CS 221: Computational Complexity

Prof. Salil Vadhan

Lecture Notes 19

January 25, 2010 Scribe: Richard Liu

1 Recap

Recall from last time that we have the following:

- $\mathbf{IP}[k(n)] = \text{interactive proofs with } \leq k(n) \text{ msgs. } \mathbf{IP} := \mathbf{IP}[\text{poly}].$
- $\mathbf{AM}[k(n)] = \text{public coin interactive proofs with } \leq k(n) \text{ msgs starting with } A \text{ (verifier)}.$ $\mathbf{AM} := \mathbf{AM}[2].$
- $\mathbf{MA}[k(n)] = \text{public coin interactive proofs with } \leq k(n) \text{ msgs starting with } M \text{ (prover)}.$ $\mathbf{MA} := \mathbf{MA}[2].$

Facts: for $k(n) \ge 2$

- $\mathbf{MA}[k(n)] \subseteq \mathbf{AM}[k(n)] \subseteq \mathbf{IP}[k(n)]$
- $\mathbf{AM}[2k(n)] \subseteq \mathbf{AM}[k(n)]$
- Assume perfect completeness wlog.

You'll prove these inclusions for constant k in PS5 and in section.

2 AM vs. Alternation

Public coin interactive proof:

Perfect Completeness: \exists verifier strategy s.t. A always accepts.

$$x \in L \Longrightarrow \forall r_1 \exists m_1 \\ \forall r_2 \exists m_2 \\ \vdots \\ \forall r_k \exists m_k \\ A(x, r_1, m_1, ..., r_k, m_k) = 1$$

Soundness (assume error 2^{-kn} , wlog by parallel repetitions):

$$x \notin L \Longrightarrow \text{ for most } r_1 \exists m_1$$
for most $r_2 \exists m_2$

$$\vdots$$
for most $r_k \exists m_k$

$$A(x, r_1, m_1, ..., r_k, m_k) = 0$$
"Strong negation of TQBF"

AM games

One unbounded player MOne randomized player ADoes M have winning strategy or is M far from having one?

Alternation

Two unbounded players
Which one has winning strategy?

3 AM vs. IP

$$\mathbf{IP} = \underset{\mathrm{poly} \; \# \; \mathrm{of \; alternations}}{\mathbf{PSPACE}} = \underset{\mathrm{poly} \; \# \; \mathrm{rounds \; of \; \mathbf{AM} \; games}}{\mathbf{AM}[\mathrm{poly}]}$$

Recall: Let $f \in \#\mathbf{P}$ so

$$\forall x \ f(x) = |S(x)| \text{ where } \underbrace{S(x) = \{y \in \{0,1\}^{p(|x|)} : M(x,y) = 1\}}_{\mathbf{NP} \ \mathrm{search \ problem}}$$

Theorem 1 $\forall poly \ p, \ GAP_{1+1/p(n)}$ -f is in prAM

Proof: Last time, we showed this for $GAP_{\alpha} f$ with $\alpha = 8$

$$GAP_{\alpha} f_{Y} = \{(x,t) : |S(x)| > t\}$$

 $GAP_{\alpha} f_{N} = \{(x,t) : |S(x)| < t/\alpha\}$

Trick: to improve approximation factor, apply "8-approx set-size lower bound protocol" to

$$S'(x) = S(x)^k = \{(y_1, ..., y_k) : \forall i \ M(x, y_i) = 1\}$$

Approximating |S'(x)| to within a factor of $8 \Longrightarrow \text{approximating } |S(x)|$ to under $8^{1/k} = 1 + O(1/k)$. Take k = poly(n).

Now we will prove the following.

Theorem 2 $IP[2] \subseteq AM[4] \stackrel{PS5}{=} AM$.

Corollary 3 Graph Nonisomorphism is in AM.

Proof Sketch:

Idea: Prove that there are "many" m s.t. $\exists a$, for "many" $r \in V_x^{-1}(m)$, V(x,a,r)=1

$$M \xrightarrow{k_1, k_2} A \text{ where A accepts if:} \\ \xrightarrow{h_1:\{0,1\}^l \to \{0,1\}^{k_1}} & h_1(m) = 0^{k_1} \\ \xrightarrow{m} & h_2(r) = 0^{k_2} \\ \hline \xrightarrow{a} & V_x(r) = m \\ V(x, a, r) = 1 \\ & k_1 + k_2 \ge l - \log l - 3$$

Assume WLOG P, V has completeness $\geq 3/4$ and soundness $\leq 2^{-n}$.

