
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 17

March 31, 2010 Scribe: Jonathan Ullman

1 Interactive Proofs

Recall the definition of NP: L ∈ NP⇐⇒ there exists a polynomial-time V and polynomial p s.t.

Completeness: x ∈ L =⇒ ∃π ∈ {0, 1}p(|x|)V (x, π) = 1,

Soundness: x 6∈ L =⇒ ∀π ∈ {0, 1}p(|x|)V (x, π) = 0.

This definition is essentially the definition logicians have always used for proof systems, except that
complexity theorists have formalized the requirement that the proof be easy to check.1

Interactive proofs add two new ingredients to classical proof systems:

Randomness: The verifier can toss coins and is allowed to err with some (small) probability
if it is unlucky in its coin tosses.

Interaction: Instead of a static proof π, the efficient verifier can interact with a computa-
tionally unbounded prover.

To formalize this, we must first say what it means for two algorithms (the verifier and prover)
to interact. Each algorithm is interpreted as a next-message function mapping the party’s in-
put x, its coin tosses r, and the prior messages m1, . . . ,mi−1 to the party’s next message mi or
halt/accept/reject. We write 〈P, V 〉 (x) to indicate the probability space where we choose both
parties’ coin tosses uniformly at random, and alternately apply their next-message function until
one party halts.

Definition 1 (Interactive Proof) An interactive proof for a language L is a pair of interactive
algorithms 〈P, V 〉 algorithms s.t. ∀x

Efficiency: The total length of communication in 〈P, V 〉 (x) is at most poly(|x|) and V runs
in time poly(|x|),

Completeness: x ∈ L =⇒ Pr [V accepts in 〈P, V 〉 (x)] ≥ 2/3,

Soundness: x 6∈ L =⇒ ∀P ∗ Pr [V accepts in 〈P ∗, V 〉 (x)] ≤ 1/3,

where all the probabilities are taken only over the coin tosses of V .
1The definition of NP also bounds the length of the proof to be polynomial in the size of the statement, but this

can be addressed by padding. For example, the language consisting of pairs (ϕ, 1n) such that ϕ is a mathematical
statement (e.g. in set theory) with a proof of length at most n (e.g. in Zermelo-Frankel set theory) is NP-complete.
If we don’t impose any bound on the length of the proof, we run into undecidability.

1

Note that we require that soundness hold no matter what strategy P ∗ the prover follows. This
captures the idea that we do not have to trust the prover to be convinced by the proof.

Note also that since the probabilities are only over the coin tosses of V , we can reduce the
error through repetition. This is relatively easy to show for sequential repetition, but also holds for
parallel repetition (which has the advantage of not increasing the number of rounds of interaction).

Definition 2 (IP)
IP = {L | L has an interactive proof.}

Clearly NP ⊆ IP where the prover simply sends the NP witness to the verifier. The rest of this
lecture will show that IP is actually much larger:

2 Interactive Proof of Graph Non-isomorphism

The first evidence we will provide that IP is larger than NP is an interactive proof of graph
non-isomorphism, which is not known to be in NP.

2.1 Graph Non-isomorphism

Let G = ([n], E) be a graph and π ∈ Sn be a permutation of [n]. Let

π(G) = ([n], {(π(i), π(j)) | (i, j) ∈ E})

be a new graph with the labels of the vertices permuted by π. We say that two graphs G and H
are isomorphic, written G ∼= H, if there exists π ∈ Sn s.t. π(G) = π(H). We define the language

GNI = {(G0, G1) | G0 6∼= G1}.

The language GI = GNI is in NP but GNI is not known to be in NP. However, we will see that
GNI does have an efficient interactive proof system.

2

2.2 GNI ∈ IP

(G0, G1)
Prover Verifier

←− H
b

R←{0, 1}
π

R← Sn
H := π(Gb)

if H ∼= G0 then
c := 0

else
c := 1

end if

c −→

if c = b then
accept

else
reject

end if

We will verify that this proof satisfies efficiency, completeness, and soundness:

Efficiency: The verifier clearly runs in time polynomial in the size of the input.

