CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 12

March 8, 2010 Scribe: David Wu

1 Recap
Recall our definition of the basic complexity classes involving randomized computation:

Definition 1
L € BPP,RP,co-RP iff there exists a PPT (“probabilistic polynomial time m algorithm”) M

such that
BPP RP co-RP

reLl—-PrM(x)=1 >2/3 >1/2 =1
¢ L—-PrMz)=1 <1/3 =0 <1/2

Recall that the choice of constants above is arbitrary - any constants suffice (so long as there is an
appropriate gap), and in fact, we can obtain any desired 2~ poly(n) by iteration.

2 Randomized Logspace

Analogous to the time-bounded classes BPP, RP,co-RP,ZPP, we can define space-bounded
classes BPL,RL, co-RL,ZPL. We will just give a brief survey of what’s known about these
classes.

Similarly to the time-bounded case, there is strong evidence that of these classes equal L; indeed,
it is known that if SAT requires circuits of size 2°(") then BPL = L (so randomness saves at most
a constant factor in space).!

Unlike the time-bounded case, however, there is real hope for proving BPL = L unconditionally.
In contrast, it is known that derandomization of time-bounded classes implies superpolynomial cir-
cuit lower bounds for NEXP (Impagliazzo-Kabanets—Wigderson, Kabanets—Impagliazzo; covered
in Arora-Barak Ch.20). No such results are known for BPL. Indeed, there has been substantial
progress in giving unconditional derandomizations of BPL:

e For along time, the best example of problem where randomization seemed to save on space was
the UPATH path problem — deciding connectivity of two vertices s and ¢ in an undirected
graph. The randomized logspace algorithm for this problem (from 1979) is simply to do
a random walk of O(n?) steps from s and accept if ¢ is ever visited. In 2004, Reingold
derandomized this algorithm, showing that UPATH € L.

"More generally, BPL = L if SPACE(O(n)) requires branching programs of size 284" This variant of the
Impagliazzo-Wigderson Theorem is due to Klivans and van Melkebeek.

e By Savitch’s Theorem, it follows that RL C L2, and this can be extended to show BPL C
L2. However, using derandomization techniques, better bounds on the deterministic space
complexity of BPL are known. Indeed, it is known that BPL C L3/2. In addition, it is
known that BPL C TISP(poly(n),log?n) C SC, something that is not known for NL.

A summary of the known relations for randomized logspace is in the figure below:

PolylogSpace P

.=

SC=TISP(poly,polvlog)

3 Z\N L/ \ /
\\
/

BPL

RL

3 Relations of Randomized Poly-Time to Other Classes

Now we prove two results relating randomized polynomial time to other complexity classes. First
we show that BPP is in the polynomial hierarchy:

Theorem 2 BPP C X5 NI

Thus, we have the following diagram:

NP coNP
BPP
~ ~
RP CORP
~ —

Proof: It suffices to show that BPP € 3% since BPP is closed under complement.

Let L € BPP.

Then, let M be a PPT algorithm for L with error probability < 27" on inputs of length n. We
view M as a deterministic polynomial-time algorithm of the input « and the coin tosses r € {0,1}™,
where m = poly(n) is the bound on runtime:

x€Ll—PriM(z)=1>1-2""
x¢L— PriM(z)=1]<27"
We let S, be the set of all sequences of coin tosses that cause M to accept:
Sy ={re{0,1}": M(z,r) =1}

Intuitively, if € L, then S, will cover most of the space {0,1}", and if ¢ L then S, will be at
most a tiny portion of the space. The idea is that by taking m “shifts” of S,, we can cover the
entire space in the former case, and will not be able to in the latter.

We define a “shift” of S, by u € {0,1}™ by:
S, u={r®ou:recS,},
where @ denotes bitwise xor. (Other operations, such as sum modulo 2™ could be used instead.
Claim 3
1. If x € L then Juq, ..., up, € {0,1}™ such that Vr € {0,1}": r € |J;(Sz & w;).
2. If x & L then Yuy, ..., um € {0,1}™ there Ir € {0,1}™: r & |J,;(Sz & w;).

Proof of claim: Part 2: For any us, ..., u,, we consider the size of the set:

U(Sx ® u;)

7

)

<Y ISe @ g =) |Se] <m2m2m << 27,
A

for sufficiently large n. Therefore, there exists some r not in | J;(S ® u;).
Part 1: Proof by the Probabilistic Method. Choose uy, ..., t,, uniformly at random.
Consider any fixed r. Then, by independence of the wu;’s,

Pr [T¢U5$@ui] = %r[r%Sx@u]m

UL,y Um

= PrroudgS,"

u
277’1,777,

)

where the last equality follows from the fact that if » is uniformly random, then so is
r @ u. This is the probability that any single r is not covered by the m shifts of .S,.
Then, the probability that any of the r’s fails to be covered by the m shifts of S, is at
most 2™ times that:

Pr [3r rg,{USx@ui] <2m.2TM 1

Ul Um

for sufficiently large n. Therefore, there must exist some u, ..., u, such that every r is
covered. That is,

Fus, ooyt € 0,13 ¥r € {0, 13" 7 € | J(Se @ us)

O

Now we return to the proof of Theorem 2. By Claim 3, we an easily give a 39 algorithm. We
existentally choose uy, ..., 4, and then universally choose r, and check if r is contained in any of
these shifts of S;, which we do by running M (z;r @ u;) for each 7. This gives a X5 decider for L.