When $x \in L$, the completeness of (P, V) tells us that: w.p. $\geq 1/2$ over $m \leftarrow V_x(U_l)$, $\exists a \text{ s.t. w.p. } \geq 1/2$ over $r \stackrel{R}{\leftarrow} V_x^{-1}(m)$, V(x, a, r) = 1.

The above is almost like the condition we want to establish, but saying that something happens with probability at least 1/2 over m does not quite tell us for how many m this occurs (since the distribution $V_x(U_l)$ may be complicated), and saying that something happens with probability at least 1/2 over $r \stackrel{\mathbb{R}}{\leftarrow} V_x^{-1}(m)$, since we do not know the size of $V_x^{-1}(m)$ (note that this equals $2^l \cdot \Pr[V_x(U_l) = m]$).

To solve the above problems, we group the m's into buckets each of which have roughly the same size. Specifically, define $B_i = \{m : V_x^{-1}(m) \in [2^i, 2^{i+1})\}$ for i = 0, ..., l. Call m i-good, if $m \in B_i$ and there exists an a such that with probability at least 1/2 over $r \stackrel{\mathbb{R}}{\leftarrow} V_x^{-1}(m)$, we have V(x, a, r) = 1.

Since m is i-good for some i with probability at least 1/2 (as above) and there are only 1/(l+1) buckets, there must be a fixed i_x such that m is i_x -good with probability at least 1/2(l+1). Then we have:

$$\#\ i_x\text{-good}\ m \geq \frac{2^l}{2(l+1)} \cdot \underbrace{\frac{1}{2^{i_x+1}}}_{\#\ \text{of coins corr. to good m's}} = 2^{l-i_x-\log l-3}$$

Moreover, if m is i_x -good, then there exists an a such that there are at least $(1/2) \cdot 2^{i_x}$ values of $r \in V_x^{-1}(m)$ for which V(x, a, r) = 1. Thus, if M sets $k_1 = l - i_x - \log l - 3$ and $k_2 = i_x - 1$, A will accept with at least constant probability (by the analysis of the set-size lower bound protocol from last time).

Now we analyze soundness. Let $x \notin L$. Suppose that some M^* can make A accept with constant probability by sending k_1, k_2 in the first message. Then there exists $\geq 2^{k_1 - \log l - O(1)}$ m's s.t. $\exists a$ s.t. there are $\geq 2^{k_2 - O(1)}$ s.t. V(x, a, r) = 1. (Here the O(1)'s are arbitrarily large constants.) Then we have a strategy P^* making V accept with probability at least

$$\frac{2^{k_1 - \log l - O(1)} \cdot 2^{k_2 - O(1)}}{2^l}$$

By soundness, V accepts with probability at most 2^{-n} . So we have $k_1 + k_2 - \log l \le l - n + O(1) \ll l - \log l - 3$, which means that A will reject.

The ideas above can be extended to prove the following, more general theorem:

Theorem 4 For every $k(n) \ge 2$, $\mathbf{IP}[k(n)] = \mathbf{AM}[k(n)]$.

Combined with the Collapse Theorem for AM (PS5), we have:

Corollary 5 AM equals the class of languages having constant-round interactive proofs.

4 AM vs. PH

Can Graph Isomorphism be **NP**-complete (under Karp reduction)? If Y, then GNI is **coNP**-complete, and hence $\mathbf{coNP} \subseteq \mathbf{IP}[2] = \mathbf{AM}$.

Theorem 6 If $coNP \subseteq AM$, then $PH = AM \subseteq \Pi_2^p$.

Proof: Since $\mathbf{AM} \subseteq \mathbf{\Pi_2^P}$, it suffices to show that $\mathbf{\Sigma_2^P} \subseteq \mathbf{AM}$. To get an \mathbf{AM} protocol to prove $\exists x \ \forall y \ \varphi(x,y)$, we have the prover send x, and then prove the \mathbf{coNP} statement $\forall y \varphi(x,y)$ using the assumption that $\mathbf{coNP} \subseteq \mathbf{AM}$.

Corollary 7 GNI is not NP-complete unless $PH = AM \subseteq \Pi_2^p$.