Problem 1. (circuit complexity of a threshold function) Consider the threshold function \(\text{Th}_2(x_1, \ldots, x_n) \), defined to be 1 iff at least two of the input variables are 1.

1. Prove that \(\text{size}_{\{\land, \lor, \neg}\}(\text{Th}_2) \leq 4n + O(1) \). (Recall that our measure of circuit size includes the input variables.)

2. Prove that \(\text{size}_{B_2}(\text{Th}_2) \geq 3n - O(1) \), where \(B_2 \) is the full binary basis. (Hint: show that if two variables are inputs to some binary gate, then at least one of them must be used elsewhere in the circuit.)

Problem 2. (branching programs) A branching program over variables \(\{x_1, \ldots, x_n\} \) is a directed acyclic graph where every node is labelled with a variable \(x_i \), or is labelled with an output in \(\{0, 1\} \). Variable nodes are required to have outdegree 2 and output nodes must have outdegree 0. The two edges leaving every variable node are also labelled 0 and 1. One of the nodes is designated as the start node. Such a branching program defines a function \(f : \{0, 1\}^n \rightarrow \{0, 1\} \), where \(f(\alpha) \) is defined as follows. We begin at the start node, then follow the path determined by taking the outgoing edge from each variable node \(v \) according to the value \(\alpha \) assigns to the variable labelling \(v \). Eventually we reach an output node, and set \(f(\alpha) \) to be the value at that node.

1. Characterize the class of languages decidable by polynomial-sized branching programs in terms of one of the complexity classes we have seen, augmented with advice.

2. A branching program has width \(w \) if its nodes can be partitioned into layers \(L_1, L_2, \ldots \) each of size up to \(w \), such that every edge leaving a node in layer \(L_i \) leads to a node in \(L_{i+1} \).

 Show that every language decidable by a constant-width, polynomial-sized branching program is in \(\mathbf{NC}^1 \). (Barrington’s Theorem says that the converse is also true, giving a surprising alternate characterization of \(\mathbf{NC}^1 \).)
Problem 3. (circuit lower bounds for high classes)

1. Prove that $\text{EXPSPACE} \not\subseteq \text{SIZE}(2^n/2n)$.

2. Prove that for every constant c, $\text{PH} \not\subseteq \text{SIZE}(n^c)$.

3. Prove that for every constant c, $\Sigma^p_2 \not\subseteq \text{SIZE}(n^c)$.

Recall that the best circuit lower bound we have for a function in NP is only $6n - o(n)$.

Problem 4. (refined hierarchy theorem for circuit size*) In Arora–Barak (Thm 6.22), a hierarchy theorem for circuit size is proven, showing that a polynomial or even multiplicative factor in circuit size allows computing more functions. Tighten this hierarchy theorem as much as you can; the amount of extra credit will depend on how tight a hierarchy theorem you get.

Problem 5. (different models of randomized computation) Suppose we modify our model of randomized computation to allow the algorithm to obtain a random element of $\{1, \ldots, m\}$ for any number m whose binary representation it has already computed (as opposed to just allowing it access to random bits). Show that this would not change the classes BPP, RP, and ZPP.