
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 7

February 10, 2010 Scribe: Kyu Bok Lee

1 Agenda

• PH via oracles

• Time-Space Tradeoffs for SAT

2 Oracle TMs

Definition 1 An oracle TM M is a TM with a special (write-only) oracle query tape, a (read-only)
oracle answer tape, and an oracle query state.

When M is run with an oracle O : {0, 1}∗ → {0, 1}∗ and goes into an oracle query state with
q ∈ {0, 1}∗ on its query tape, then O(q) appears on the answer tape in 1 step.

Similarly, we can define oracle NTMs, coNTMs, ATMs,. . .

We can define new complexity classes given an oracle O: PO, NPO, co-NPO, etc.

Remark 2 We have PO = {L ⊂ {0, 1}∗ : L ≤C O} since Cook reductions by definition are
performed in deterministic polynomial time.

Remark 3 For a class C of functions or oracles, we note PC =
⋃
O∈C PO = PO

∗
where O∗ is any

complete problem for C (even under ≤C). And we define ∆p
k+1 := PΣp

k .

Theorem 4 Σp
k+1 = NPΣp

k .

Proof: We first show Σp
k+1 ⊆ NPΣp

k . Given L ∈ Σp
k+1, there exists a polynomial time M such

that
x ∈ L ⇐⇒ ∃u1∀u2 . . . Qk+1uk+1, M(x, u1, . . . , uk+1),

where the length of each ui is bounded by some fixed polynomial. Define a new language L′ which
is in Πp

k:
L′ := {(x, u1) : ∀u2∃u3 . . . Qk+1uk+1, M(x, u1, . . . , uk+1)} ∈ Πp

k.

We can easily give an NPL′ algorithm for L:

• Nondeterministically guess u1.

• Ask oracle (x, u1) ∈ L′, and accept/reject accordingly.

1



Now we show the inclusion in the other direction: NPΣp
k ⊆ Σp

k+1.
Given L ∈ NPΣp

k , decided by some oracle NTM M (using an oracle L′ ∈ Σp
k), our first attempt at

Σp
k+1 algorithm for L may be the following:

• Simulate M by using the first ∃ for M ’s nondeterminism.

• Use remaining k quantifiers for queries to L′.

The problem with this approach is that we can run out of quantifiers for answering the first query.
The correct Σp

k+1 simulation on input x is the following (by observing that M can make at most
polynomially many queries to L′):

• We can guess all of M ’s nondeterministic choices c1, . . . , cm, the correct sequence of queries
q1, . . . , qk, and the answers a1, . . . , ak ∈ {0, 1} using a single ∃. (There are polynomially
many.)

• Now we can verify that M(x) would make the queries q1, . . . , qt given nondeterministic choices
c1, . . . , cm and answers a1, . . . , at.

• Next we can verify that L′(qi) = ai for i = 1, . . . , t using the remaining k alternations (in
parallel for all i).

Our claim follows.

Corollary 5 Σp
k+1 = NPΣp

k = NPΣksat = NPΠp
k

Proof Sketch: We can just flip the answer of the oracles. �

3 Time-Space Tradeoffs

Definition 6

TISP(T (n), S(n)) := {L : L decided by TMs running in time O(T (n)) and space O(S(n))}.

Theorem 7 For all ε > 0, SAT 6∈ TISP(n1+o(1), n1−ε).

Remark 8 The above result also holds on a RAM model.

Lemma 9 For all ε > 0, TISP(T 1+o(1), T 1−ε) ⊆ Σ2TIME(T 1−ε′) provided ε′ < ε/2.
Here T = T (n) and T (n)1−ε′ ≥ n (time-constructible).

Proof of Lemma: The proof is similar to the proof of the result PSPACE ⊆ AP.
Given M running in TISP(T 1+o(1), T 1−ε), Σ2TIME simulation on M will work as follows:

• ∃ guesses a sequence of configurations C1, . . . , CT ε/2 . (takes time T ε/2 · T 1−ε < T 1−ε′)

• ∀i verifies that Ci → Ci+1 runs within T 1−ε′ steps and that CT ε/2 is accepting. (takes time
T 1−ε′)

2



Proof of Theorem 7: Suppose SAT ∈ TISP(n1+o(1), n1−ε). This implies NTIME(n) ⊆
TISP(n1+o(1), n1−ε′) since NTIME(n) reduces to SAT by reduction that runs in time O(n log n)
and space O(log n). Now by translation, we get the first line of inclusion below

DTIME(n2) ⊆ NTIME(n2) ⊆ TISP(n2+o(1), n2−ε′′)

⊆ Σ2TIME(n2−ε′′′) (by Lemma)

⊆ DTIME(n2−ε′′′′)

The second inclusion is established by the lemma above. The third inclusion follows from

NTIME(n) ⊆ DTIME(f(n)) =⇒ ΣkTIME(t(n)) ⊆ DTIME(f (k)(t(n)))

and f(n) = n1+o(1) =⇒ f(f(n)) = n1+o(1).

This contradicts the time hierarchy theorem!

3


