1}{\sqrt{2}} \sum_{x \in \mathbb{Z}_{M / 2}}\left[\left(\widehat{f_{\text {even }}}(x)+\omega^{x} \widehat{f_{\text {odd }}}(x)\right)|0 x\rangle+\left(\widehat{f_{\text {even }}}(x)-\omega^{x} \widehat{f_{\text {odd }}}(x)\right)|1 x\rangle\right]=\sum_{x \in \mathbb{Z}_{M}} \hat{f}(x),
$$

as desired
For the complexity of this algorithm 1 and 5 are free operations, 4 takes one gate, 3 takes $m-1$ and 2 takes $T(M / 2)$ with total complexity given by $T(M)=T(M / 2)+\log M$. This expands to $O\left(\log ^{2} M\right)$ as desired, making this algorithm polynomial in the number of bits.

3 Factoring on a Quantum Computer

We shall use without proof the known result that there is a classical, randomized reduction from factoring to finding the order of a number modulo N. To define this problem more formally, consider N and $A \in \mathbb{Z}_{N}^{*}=\{b \in\{0, \ldots, N-1\} \mid \operatorname{gcd}(b, N)=1\}$ Then we want to find $\operatorname{ord}_{N}(A)$ which is the least $0<x<N-1$ such that $A^{x} \equiv 1 \bmod N$.

Now we give a quantum algorithm for order finding given N, A. Let $m=\lceil 5 \log N\rceil, M=2^{m}=$ $\Theta\left(N^{5}\right)$.

1. Generate the uniform superposition over \mathbb{Z}_{M}

$$
\frac{1}{\sqrt{M}} \sum_{x \in \mathbb{Z}_{M}}|x\rangle
$$

by applying the Hadamard gate m times.
2. Use classical modular arithmetic to send each $|x\rangle|0\rangle \mapsto|x\rangle\left|A^{x} \bmod N\right\rangle$
3. Measure to obtain $y_{0} \in \mathbb{Z}_{N}^{*}$ from each $A^{x} \bmod N$ leaving the state as follows:

$$
\frac{1}{\sqrt{K}} \sum_{x \in \mathbb{Z}_{M}: A^{x}} \sum_{\bmod N=y_{0}}|x\rangle\left|y_{0}\right\rangle
$$

where $K=\#\left\{x \mid A^{x} \bmod N=y_{0}\right\}$. Notice that if $A^{x} \bmod N=y_{0}$, then we also have $A^{x+r} \bmod N=y_{0}$ and $A^{x-r} \bmod N=y_{0}$ where $r=\operatorname{ord}_{N}(A)$. Conversely, if $A^{x_{1}} \bmod N=y_{0}$ and $A^{x_{2}} \bmod N=y_{0}$, then $A^{x_{1}-x_{2}} \bmod N=1$, so r divides $x_{1}-x_{2}$. This implies that the set of $x \in\{0,1, \ldots, M-1\}$ such that $A^{x} \bmod N=y_{0}$ is an arithmetic progression $\left\{x_{0}, x_{0}+r, x_{0}+2 r, \ldots, x_{0}+(K-1) r\right\}$, where $x_{0}<r$ and $K=\left\lfloor\left(M-x_{0}-1\right) / r\right\rfloor+1 \approx M / r$.

So our state is equal to the following sum:

$$
\frac{1}{\sqrt{K}}\left(\left|x_{0}\right\rangle+\left|x_{0}+r\right\rangle+c d o t s+\left|x_{0}+(K-1) r\right\rangle\right) .
$$

Thinking of this state as a function $\sum_{x} f(x)|x\rangle$, the function f has a periodicity of r (i.e. $f(x+r)=f(x)$ for most values of $x \in \mathbb{Z}_{M}$ - except possibly for values close to 0 or $\left.M\right)$. Since the Quantum Fourier Transform allows us to sample the frequencies of a function, we should be able to use it to recover the period r.
4. Apply the QFT to this sum and obtain:

$$
\sum_{x}\left(\frac{1}{\sqrt{K M}} \sum_{l=0}^{K-1} \omega^{\left(x_{0}+l r\right) x}\right)|x\rangle
$$

This is since $f(y)$ is $1 / \sqrt{K}$ for values y of the form $x_{0}+l r$ and 0 elsewhere.
5. Measure and obtain $x \in \mathbb{Z}_{M}$ with probability

$$
\frac{1}{K M}\left|\sum_{l=0}^{K-1} \omega^{l r x}\right|^{2}
$$

6. Find $a, b \in \mathbb{N}$ such that $|a / b-x / M|<1 / 10 M$ where $\operatorname{gcd}(a, b)=1$ and $b<N$. This can be done classically with continued fractions and the pair a, b is unique.
Compute $A^{b} \bmod N$ and check if it is congruent to 1 . If yes output b.
For analysis we claim that $b=r$ with probability $\Omega(1 / \log N)$. Thus repeating $O(\log N)$ times and taking the smallest value of b obtained will yield $\operatorname{ord}_{N}(A)$ with high probability. We will show the simple case where $r \mid M$, the general case can be found in the Arora-Barak text.

In this case $K=M / r$, and we have:

$$
\sum_{x=0}^{K-1} \omega^{l r x}= \begin{cases}K & x \text { a multiple of } M / r \\ 0 & \text { otherwise }\end{cases}
$$

This holds because ω is a primitive M^{\prime} th root of unity: if x is a multiple of M / r, then $\omega^{r x}=1$, and otherwise $\omega^{r x}$ is an M / r^{\prime} th root of unity other than 1 , so its powers will be spread out evenly on the unit circle and cancel out.

This tells us that

$$
\operatorname{Pr}[\text { output }=x]= \begin{cases}K^{2} / K M=1 / r & x \text { a multiple of } M / r \\ 0 & \text { otherwise }\end{cases}
$$

Therefore x is a uniformly random multiple of M / r, i.e. $x / M=c / r$ where c is a random number between 0 and $r-1$. Note that if c and r are relatively prime, then the pair (a, b) will have to be (c, r) and we'll output r. The probability that c and r are relatively prime is at least:

$$
\frac{\#(\text { primes }<r)-\#(\text { prime divisors of } r)}{r} \geq \frac{\Omega(r / \log r)-\log r}{r}=\Omega(1 / \log r)
$$

This gives the desired probability of success.

