Lecture Notes 6

Feb 10, 2010
Scribe: Rebecca A. Resnick

Agenda:
PSPACE
Alternation

PH

Time-Space tradeoffs for SAT.

1 TQBF

Consider the language of True Quantified Boolean Formulas (TQBF), i.e. TQBF $=\{$ true statements $\exists x_{1} \in\{0,1\}^{n_{1}} \forall x_{2} \in\{0,1\}^{n_{2}} \ldots \mathbb{Q}_{m} x_{m} \in\{0,1\}^{n_{m}} \phi\left(x_{1}, \ldots x_{m}\right)$ where ϕ is a 3-CNF formula\}.

Theorem 1 TQBF is PSPACE-complete wrt $\leq_{\text {Cook }}$
Proof: By the following 3 lemmas:

Lemma 2 TQBF \in PSPACE

Proof: 2-word proof: Recursive evaluation. Try $x_{1}=0$ and $x_{1}=1$, see if remaining formula is satisfiable. Actually a $\operatorname{SPACE}(n)$ algorithm, because depth of recursion is number of elements you have to try.

Lemma 3 PSPACE \in AP, "alternating PSPACE"
First, a few definitions: An alternating TM (ATM) is like an NTM except each state is labeled as either \exists or \forall.

Some notes:

1. Running time: maximum length computation path as a function of the input length (just like NTM)
2. Acceptance condition on x (see figure below). Nodes of the computation tree are defined to be accepting or rejecting recursively:
(a) leaf: is configuration accepting or rejecting?
(b) \exists : accepting if at least one child is accepting
(c) \forall : accepting if all children are accepting
(d) Computation accepts \Longleftrightarrow start configuration on x is accepting.
3. (NTMs $=$ ATMs with only \exists nodes)
4. $\operatorname{ATIME}(t(n))$ and $\mathbf{A P}$ are defined in natural way, i, e:

$$
\mathbf{A P}=\bigcup_{k} \operatorname{ATIME}\left(n^{k}\right)
$$

Comment from the audience: This seems like a boolean circuit with AND/OR gates. Answer: You never have construct entire tree with an ATM; you only care about the runtime of a particular path (whereas in Boolean circuits the main complexity measure is size of the entire circuit, though depth is also considered). Also note that the "leaves" here are not bits of the ATM's inputs, but whether or not the ATM accepts or rejects at the end of a particular computation path. Compare with standard non-determinism: an ATM with ONLY existential nodes. Nevertheless, the similarity between the two models can be exploited - people have used results about boolean circuits to prove results about the power of ATM's "relative to oracles."

Now proceed with pf of lemma.
Proof of Lemma 3: Given L decided by a PSPACE algorithm M, we will give an AP algorithm for $\operatorname{Reach}_{G_{M, x}}(u, v, i) . G_{M, x}$ is the configuration graph of M on x. (Since M is deterministic, $G_{M, x}$ is really just a path.) $i \in\left\{1, \ldots 2^{\operatorname{poly}(n)}\right.$. $\operatorname{Reach}_{G_{M, x}}(u, v, i)=1$ if there exists a path $u \rightarrow v$ in $G_{M, x}$ of $\leq i$ steps.

AP algorithm to compute $\operatorname{Reach}_{G_{M, x}}(u, v, i)$: Base cases: left to the reader.
\exists : nondeterministically guess a configuration w.
$\forall:$ Check both $\operatorname{Reach}_{G_{M, x}}(u, w,\lceil i / 2\rceil)$ and $\operatorname{Reach}_{G_{M, x}}(w, v,\lfloor i / 2\rfloor)$.
Running time is depth of tree, which is polynomial because i is shrinking by half at each step
Lemma 4 TQBF is AP-hard.
Proof: $\quad L \in \mathbf{A P} \Longleftrightarrow \exists$ poly-time M, polynomials q, r, such that

$$
x \in L \Longleftrightarrow \exists u_{1} \forall u_{2} \ldots Q_{r} u_{r}\left(M\left(x, u_{1}, \ldots, u_{r}\right)\right), u_{i} \in\{0,1\}^{q(|r|)} .
$$

By Cook-Levin, we can convert $M\left(x, u_{1}, \ldots u_{r}\right)$ to a 3 -CNF, $\exists z \phi_{M, x}\left(u_{1}, \ldots, u_{r}, z\right)$, where $\phi_{M, x}$ is constructed from M, x in logspace

This concludes the proof that TQBF is PSPACE-complete wrt \leq_{l}
Corollary 5 ("alternating time equals space") PSPACE = AP
Fact 6 ("alternating space equals exponentially more time") $\mathbf{A L}=\mathbf{P}$ and, APSPACE $=$ EXP

Corollary $7 \exists \epsilon>0$ such that $\mathrm{TQBF} \notin \mathbf{S P A C E}\left(n^{\epsilon}\right)$ (suffices to take $\epsilon \leq .49$)
Proof: By the Space Hierarchy Thm there exists some language L solvable in linear space, but NOT solvable in sub-linear space. Since TQBF is PSPACE complete, L reduces to TQBF in $\operatorname{logspace}$, so if $\mathrm{TQBF} \in \operatorname{SPACE}\left(n^{\epsilon}\right)$, then $L \in \operatorname{SPACE}\left(\left(n^{c}\right)^{\epsilon}+\log (n)\right)$. If $\epsilon<1 / c$, we have a contradiction.

