
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 2

January 27, 2010 Scribe: Tova Wiener

1 Hierarchy Theorems

Reading: Arora-Barak 3.1, 3.2.

“More (of the same) resources ⇒ More Power”

Theorem 1 (Time Hierarchy) If f, g are nice (“time-constructible”) functions and f(n) log f(n) =
o(g(n)) (e.g. f(n) = n2, g(n) = n3), then DTIME(f(n)) (DTIME(g(n)).

Nice functions : f is time-constructible if:

1. 1n → 1f(n) can be computed in time O(f(n))

2. f(n) ≥ n

3. f is nondecreasing (f(n + 1) ≥ f(n))

The proof will be by diagonalization, like what is used to prove the undecidability of the Halting
Problem. Specifically, we want to find TM D such that:

1. D runs in time O(g(n))

2. L(D) 6= L(M) for every TM M that runs in time f(n).

First recall how (in cs121) an undecidable problem is obtained via diagonalization.

x1 x2 x3 ...

M1 0
M2 1
... 0

Index (i, j) of the array is the result of Mi on xj , where M1, M2, . . . is an enumeration of all
TMs and x1, x2, . . . is an enumeration of all strings. Our undecidable problem D is the complement
of the diagonal, i.e. D(xi) = ¬Mi(xi). However, now we want D to be decidable, and even in
DTIME(g(n)). This is possible because we only need to differ from TMs Mi that run in time
f(n).

First Suggestion: Set D(xi) = ¬Mi(xi), where M1, M2, . . . is an enumeration of all time f(n)
TMs.
Problem: There is no way for D to tell whether a given TM Mi actually is a time f(n) algorithm.
(Indeed, this is an undecidable problem...)
Better Suggestion: Enumerate all TMs, but only simulate for g(n) steps.

Proof:

1

D(x):

1. Compute g(n), where n = |x|.

2. Run U(bMxc, x) for at most g(n) steps and output opposite. If it does not complete, output
anything.

By time-constructibility, D runs in time O(g(n)).
Suppose for contradiction ∃ time f(n) TM M s.t. L(M) = L(D). M is described by some

string x. On x, D does the opposite of Mx = M on x, provided that the simulation U(bMxc, x)
completes. Time to complete simulation is poly(|bMc|) · f(n) log f(n). We want that to be less
than g(n). We have f(n) log f(n) = o(g(n)), but the poly(|bMc|) factor is poly(n) and will give a
coarser hierarchy theorem than we want. To deal with this, we only use a small portion of x as the
description of the TM, so its size is arbitrarily small relative to input length. We want to be able
to fix bMc while taking n→∞.

We do this by padding our encodings of TMs. Specifically, for a string x, we define Mx to be the
TM M s.t. x = bMc1000 · · · 0. This way we can take n = |x| to be arbitrarily large while keeping
the TM M fixed. Now for sufficiently large n, we will have poly(bMc) · f(n) log f(n) < g(n).

By the time hierarchy theorem, all the following time classes are distinct:

DTIME(n) (DTIME(n log2) (DTIME(n2) (P (P̃ (SUBEXP (EXP (EEXP,

where

P̃ =
⋃
c

DTIME(2logc n) (“quasipolynomial time”)

SUBEXP =
⋂
ε

DTIME(2nε
) (“subexponential time”)

EEXP =
⋃
c

DTIME(22nc

) (“double-exponential time”)

We remark that we restrict to time bounds f(n) ≥ n because this much time is needed to even
read the input. However, if one allows randomization and certain notions of approximation, then
sublinear-time algorithms become quite nontrivial, and indeed there is now a large literature on
this subject, motivated by massive data sets (which we won’t have time to address in this course,
except in the context of proof-verification — PCPs).