Completeness: if G0 6∼= G1 then H is isomorphic only to Gb, thus the correct prover will
always return c = b and V accepts with probability 1.

Soundness: If G0
∼= G1, then the distribution of π(G0) and π(G1) are identical. Thus for

every P ∗, Pr[P ∗(G0, G1, H) = b] ≤ 1/2. If we want to be exact about the 1/3 in the soundness
requirement, we could run this protocol twice.

Some remarks on the interactive proof system for GNI:

• In this protocol, it is essential that V have “private coins,” meaning that V can hide the
choice of b from the prover. However, it will turn out that every language with an interactive
proof has one where the verifier uses only “public coins.”

• The protocol is very efficient, it uses only two rounds of communication.

• The prover only needs to be able to decide GNI to run this protocol.

3 Motivation for Interactive Proofs

• Interactive proofs are a natural model of proofs in every day interactions, like a courtroom.

3

• Interactive proofs can have additional properties that are not possible for standard NP proofs,
such as being “zero knowledge” (where the verifier learns nothing other than the fact that
the assertion being proven is true).

• Many situations in cryptographic protocols can be modeled as interactive proofs. For these
kinds of applications, we need a prover that is polynomial time when given an NP witness,
and thus the benefit of interactive proofs is not handl ing languages outside of NP but rather
the additional properties they enable (like zero knowledge).

• Secure outsourcing of computation. For example, we may have a prover than runs in cubic
time and a verifier that only runs in linear time.

• Variants of interactive proofs (multiprover interactive proofs, probabilistically checkable proofs)
are closely related to hardness of approximation for NP optimization problems (as we will
see in a few weeks).

4 IP Contains Counting

In this section we will prove that IP contains P#P. This is a surprising result, as it’s not even
obvious that coNP ⊆ IP.

Theorem 3 P#P ⊆ IP. In particular, IP contains all of PH.

First we will outline one attempt at the proof, to give intuition for the correct interactive proof. Note
that it is sufficient to give an interactive proof system for the following (PP-complete) decisional
version of #SAT.

#SATD =

(ϕ, k) s.t.
∑

b1,...,bn∈{0,1}n
ϕ(b1, . . . , bn) ≥ k

 .

The first thing we might try is as follows:

4

(ϕ, k)
Prover Verifier

N =
∑

b1,...,bn∈{0,1}

ϕ(b1, . . . , bn) N −→

if N < k then
reject

end if

N0 =
∑

b2,...,bn

ϕ(0, b2, . . . , bn)

N1 =
∑

b2,...,bn

ϕ(1, b2, . . . , bn)

N0, N1 −→

←− a1

if N0 +N1 6= N then
reject

end if
a1

R←{0, 1}

Na1,0 =
∑

b3,...,bn

ϕ(a1, 0, b3, . . . , bn)

Na1,1 =
∑

b3,...,bn

ϕ(a2, 1, b2, . . . , bn)

Na1,0, Na1,1 −→

←− a2

if Na1,0+Na1,1 6= Na1 then
reject

end if
a2

R←{0, 1}

...

Na1,...,an = ϕ(a1, . . . , an)
Na1,...,an −→

if Na1,...,an = ϕ(a1, . . . , an)
then

accept
else

reject
end if

Although this proof system wont work, we can get insight from analyzing it. Clearly this scheme
has an efficient verifier and satisfies perfect completeness. Let’s try to prove soundness: Assume
ϕ has fewer than k satisfying assignments and let P ∗ be a cheating prover. Let N∗, N∗0 , N

∗
1 , . . .

be the messages sent by P ∗ and let N,N0, N1, . . . be the correct messages (computing as in the
description of the honest prover P given above). Now we can look at all the ways that the prover
can be caught cheating:

• We know N∗ 6= N or else V would reject immediately.

• =⇒ N∗0 +N∗1 6= N0 +N1 or else V would reject.

• =⇒ With probability ≥ 1/2 over the choice of a1, N∗a1
6= Na1 , because either N∗0 6= N0 or

N∗1 6= N1, from the previous fact.