2 Polynomial Hierarchy

Define $\boldsymbol{\Sigma}_{\mathbf{k}} \mathbf{T I M E}(t(n))=\{$ languages decided by ATMs with $\leq k-1$ alternations between \exists and \forall on each computation path, time $\leq t(n)$, starting with $\exists\}$, and
$\Pi_{\mathrm{k}} \operatorname{TIME}(t(n))=\{$ languages decided by ATMs with $\leq k-1$ alternations between \exists and \forall on each computation path, time $\leq t(n)$, starting with $\forall\}$. Also define

$$
\begin{aligned}
& \Sigma_{\mathbf{k}}^{\mathrm{p}}=\bigcup_{c} \Sigma_{\mathbf{k}} \operatorname{TIME}\left(n^{c}\right), \\
& \Sigma_{\mathbf{k}}^{\mathrm{p}}=\bigcup_{c} \Pi_{\mathbf{k}} \operatorname{TIME}\left(n^{c}\right) .
\end{aligned}
$$

2.1 Motivation

1. Natural Problems (at low levels):

$$
\text { Circuit Minimization }=\left\{\langle C, k\rangle: \exists C^{\prime}\left(\left|C^{\prime}\right| \leq k \wedge \forall x C^{\prime}(x)=C(x)\right\} .\right.
$$

2. $\mathbf{P H}=$ class of languages L for which we currently know how to prove that if $\mathbf{P}=\mathbf{N P}$, then $L \in \mathbf{P}$.
3. Useful for lower bounds on NP. e.g $\mathbf{P H} \neq \mathbf{P} \Rightarrow \mathbf{N P} \neq \mathbf{P}$ (later), also, known: $\boldsymbol{\Sigma}_{4} \operatorname{TIME}(n) \neq \operatorname{DTIME}(n)$ and thus, $\operatorname{NTIME}(n) \neq \operatorname{DTIME}(n)$.

3 Alternating Characterizations

1. $L \in \boldsymbol{\Sigma}_{\mathbf{k}}^{\mathbf{p}} \Longleftrightarrow \exists$ polynomial q, poly-time M such that $x \in L \Longleftrightarrow \exists u_{1} \forall u_{2} \ldots Q_{k} u_{k} M\left(x, u_{1}, \ldots u_{k}\right)$, $u_{i} \in\{0,1\}^{q(|x|)}$
2. $\Sigma_{k} \operatorname{SAT}=\left\{\exists x_{1} \forall x_{2} \ldots Q_{k} x_{k} \phi\left(x_{1}, \ldots x_{k}\right)\right\}$ is Σ_{k}^{p}-complete. ϕ is a 3-CNF if $Q_{k}=\exists$, 3-DNF if $Q_{k}=\forall$.

Theorem 8 1. $\mathbf{P}=\mathbf{N P} \Rightarrow \mathbf{P H}=\mathbf{P}$
2. $\boldsymbol{\Sigma}_{\mathbf{k}}^{\mathrm{p}}=\boldsymbol{\Pi}_{\mathbf{k}}^{\mathrm{p}} \rightarrow \mathbf{P}=\boldsymbol{\Sigma}_{\mathbf{k}}^{\mathrm{p}}=\boldsymbol{\Pi}_{\mathbf{k}}^{\mathrm{p}}$ (conjectured to be false)

Proof:

1. Assume $\mathbf{P}=\mathbf{N P}$. Let $L \in \boldsymbol{\Sigma}_{\mathbf{k}}^{\mathbf{p}}$. By first characterization, there exists a poly-time M_{0} such that $x \in L \Longleftrightarrow \exists u_{1} \forall u_{2} \ldots \forall_{k} u_{k} M_{0}\left(x, u_{1}, \ldots u_{k}\right), u_{i} \in\{0,1\}^{q(|x|)}$.
Since $\mathbf{P}=\mathbf{N P}$, intuitively, we can replace statements that have 1 quantifier with quantifierless statements. In particular since $\forall_{k} u_{k} M_{0}\left(x, u_{1}, \ldots u_{k}\right) \in \mathbf{c o}-\mathbf{N P}=\mathbf{P}$ we can replace $\forall_{k} u_{k} M_{0}\left(x, u_{1}, \ldots u_{k}\right)$ with $M_{1}\left(x, u_{1}, \ldots u_{k-1}\right)$, where M_{1} is an NP-time algorithm. Repeating this step $k-1$ more times, we get $x \in L \Longleftrightarrow M_{k}(x)=1$
2. On problem set 2 .
$\operatorname{Remark} 9$ 1. Suppose $\operatorname{NTIME}(n) \subseteq \operatorname{DTIME}(f(n)) \rightarrow \boldsymbol{\Sigma}_{\mathbf{k}} \operatorname{TIME}(t(n)) \subseteq \operatorname{TIME}(f(f \ldots f(t(n)) \ldots))$. $\operatorname{Eg} f(n)=n^{2} \Rightarrow \mathbf{D T I M E}\left(t(n)^{2^{k}}\right)$ but if $f(n)=n^{1+o(1)} \Rightarrow \operatorname{DTIME}\left(t(n)^{1+o(1)}\right)$.
3. Above shows that $\mathrm{SAT} \in \mathbf{P} \Rightarrow \Sigma_{k} \mathrm{SAT} \in \mathbf{P}$. But we haven't given a reduction from Σ_{k} SAT to SAT! Indeed, it can be shown that if there were a Cook reduction from Σ_{k} SAT to SAT, then the $\mathbf{P H}$ collapses to $\mathbf{P}^{\mathbf{N P}}=\boldsymbol{\Delta}_{\mathbf{1}}^{\mathrm{p}}$.
