CS 221: Computational Complexity

Prof. Salil Vadhan

Lecture Notes 7

February 10, 2010

Scribe: Kyu Bok Lee

1 Agenda

- **PH** via oracles
- Time-Space Tradeoffs for SAT

2 Oracle TMs

Definition 1 An oracle TM M is a TM with a special (write-only) oracle query tape, a (read-only) oracle answer tape, and an oracle query state.

When M is run with an oracle $\mathcal{O} : \{0,1\}^* \to \{0,1\}^*$ and goes into an oracle query state with $q \in \{0,1\}^*$ on its query tape, then $\mathcal{O}(q)$ appears on the answer tape in 1 step.

Similarly, we can define oracle NTMs, coNTMs, ATMs,...

We can define new complexity classes given an oracle \mathcal{O} : $\mathbf{P}^{\mathcal{O}}, \mathbf{NP}^{\mathcal{O}}, \mathbf{co-NP}^{\mathcal{O}},$ etc.

Remark 2 We have $\mathbf{P}^{\mathcal{O}} = \{L \subset \{0,1\}^* : L \leq_C \mathcal{O}\}$ since Cook reductions by definition are performed in deterministic polynomial time.

Remark 3 For a class C of functions or oracles, we note $\mathbf{P}^{C} = \bigcup_{\mathcal{O} \in C} \mathbf{P}^{\mathcal{O}} = \mathbf{P}^{\mathcal{O}^{*}}$ where \mathcal{O}^{*} is any complete problem for C (even under \leq_{C}). And we define $\mathbf{\Delta}_{k+1}^{\mathbf{p}} := \mathbf{P}^{\mathbf{\Sigma}_{k}^{\mathbf{p}}}$.

Theorem 4
$$\Sigma_{k+1}^{p} = NP^{\Sigma_{k}^{p}}$$

Proof: We first show $\Sigma_{k+1}^{p} \subseteq \mathbf{NP}^{\Sigma_{k}^{p}}$. Given $L \in \Sigma_{k+1}^{p}$, there exists a polynomial time M such that

 $x \in L \iff \exists u_1 \forall u_2 \dots Q_{k+1} u_{k+1}, M(x, u_1, \dots, u_{k+1}),$

where the length of each u_i is bounded by some fixed polynomial. Define a new language L' which is in $\Pi_{\mathbf{k}}^{\mathbf{p}}$:

$$L' := \{(x, u_1) : \forall u_2 \exists u_3 \dots Q_{k+1} u_{k+1}, M(x, u_1, \dots, u_{k+1})\} \in \mathbf{\Pi}_{\mathbf{k}}^{\mathbf{p}}.$$

We can easily give an $\mathbf{NP}^{L'}$ algorithm for L:

- Nondeterministically guess u_1 .
- Ask oracle $(x, u_1) \in L'$, and accept/reject accordingly.

Now we show the inclusion in the other direction: $\mathbf{NP}^{\Sigma_k^{\mathbf{p}}} \subseteq \Sigma_{k+1}^{\mathbf{p}}$.

Given $L \in \mathbf{NP}^{\Sigma_{\mathbf{k}}^{\mathbf{p}}}$, decided by some oracle NTM M (using an oracle $L' \in \Sigma_{\mathbf{k}}^{\mathbf{p}}$), our first attempt at $\Sigma_{\mathbf{k+1}}^{\mathbf{p}}$ algorithm for L may be the following:

- Simulate M by using the first \exists for M's nondeterminism.
- Use remaining k quantifiers for queries to L'.

The problem with this approach is that we can run out of quantifiers for answering the first query. The correct Σ_{k+1}^{p} simulation on input x is the following (by observing that M can make at most polynomially many queries to L'):

- We can guess all of M's nondeterministic choices c_1, \ldots, c_m , the correct sequence of queries q_1, \ldots, q_k , and the answers $a_1, \ldots, a_k \in \{0, 1\}$ using a single \exists . (There are polynomially many.)
- Now we can verify that M(x) would make the queries q_1, \ldots, q_t given nondeterministic choices c_1, \ldots, c_m and answers a_1, \ldots, a_t .
- Next we can verify that $L'(q_i) = a_i$ for i = 1, ..., t using the remaining k alternations (in parallel for all i).

Our claim follows.

Corollary 5 $\Sigma_{k+1}^{p} = NP^{\Sigma_{k}^{p}} = NP^{\Sigma_{k}SAT} = NP^{\Pi_{k}^{p}}$

Proof Sketch: We can just flip the answer of the oracles.

3 Time-Space Tradeoffs

Definition 6

 $\mathbf{TISP}(T(n), S(n)) := \{L : L \text{ decided by TMs running in time } O(T(n)) \text{ and space } O(S(n))\}.$

Theorem 7 For all $\varepsilon > 0$, SAT \notin **TISP** $(n^{1+o(1)}, n^{1-\varepsilon})$.

Remark 8 The above result also holds on a RAM model.

Lemma 9 For all $\varepsilon > 0$, **TISP** $(T^{1+o(1)}, T^{1-\varepsilon}) \subseteq \Sigma_2$ **TIME** $(T^{1-\varepsilon'})$ provided $\varepsilon' < \varepsilon/2$. Here T = T(n) and $T(n)^{1-\varepsilon'} \ge n$ (time-constructible).

Proof of Lemma: The proof is similar to the proof of the result **PSPACE** \subseteq **AP**. Given *M* running in **TISP** $(T^{1+o(1)}, T^{1-\varepsilon})$, **\Sigma_2TIME** simulation on *M* will work as follows:

- \exists guesses a sequence of configurations $C_1, \ldots, C_{T^{\varepsilon/2}}$. (takes time $T^{\varepsilon/2} \cdot T^{1-\varepsilon} < T^{1-\varepsilon'}$)
- \forall_i verifies that $C_i \to C_{i+1}$ runs within $T^{1-\varepsilon'}$ steps and that $C_{T^{\varepsilon/2}}$ is accepting. (takes time $T^{1-\varepsilon'}$)

Proof of Theorem 7: Suppose SAT \in **TISP** $(n^{1+o(1)}, n^{1-\varepsilon})$. This implies **NTIME** $(n) \subseteq$ **TISP** $(n^{1+o(1)}, n^{1-\varepsilon'})$ since **NTIME**(n) reduces to SAT by reduction that runs in time $O(n \log n)$ and space $O(\log n)$. Now by translation, we get the first line of inclusion below

$$\mathbf{DTIME}(n^2) \subseteq \mathbf{NTIME}(n^2) \subseteq \mathbf{TISP}(n^{2+o(1)}, n^{2-\varepsilon''})$$
$$\subseteq \mathbf{\Sigma_2 TIME}(n^{2-\varepsilon'''}) \qquad \text{(by Lemma)}$$
$$\subseteq \mathbf{DTIME}(n^{2-\varepsilon''''})$$

The second inclusion is established by the lemma above. The third inclusion follows from

$$\mathbf{NTIME}(n) \subseteq \mathbf{DTIME}(f(n)) \implies \mathbf{\Sigma_kTIME}(t(n)) \subseteq \mathbf{DTIME}(f^{(k)}(t(n)))$$

and $f(n) = n^{1+o(1)} \implies f(f(n)) = n^{1+o(1)}$.

This contradicts the time hierarchy theorem!