Another remark is that if we remove the time-constructibility condition and allow patholog-
ical bounds f(n), the hierarchy theorem becomes false and we can even have DTIME(f(n)) =
DTIME(22f(n)

)!
The proof of the Time Hierarchy Theorem shows that there is this contrived diagonal problem

in DTIME(g(n)) \DTIME(f(n)):

L(D) = {x : U(bMxc, x) accepts in ≤ g(|x|) steps}

What about more natural problems?
The Bounded Halting Problem

Hf = {(bMc, x) : M accepts x within f(|x|) steps}

2

can be shown to not be in in DTIME(f(n)). (If it were easy, then L(D) would be too.) However,
due to the poly(|bMc|) factor in the running time of the universal TM, we can only put Hf in
DTIME(poly(n) · f(n) log f(n)) (rather than DTIME(g(n)) for any g(n) = ω(f(n) log f(n))).
Eventually, we will use reductions and completeness to get even more natural problems of high
time complexity (just as done in computability theory).

For space, we have an even finer hierarchy:

Theorem 2 (Space Hierarchy) If g is space-constructible (1n → 1g(n) can be computed in space
O(g(n))), f(n) = o(g(n)), then SPACE(f(n)) (SPACE(g(n)).

Proof: Same as Time Hierarchy Theorem, but use the fact that SpaceU (bMc, x) ≤ CM ·
SpaceM (x).

As this illustrates, the proofs of the above hierarchy theorems are quite general. Informally
speaking, to show a separation of complexity classes C1 6⊆ C2 with this approach, all we need is
that algorithms from C1 can (1) enumerate, (2) simulate, and (3) negate algorithms from C2. How
fine a hierarchy theorem you get comes from how tight the simulation is (in terms of resources).
We have a log factor in the time hierarchy theorem because the universal TM pays a log factor; for
other models of computation, a constant factor may suffice.

Later in the semester, we will see that such generic diagonalization arguments are insufficient
to resolve the major open problems in complexity theory (like P vs. NP).

Theorem 3 (Nondeterministic Time Hierarchy) If g(n) time constructible and f(n+1) log f(n+
1) = o(g(n)), then NTIME(f(n)) (NTIME(g(n)).

Why can’t we just do the same thing as we did with the deterministic time hierachy theorem?
Nondeterministic computation does not seem to be closed under negation. Recall that the accepting
condition for an NTM is that there exists at least one accepting computation. Negating this yields
a “for all” condition.

Solution ideas:

1. We can negate if we have exponentially more time. But then you won’t get a fine hierarchy
at all.

2. Only try to disagree at least once in an exponentially large interval. (“Lazy diagonalization”)

Proof: For the k’th non-deterministic TM Mk, associate an interval Ik = (`k, uk] of positive
integers. These should be disjoint but can be continguous (we can take `k+1 = uk). The upper
bound uk should be exponentially larger than the lower bound `k, e.g. uk = 2`2k .

Now we define our diagonalizing NTM D (on unary inputs 1n) as follows.

D(1n):

1. Find k such that n ∈ Ik

2. (a) If n < uk: Simulate nondeterministic universal TM on Mk and 1n+1 for up to g(n) steps.
(Note that here we are not negating, but we are doing the simulation on the input that
is the successor of the input to D.)

3

(b) If n = uk: Deterministically try to decide if Mk accepts 1lk+1 by trying all computation
paths, for a total of at most g(n) steps, and and do the opposite. (Here we are negating,
but we are doing so on an input much shorter than the input to D.)

By construction, D runs in nondeterministic time g(n). Suppose for contradiction that there
exists an NTM M that runs in non-det time f(n) s.t. it accepts the exact same language as D
(L(M) = L(D)). We may assume that there are infinitely many k s.t. Mk = M by using the same
kind of encoding trick as in the deterministic hierarchy theorem. In particular, L(M) = L(D) on
some such interval Ik where Mk = M and k is arbitrarily large. We’ll just focus on this interval.
For sufficiently large k and sufficiently large intervals (like uk = 2`2k), it can be verified that all of
the simulations in step 2 will complete within g(n) steps.

Now, we know that M(1`k+1) = D(1`k+1), M(1`k+2) = D(1`k+2),...,M(1uk+1) = D(1uk+1).
But, by the definition of D, it is simulating Mk on the next input, so D(1`k+1) = M(1`k+2),
D(1`k+2) = M(1`k+3),..., D(1uk−1) = M(1uk). So M and D must agree on all inputs in the interval
Ik. But when n = uk, we negate to get D(1uk) 6= M(1`k+1). Contradiction.

4