5

• =⇒ With probability ≥ 1/2 over the choice of a2, N∗a1,a2
6= Na1,a2 .

...

• =⇒ With probability ≥ 1/2 over an, N∗a1,...,an
6= Na1,...,an = ϕ(a1, . . . , an).

If we manage to choose a1, . . . , an correctly in every round then we will catch P ∗. But this will
only occur with probability 1/2n, which is not sufficient. In retrospect, this scheme obviously can’t
work because we are only asking about the value of ϕ for one assignment, which can’t help us prove
that the number of satisfying assignments is large or small.

To prove the theorem, we will introduce a modified interactive proof system where the answers
the prover sends are more robust.

Proof: (Theorem 3) Our strategy is to replace ϕ : {0, 1}n → {0, 1} with a low-degree polynomial
extension ϕ̃ : Znp → Zp that agrees with ϕ on boolean-valued input, but allow the random values ai
to range over all of Zp. We’ll use the fact that two distinct low-degree polynomials can only agree
on a few inputs to ensure that lies by the prover propagate with high probability (rather than only
with probability 1/2 as in the earlier protocol).

We can give a simple recursive algorithm to construct such an extension of ϕ using the following
mapping:

• ϕ(x) = xi 7−→ ϕ̃(x) = xi

• ϕ(x) = ¬α(x) 7−→ ϕ̃(x) = 1− α̃(x)

• ϕ(x) = α(x) ∧ β(x) 7−→ ϕ̃(x) = α̃(x) · β̃(x)

By inspection we can se that for every b1, . . . , bn ∈ {0, 1}n, ϕ̃(b1, . . . , bn) = ϕ(b1, . . . , bn). Also,
deg(ϕ̃) ≤ |ϕ|, and ϕ̃ can be evaluated on any input in Znp in time poly(|ϕ|, log p). (The latter
property is the advantage of this recursive arithmetization over the general low-degree extensions
we saw last lecture (which required exponential summation to compute).)

The proof system can be modified in the following ways:

• In the first round P sends N =
∑

b1,...,bn∈{0,1}n ϕ̃(b1, . . . , bn) and a prime 2|ϕ| < p ≤ 2|ϕ|+1.

• Instead of N0 and N1, P sends the polynomial Nε(x) =
∑

b2,...,bn∈{0,1}n−1 ϕ̃(x, b2, . . . , bn)
(where all computation is in now in Zp). Note that Nε(0) = N0 and Nε(1) = N1.

• The verifier checks the primality of p, that k ≤ N ≤ 2n, and that Nε(0) +Nε(1) = N mod p.
Then the verifier chooses a1

R← Zp.

• In each round, after receiving a1, . . . , ak ∈ Zp, P computes the polynomial

Na1,...,ak
(x) =

∑
bk+2,...,bn

ϕ̃(a1, . . . , ak, x, bk+2, . . . , bn)

and sends it to V . V checks that Na1,...,ak
(0) +Na1,...,ak

(1) = Na1,...,ak−1
(ak).

• At the end, V checks that Na1,...,an equals the constant ϕ̃(a1, . . . , an).

6

Again, efficiency and completeness are easy to verify. The proof of soundness is as follows:
Assume ϕ has fewer than k satisfying assignments and let P ∗ be some cheating prover. Let
N∗, N∗ε (x), . . . be the messages sent by P ∗ and let N,Nε(x), . . . be the correct messages.

• We know N∗ 6= N or else V would reject immediately.

• =⇒ N∗ mod p 6= N mod p

• =⇒ N∗ε (0) +N∗ε (1) 6= Nε(0) +Nε(1).

• =⇒ N∗ε (x) and Nε(x) are different polynomials of degree at most |ϕ|.

• =⇒ With probability ≥ 1− |ϕ|/p over the choice of a1
R← Zp, N∗ε (a1) 6= Nε(a1).

By the union bound, we conclude that the soundness error for the whole protocol is ≤ n|ϕ|
p = o(1)

because we chose p ≥ 2|ϕ|.

7

