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1 Recap

Recall from last time that we have the following:

e IP[k(n)] = interactive proofs with < k(n) msgs. IP := IP[poly].

e AM[k(n)] = public coin interactive proofs with < k(n) msgs starting with A (verifier).
AN[:AMH

Alk(n)] = public coin interactive proofs with < k(n) msgs starting with M (prover).
MA:M[]

Facts: for k(n) > 2
e MAk(n)] € AM[k(n)] C IP[k(n)]
o AMI[2k(n)] € AM[k(n)]
e Assume perfect completeness wlog.

You’'ll prove these inclusions for constant k& in PS5 and in section.

2 AM vs. Alternation

Public coin interactive proof:

T Perfect Completeness: J verifier strategy s.t. A always accepts.
/ \\ r€L = Vr; Imy
- V?”Q E|Tn2
A M .

. Vr dmy
-2 A(z,r,my, ey, mi) = 1

> Soundness (assume error 27", wlog by parallel repetitions):
x ¢ L = for most r; Imy
for most r9 Imo

for most ry Imy
A(z,ri,my,...,rg,mg) =0
“Strong negation of TQBF”



AM games Alternation

One unbounded player M Two unbounded players

One randomized player A Which one has winning strategy?
Does M have winning strategy

or is M far from having one?

3 AM vs. IP

IP= PSPACE = AM|poly]

poly # of alternations poly # rounds of AM games
Recall: Let f € #P so

Vo f(z) = |S(z)| where S(z) = {y € {0,1}?02D . M(z,y) =1}

NP search problem

Theorem 1 Vpoly p, GAPyy/p(n)-f is in prAM
Proof: Last time, we showed this for GAP, f with o =8
Gapr, fy = {(z,t):|S(z)| >t}
GApr, fn = {(z,t) : |S(x)] < t/a}
Trick: to improve approximation factor, apply “8-approx set-size lower bound protocol” to
S'(z) = S(2)* = {(y1, .. yp) : Vi M(z,y;) =1}

Approximating |S’(x)| to within a factor of 8 = approximating |S(z)| to under 8/% = 1+0(1/k).
Take k = poly(n). |

Now we will prove the following.
Theorem 2 IP[2] C AM[4] 2° AM.
Corollary 3 GRAPH NONISOMORPHISM is in AM.

Proof Sketch:
Idea: Prove that

z

there are “many” m

s.t. Ja, for “many” r € V,1(m),
P |4

V(z,a,7) =1
m=Va (r) re {0,1)!
a accept if V(z,a,7) =1
M A
k1 ko where A accepts if:
hi(m) = 0™

h1:{0,1}'—{0,1}*1 ha(r) = k2

m Vae(r) =m

. V(z,a,m) =1
h2:{0,1}! —{0,1}*2 ki+ky>1—logl—3

r




Assume WLOG P,V has completeness > 3/4 and soundness < 27",

When z € L, the completeness of (P, V) tells us that:
w.p. > 1/2 over m «— V,(U,),
Ja s.t. w.p. >1/2 over r & V. Y (m),
V(z,a,r) = 1.

The above is almost like the condition we want to establish, but saying that something happens
with probability at least 1/2 over m does not quite tell us for how many m this occurs (since
the distribution V,,(U;) may be complicated), and saying that something happens with probability
at least 1/2 over r < V,"'(m), since we do not know the size of V; !(m) (note that this equals
2L Pr[V,(U;) = m]).

To solve the above problems, we group the m’s into buckets each of which have roughly the
same size. Specifically, define B; = {m : V" }(m) € [2¢,2¢"1)} for i = 0,...,]. Call m i-good, if
m € B; and there exists an a such that with probability at least 1/2 over r < V,;"'(m), we have
V(z,a,r) =1

Since m is i-good for some 7 with probability at least 1/2 (as above) and there are only 1/(141)
buckets, there must be a fixed i, such that m is iz,-good with probability at least 1/2(I 4 1). Then
we have:

2l 1 l—igz—logl—
) . z gl—3
# ip-good m > 20+ 1) 9, 11 =2
N———

# of coins corr. to good m’s

Moreover, if m is i,-good, then there exists an a such that there are at least (1/2) - 2% values of
r € V- Y(m) for which V(x,a,r) = 1. Thus, if M sets k; =1 — i, —logl — 3 and ko = i, — 1, A will
accept with at least constant probability (by the analysis of the set-size lower bound protocol from
last time).

Now we analyze soundness. Let z ¢ L. Suppose that some M* can make A accept with constant
probability by sending k1, ko in the first message. Then there exists > 2k171081=0() pyg gt Jg s.t.
there are > 252=0() st. V(x, a,r) = 1. (Here the O(1)’s are arbitrarily large constants.) Then we
have a strategy P* making V accept with probability at least

9k1—log I-0(1) . 2k2—0(1)
2l

By soundness, V' accepts with probability at most 27™. So we have k1 + ko —logl <l—-n+0(1) <«
I —logl — 3, which means that A will reject. O

The ideas above can be extended to prove the following, more general theorem:



Theorem 4 For every k(n) > 2, IP[k(n)] = AM[k(n)].
Combined with the Collapse Theorem for AM (PS5), we have:

Corollary 5 AM equals the class of languages having constant-round interactive proofs.

4 AM vs. PH
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Can GRAPH ISOMORPHISM be NP-complete (under Karp reduction)?
If Y, then GNI is coNP-complete, and hence coNP C IP[2] = AM.

Theorem 6 If coNP C AM, then PH = AM C II5.

Proof: Since AM C II5, it suffices to show that X5 C AM. To get an AM protocol to prove
dz Yy ¢(x,y), we have the prover send x, and then prove the coNP statement Vyp(x,y) using the
assumption that coNP C AM. |

Corollary 7 GNI is not NP-complete unless PH = AM C II5.



