1 Recap of Quantum Computation

- the state of an n-qubit register is given by:
 \[\phi = \sum_{s \in \{0,1\}^n} \alpha_s |s\rangle \in \mathbb{C}^{2^n}, \quad \sum_s |\alpha_s|^2 = 1 \]
- starts in the state $|x\rangle |0^k\rangle |0^m\rangle$
- apply a sequence of local unitary operators, each on $O(1)$ qubits.
- measure the final state $\sum_s \alpha_s |s\rangle$ and get $s \in \{0, 1\}^{n+k+m}$ with probability $|\alpha_s|^2$.
- output the last m bits of s.

2 Quantum Fourier Transform

2.1 Discrete Fourier Transform

Take $f : \mathbb{Z}_M \to \mathbb{C}$ and map to $\hat{f} : \mathbb{Z}_M \to \mathbb{C}$ where below we assume that $M = 2^m$.

The transform takes the form:
\[\hat{f}(x) = \frac{1}{\sqrt{M}} \sum_{y \in \mathbb{Z}_M} f(y) \omega^{xy}, \quad \omega = e^{2\pi i / M} \]

Now taking $x \in \mathbb{Z}_M/2$ define $f_{\text{even}} = f(x0), f_{\text{odd}} = f(x1)$ where we are fixing the least significant bit to separate even and odd inputs. As derived in the previous lecture it is possible to write \hat{f} recursively in terms of the odd and even parts as follows:
\[\hat{f}(0x) = \hat{f}_{\text{even}}(x) + \omega^x \hat{f}_{\text{odd}}(x) \quad (1) \]
\[\hat{f}(1x) = \hat{f}_{\text{even}}(x) - \omega^x \hat{f}_{\text{odd}}(x) \quad (2) \]

Using this recursive definition we can give the well known Fast Fourier Transform algorithm or FFT:

1. Compute \hat{f}_{even} and \hat{f}_{odd} recursively.
2. Recombine according to the recurrence stated above.
If the whole algorithm has (algebraic) complexity $T(M)$, then the first step has complexity $2T(M/2)$ and the second is $O(M)$ since we need to do vector operations over vectors of length up to M. Therefore $T(M) = 2T(M/2) + O(M)$ which when solved gives us a complexity of $O(M \log M)$. In the classical case this is provably optimal for algebraic circuits over \mathbb{C} with bounded coefficients (i.e. all constants have magnitude $O(1)$, such as the roots of unity used above).

2.2 Quantum Fourier Transform

The Quantum Fourier Transform operates on an $m = \log M$ qubit state taking

\[
\sum_{x \in \mathbb{Z}_M} f(x) |x\rangle \mapsto \sum_{x \in \mathbb{Z}_M} \hat{f}(x) |x\rangle
\]

Note that we do not get the values of $\hat{f}(x)$ explicitly. However, we can measure the transformed state and get x with probability $|\hat{f}(x)|^2$, so this enables us to sample the frequencies of the function f.

Note that the recurrences above imply that the QFT can be split into even and odd parts as follows:

\[
\sum_{x \in \mathbb{Z}_M} \hat{f}(x) |x\rangle = \frac{1}{\sqrt{2}} \sum_{x \in \mathbb{Z}_{M/2}} \left[\left(\hat{f}_{\text{even}}(x) + \omega^x \hat{f}_{\text{odd}}(x) \right) |0x\rangle + \left(\hat{f}_{\text{even}}(x) - \omega^x \hat{f}_{\text{odd}}(x) \right) |1x\rangle \right]
\]

Now similarly to the classical DFT we give a recursive algorithm for QFT$_M$. We can use quantum mechanics to enable us to use only one recursive call and hence to lower the complexity from $O(M \log M)$ to $O(\log^2 M) = O(m^2)$.