Therefore, BPP € X5 N 115

|

4 Randomness vs. Nonuniformity
The following theorem shows that “nonuniformity is more powerful than randomness”.
Theorem 4 BPP C P/poly.

Proof:
Let L € BPP, let M be a poly-time PPT for L with error prob at most 272”. We show that for

each input length n, there exists a sequence of coin tosses that work on all inputs of that length.

There are 2" inputs of that length, and the probability that each one might fail is at most 272",
so the probability that some input might fail is:

Pr [3z € {0,1}" M(x,r) is incorrect] < 2"272" < 27"
re{0,1}™

Since this probability is less than 1, there exists a sequence of coin tosses for each input length n that

work on all inputs of that length. Then, we simply provide this sequence as our polynomial-sized
advice. Therefore, L € P/poly.
Therefore, BPP C P/poly

|

5 Promise Problems

In this section, we introduce the notion of a promise problem, which are decision problems where
the input is “promised” to be in some set. Many computational problems of interest are most
naturally formulated as promise problems. For example:

Example 5 Given a planar graph, decide if it is Hamiltonian.

The most natural interpretation of the above is that the input is “promised” to be planar; i.e. we
don’t care how the algorithm behaves if the input is not planar. In this case (and some others),
the promise can be checked efficiently, so we tend to brush it under the rug, e.g. we might consider
the language {G : G is a planar, Hamiltonian graph}, which requires testing the conjunction of
Hamiltonicity and planarity. Since planarity is in P, this has the same complexity as testing
Hamiltonicity of graphs that are promised to be planar. But in some cases, the complexity of the
promise is not clear (e.g. testing planarity of graphs that are promised to be Hamiltonian), and it
is thus useful to be able to deal with it explicitly.

A more complexity-theoretic motivation for promise problems, related to our current topic, is
that no hierarchy theorems or complete problems are known for BPTIME classes or BPP, because
we don’t know how to enumerate BPTIME(n*) algorithms (not clear how to discard algorithms
that accept with probabilities in the gap between 1/3 and 2/3). But using promise problems, we
can effectively eliminate these difficulties by “promising” that the input satisfies the gap.

Formally, we have:

Definition 6 A promise problem IT = (Ily, IIy) consists of two disjoint sets of strings Iy, Iy,
expressing the computational problem “Given x promised to be in one set or the other, decide which
1s the case.”

Note that languages are a special case of promise problems, namely where IIy UTIy = {0, 1}*.
All usual complexity classes generalize to promise problems in the obvious way, e.g.

Definition 7 II € prBPP iff there exists a PPT M such that
z€lly - Pr[M(z)=1]>2/3

zelly - Pr[M(z)=1] <1/3

Most results we prove about language classes also extend to promise classes via the same proof (e.g.
prBPP C prP/poly). However, as you'll see on Problem Set 4, there are cases where promise
classes behave differently.

Theorem 8 For any constante < 1/6, the problem +e- APPROX CIRCUIT ACCEPTANCE PROBABILITY,
abbreviated CAP®, is prBPP-complete.

CAPS ={(C,p) :]E;r[C(r) =1]>p+e}
CAPY = {(C,p) : PIC(r) = 1) < p}

Proof: CAP® € prBPP: On input (C,p), choose r1,...,r; uniformly at random. If C(r;) = 1
for at least (p + ¢/2)t values of i, accept, else reject. By the Chernoff bound, if t = ¢/&2, the error
probability on CAP§, U CAP%, is at most 1/3.

CAP? is prBPP-hard: We take any II € prBPP and construct a poly-time reduction f:

z €lly — f(x) € CAPS

x €lly — f(x) € CAPY

Let M be a PPT for II, considered as a deterministic machine of the input and its coin tosses,

M (x,r). Define f by:

f($) - (Cz() - M(xv ')7 1/2)
That is, we hardcode z into M and the take the random coins the as input, and then transform M
into a circuit C,.

If x € Ily, then the probability that C, accepts on a random input is at least 2/3, which is
more than ¢ from 1/2. If x € Iy then the then the probability that C, accepts on a random input
is at most 1/3, which is less than 1/2. Therefore, this is a reduction, as desired.

So we conclude that CAP?® is prBPP-hard. |

As we see from the example of CAP, promise problems are good for capturing decisional
analogues of approximation problems. Other examples of approximation problems that are known
to be in prBPP but are not known to be in prP are:

Example 9 x(1+ ¢)-ApPROX #DNF: approximating the number of satisfying assignments of a
DNF formula to within a multiplicative factor of (14¢). As a promise problem, we are given a DNF
formula ¢ and a number N, and should say Yes if [¢~1(1)| > (1 +¢)N and No if |~ 1(1)| < N.

Example 10 x(14¢)-APPROX PERMANENT: given an n X n nonnegative matrix M, approximate
its permanent perm(M) = > s [[; M; () to within a multiplicative factor of (1 +¢). As a
promise problem, we are given M and a threshold ¢ and should say Yes if perm(M) > (1 + &)t and
No if perm(M) < t.

There are many other approximation problems known to be in prBPP but not known to be in
prP; thus prBPP is perhaps a better example of the power of randomization than the language
class BPP. On the other hand, there is the same evidence that prBPP = prP that there is
for BPP = P; in particular both hold under the assumption that SAT requires exponential-sized
circuits.

