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1 Agenda

e The quantum model.
e BPP vs. BQP.

e Quantum fourier transform.

2 What is quantum computing?

Quantum computing is a hypothetical computational model based on quantum mechanics that
seems to violate the strong Church-Turing thesis. One of the ways in which quantum computers
seem to violate the thesis is that they can factor integers in polynomial time. In fact, there are
even problems solvable in polynomial time by quantum computers that are not known to lie in the
polynomial hierarchy. On the other hand, it is not known how to solve NP-complete problems in
polynomial time on a quantum computer (the best known is a quadratic speedup over exhaustive
search, which is already quite nontrivial), and many researchers conjecture that this is impossible
(though there is not much formal evidence to this effect).

There has been substantial effort in trying to build quantum computers (motivated partly by
the fact that factoring would enable breaking most public-key cryptography currently in use), but
so far there has not been success in building a scalable quantum computer. It is unknown whether
there is a fundamental physical barrier to scalable quantum computation.

We will develop quantum computation by analogy with classical, probabilistic computation.

Table 1: (Classical) probabilistic vs. quantum computation
Probabilistic n-bit system | Quantum n-qubit system
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A stochastic matriz M is one in which column is a probability distribution. This ensures that if
¢ € R?" is a probability distribution, then so is M ¢. A unitary matriz M is one where | M¢|| = ||6||
for every complex vector ¢. This ensures that if ¢ is a unit vector, then so is M¢. (An equivalent
characterization of unitarity is that the conjugate transpose of M is the inverse of M.)

3 Effect of cancellations

Consider a 1-qubit system evolving by the Hadamard gate H = % <1 _11>
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Note that even though Case 2 is an equal superposition of Cases 0 and 1 (which we observe if
measuring the initial state), after applying H there is cancellation between these two cases, and we
do not observe a value of 1 even though we would have seen it in both Cases 0 and 1. This is like
the famous 2-slit experiment, where if light is shined two appropriately placed slits simultaneously,
there are points where no light is observed even though light would be observed there if either of
the slits were closed.

An important point is that the cancellation only occurs if the quantum state is not measured
before applying H. If we do measure the initial state, the state will collapse to either case zero or
case one with equal probabilities. (In the 2-slit experiment, if detectors are placed at the slits, then
light is again observed at the point of cancellation.)

Case 2:

More generally, if we measure the first qubit of quantum state ¢ = Z a,ls), then the
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probability that we observe a zero is Z ]aotlz, and the probability that we observe a one is
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4 Probabilistic and Quantum Circuits

Now, to model computation, we do not allow the system to evolve by arbitrary 2" x 2™ matrices.
Even in the case of probabilistic circuits, this would allow computing every function f :{0,1}" —



{0,1}" in one time step! Instead, our notion of computation is that it is proceeds by local operations,
that affect only a constant number of bits at a time. We begin by describing what this means in
the case of probabilistic computation.

Probabilistic Circuits. Let g: {0,1}?> — {0,1} be a probabilistic binary gate. One can view it
as a 2 x 4, stochastic matrix

G- (Pr[g(OO) =0] Pr[g(01)=0] ... Pr[g(11) = 0])
Pr[g(00) = 1] Prlg(11) =1]) "

Or, equivalently, as a linear operator, e.g. G(]00)) = Pr[g(00) = 0]j0) + Pr[g(00) = 1]j1). If
applying the gate g to the 1st and 3rd bits of an n-bit register and put the result in the 2nd bit, the
evolution of the n-bit system is given by a 2" x 2" stochastic matrix M induced by G as follows:

M(|s1...50)) = |51)G(|s183))|s3 ... Sn),

which we extend linearly to all of R?". This computation is local; it deals with a constant amount
of information at each step.

It can be shown that every probabilistic gate of O(1) arity can be approximated by AND, OR,
and NOT gates and a coin flip gate, which is why we usually don’t talk about arbitrary probabilistic
gates.

Quantum circuits. In guantum circuits, local operations are given by O(1)-quibit, unitary op-
erations. For example, a 3-qubit operation is given by a 23 x 23, unitary matrix. Unitary matrices
are always square and invertible; therefore, the number of qubits in the system must remain the
same and the computation is always reversible.

There is a universal basis of unitary operations consisting of 2-qubit operations, but it is more
useful to think of general unitary matrices.

5 Quantum computation

To compute a function f: {0,1}" — {0,1}",

1. Start with input |z) in input registers, s scratch registers set to |0), and m other output
registers.

2. at the end of the circuit should be the same number of outputs as there are inputs. The
outputs corresponding to the input registers and the scratch registers should end as their
counterparts began (namely in state |x)|0%)). If we measure the outputs corresponding to the
m last registers at the end, we should get f(z) with probability > %

Note that this model only allows measurement at the end. However, it is known that compu-
tations where measurement is done in the middle can be simulated by ones where measurement is
done at the end with only a small loss in efficiency.

Definition 1 L € BQTIME(T(n)) if 3 a sequence of logspace-uniform quantum circuits Cy, of
size T(n) > Vo € {0,1}" if we run Cp(|z)|0)5™+1). and measure the last quibit, get x1(x) w.p.
> 2. BQP = U.BQTIME(n°).



6 Simulating classical computation by quantum computation

Lemma 2 If C: {0,1}" — {0,1}™ is a boolean circuit with s gates, there is a quantum circuit C’
on n+ s+ m registers with 2s +m quantum gates s.t. Vo € {0,1}*C(|z)|0)5T™) = |z)|0)*| f(z)).

Let g be a classical gate with inputs x1, 2. To make it reversible, make it take an additional input
y and output x1,z9,2, where z = g(x1,22) @ y. The new gate ¢’ is its own inverse. ¢’ can be
described by a 23 x 23 permutation matrix, and all permutation matrices are unitary.

To simulate C, we use the reversible versions of each of the gates of C, with a new scratch
register for each one (which after applying the gates will contain the output value of the original
gate). Now copy the last m scratch registers (which have the outputs of C) into the m output
registers. Now apply the reversible version C again, but in reverse order, to return the scratch
registers back to |0)®.

Corollary 3 P C BQP
Corollary 4 BPP C BQP «— use Hadamards to toss coins.

7 Quantum Fourier Transform

Definition 5 (DFT) For a function f : Zy — C, the discrete fourier transform of f is fiZm —
C given by

~
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where w = e is a primitive M 'th root of unity.

Theorem 6 (QFT) For M = 2™, there is a quantum algorithm QFT using O(m?) = O(log® M)
quantum operations s.t. Vf : Zy — C,

QFT | > f@lo) | = > f@)l).

z€{0,1}™ z€{0,1}m

Motivation: Fast Fourier Transform. The FFT is based on the following recursive description
of the FFT:
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where the last case uses the fact that wM/2 = —1.