The algorithm is as follows:

1. Start with $\sum_{x \in \mathbb{Z}_M} f(x) |x\rangle$ and rewrite as:

 \[
 \sum_{x \in \mathbb{Z}_{M/2}} \left(f_{\text{even}}(x) |x0\rangle + f_{\text{odd}}(x) |x1\rangle \right)
 \]

2. Apply QFT$_{M/2}$ to the first $m - 1$ qubits to obtain

 \[
 \sum_{x \in \mathbb{Z}_{M/2}} \left(\hat{f}_{\text{even}}(x) |0x\rangle + \hat{f}_{\text{odd}}(x) |1x\rangle \right)
 \]

3. For $j = 0, \ldots, m - 2$ with $|xb\rangle = |x_{m-2} \cdots x_0 b\rangle$, apply the following 2-qubit operation:

 \[
 |x_j\rangle |b\rangle \rightarrow \begin{cases}
 \omega^{2^j} |x_j\rangle |b\rangle & \text{if } x_j = b = 1 \\
 |x_j\rangle |b\rangle & \text{otherwise}
 \end{cases}
 \]

Observe the effect of these $m - 1$ operations is the following:

\[
|x0\rangle \rightarrow |x0\rangle
\]

\[
|x1\rangle \rightarrow \left(\prod_{j : x_j = 1} \omega^{2^j} \right) |x1\rangle = \omega^x |x1\rangle
\]
So our state now is:
\[\sum_{x \in \mathbb{Z}_M} \left[\hat{f}_{\text{even}}(x) |x0\rangle + \omega^x \hat{f}_{\text{odd}}(x) |x1\rangle \right]. \]

4. Apply the Hadamard gate to the last qubit to obtain state:
\[\frac{1}{\sqrt{2}} \sum_{x \in \mathbb{Z}_{M/2}} \left[\left(\hat{f}_{\text{even}}(x) + \omega^x \hat{f}_{\text{odd}}(x) \right) |x0\rangle + \left(\hat{f}_{\text{even}}(x) - \omega^x \hat{f}_{\text{odd}}(x) \right) |x1\rangle \right] \]

5. Swap the least significant qubit and the most significant qubit to obtain state.
\[\frac{1}{\sqrt{2}} \sum_{x \in \mathbb{Z}_{M/2}} \left[\left(\hat{f}_{\text{even}}(x) + \omega^x \hat{f}_{\text{odd}}(x) \right) |0x\rangle + \left(\hat{f}_{\text{even}}(x) - \omega^x \hat{f}_{\text{odd}}(x) \right) |1x\rangle \right] = \sum_{x \in \mathbb{Z}_M} \hat{f}(x) \]
as desired.

For the complexity of this algorithm 1 and 5 are free operations, 4 takes one gate, 3 takes \(\Theta(1) \) and 2 takes \(T(M/2) \) with total complexity given by \(T(M) = T(M/2) + \log M \). This expands to \(O(\log^2 M) \) as desired, making this algorithm polynomial in the number of bits.

3 Factoring on a Quantum Computer

We shall use without proof the known result that there is a classical, randomized reduction from factoring to finding the order of a number modulo \(N \). To define this problem more formally, consider \(N \) and \(A \in \mathbb{Z}_N^* = \{ b \in \{0, \ldots, N-1\} \mid \gcd(b, N) = 1 \} \). Then we want to find \(\text{ord}_N(A) \) which is the least \(0 < x < N-1 \) such that \(A^x \equiv 1 \mod N \).

Now we give a quantum algorithm for order finding given \(N, A \). Let \(m = \lceil 5 \log N \rceil, M = 2^m = \Theta(N^5) \).

1. Generate the uniform superposition over \(\mathbb{Z}_M \)
\[\frac{1}{\sqrt{M}} \sum_{x \in \mathbb{Z}_M} |x\rangle \]
by applying the Hadamard gate \(m \) times.

2. Use classical modular arithmetic to send each \(|x\rangle |0\rangle \mapsto |x\rangle |A^x \mod N\rangle \)

3. Measure to obtain \(y_0 \in \mathbb{Z}_N^* \) from each \(A^x \mod N \) leaving the state as follows:
\[\frac{1}{\sqrt{K}} \sum_{x \in \mathbb{Z}_M : A^x \mod N = y_0} |x\rangle |y_0\rangle \]
where \(K = \#\{ x \mid A^x \mod N = y_0 \} \). Notice that if \(A^x \mod N = y_0 \), then we also have \(A^{x+r} \mod N = y_0 \) and \(A^{x-r} \mod N = y_0 \) where \(r = \text{ord}_N(A) \). Conversely, if \(A^{x_1} \mod N = y_0 \) and \(A^{x_2} \mod N = y_0 \), then \(A^{x_1-x_2} \mod N = 1 \), so \(r \) divides \(x_1 - x_2 \). This implies that the set of \(x \in \{0, 1, \ldots, M-1\} \) such that \(A^x \mod N = y_0 \) is an arithmetic progression \(\{x_0, x_0+r, x_0+2r, \ldots, x_0+(K-1)r\} \), where \(x_0 < r \) and \(K = \lceil (M-x_0-1)/r \rceil + 1 \approx M/r \).
So our state is equal to the following sum:

\[\frac{1}{\sqrt{K}} (|x_0⟩ + |x_0 + r⟩ + cdots + |x_0 + (K - 1)r⟩). \]

Thinking of this state as a function \(\sum_x f(x)|x⟩ \), the function \(f \) has a periodicity of \(r \) (i.e. \(f(x + r) = f(x) \) for most values of \(x \in \mathbb{Z}_M \) - except possibly for values close to 0 or \(M \)). Since the Quantum Fourier Transform allows us to sample the frequencies of a function, we should be able to use it to recover the period \(r \).

4. Apply the QFT to this sum and obtain:

\[\sum_x \left(\frac{1}{\sqrt{KM}} \sum_{l=0}^{K-1} \omega^{(x_0 + lr)x} \right) |x⟩ \]

This is since \(f(y) \) is \(1/\sqrt{K} \) for values \(y \) of the form \(x_0 + lr \) and 0 elsewhere.

5. Measure and obtain \(x \in \mathbb{Z}_M \) with probability

\[\frac{1}{KM} \left| \sum_{l=0}^{K-1} \omega^{lr x} \right|^2 \]

6. Find \(a, b \in \mathbb{N} \) such that \(|a/b - x/M| < 1/10M \) where \(\gcd(a, b) = 1 \) and \(b < N \). This can be done classically with continued fractions and the pair \(a, b \) is unique.

Compute \(A^b \mod N \) and check if it is congruent to 1. If yes output \(b \).

For analysis we claim that \(b = r \) with probability \(\Omega(1/\log N) \). Thus repeating \(O(\log N) \) times and taking the smallest value of \(b \) obtained will yield \(\text{ord}_N(A) \) with high probability. We will show the simple case where \(r|M \), the general case can be found in the Arora–Barak text.

In this case \(K = M/r \), and we have:

\[\sum_{x=0}^{K-1} \omega^{lr x} = \begin{cases} K & x \text{ a multiple of } M/r \\ 0 & \text{otherwise} \end{cases} \]

This holds because \(\omega \) is a primitive \(M' \)th root of unity: if \(x \) is a multiple of \(M/r \), then \(\omega^{rx} = 1 \), and otherwise \(\omega^{rx} \) is an \(M/r' \)th root of unity other than 1, so its powers will be spread out evenly on the unit circle and cancel out.

This tells us that

\[\Pr[\text{output} = x] = \begin{cases} K^2/KM = 1/r & x \text{ a multiple of } M/r \\ 0 & \text{otherwise} \end{cases} \]

Therefore \(x \) is a uniformly random multiple of \(M/r \), i.e. \(x/M = c/r \) where \(c \) is a random number between 0 and \(r - 1 \). Note that if \(c \) and \(r \) are relatively prime, then the pair \((a, b) \) will have to be \((c, r) \) and we’ll output \(r \). The probability that \(c \) and \(r \) are relatively prime is at least:

\[\frac{\#(\text{primes} < r) - \#(\text{prime divisors of } r)}{r} \geq \frac{\Omega(r/\log r) - \log r}{r} = \Omega(1/\log r) \]

This gives the desired probability of success.