
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 3

February 1, 2010 Scribe: Mike Ruberry

Contents

1 Relations between resources and their complexity classes 1
1.1 Inclusions . 1
1.2 Implications of class equality . 2
1.3 TM-specific results . 4

2 Review of NP, P vs. NP 4

3 Reductions 4
3.1 NP-completeness . 5

1 Relations between resources and their complexity classes

1.1 Inclusions

The “hierarchy theorems” from the previous lecture showed that for “constructible” functions:1

DTIME(f(n)) 6⊆ DTIME(o(f(n)/ log(f(n)))

NTIME(f(n)) 6⊆ NTIME(o(f(n)/ log(f(n)))

SPACE(f(n)) 6⊆ SPACE(o(f(n)))

Note that these results refer to comparing a resource with itself (more time vs. less time, more
space vs. less space, etc.).

Much more difficult is comparing different resources to each other (eg. time vs. nondeterministic
time, as in the P vs. NP question). Most of what we know about the relationship between time,
space, and nondeterministic time is captured by the following:

Theorem 1 DTIME(f(n)) ⊆ NTIME(f(n)) ⊆ SPACE(f(n)) ⊆ ∪
c

DTIME(cf(n)) for f(n) ≥
log(n)

Proof:

1. DTIME(f(n)) ⊆ SPACE(f(n)) follows because at each step at most one unit of memory
may be addressed.

1Non-constructible functions may exhibit strange behavior, such as DTIME(f(n)) = DTIME(222f (n)
)

1

2. NTIME(f(n)) ⊆ SPACE(f(n)) since all computation paths of length f(n) may be at-
tempted.

3. SPACE(f(n)) ⊆ ∪
c

DTIME(cf(n)) for f(n) ≥ log(n) because a space f(n) machine has at

most cf(n) distinct configurations on any input, and thus must halt within cf(n) steps if it
ever halts. (A repeated configuration implies an infinite loop. The number of configurations
is at most |Γ|f(n) · |Q| · n · f(n)O(1), where Γ is the tape alphabet, Q is the set of states, and
n · f(n)O(1) bounds the number of possible locations of the heads. The factor of n is why we
need f(n) ≥ log n.) Thus, we can halt the machine after cf(n) steps (if it runs for longer, then
it is in an infinite loop and will never halt.)

Figure 1 is an image of the inclusions of common complexity classes, using the above theorem.
Given a complexity class C, its class of complements is defined as co-C = {L̄ : L ∈ C}, which
is not the same as C̄. We don’t know anything more about the relations between these classes
beyond what follows from the above theorem, the hierarchy theorems, and translation results like
those below. For example, we know that L 6= PSPACE by the space hierarchy theorem, but it is
open whether L = NP. And we know that P 6= EXP, but it is open whether P = PSPACE.

1.2 Implications of class equality

Translation: equality translates upwards, inequality translates downwards.

Examples:

P = NP ⇒ NP = co-NP (PS0)
P = NP ⇒ EXP = NEXP (thm below)
L = P ⇒ PSPACE = EXP (omitted, similar to thm below)

Theorem 2 P = NP⇒ EXP = NEXP

Proof: Assume P = NP. Given L ∈ NEXP, consider its exponentially “padded” version
L′ = {x012|x|c

: x ∈ L}.
We argue that L′ ∈ NP:

1. Given x′, reject if not of the form x012|x|c
. This verification is performed in linear time.

2. Run the 2nc
nondeterministic algorithm for L on x, which is exponentially shorter than x′.

This is also performed in linear time.

This implies L′ ∈ P since, per our assumption, P = NP. This implies L ∈ EXP: we can decide
whether x ∈ L by running the poly-time algorithm for L′ on x′ = x012|x|c

.

These translation/padding arguments are very general More generally, DTIME(f(n)) = NTIME(g(n))⇒
DTIME(f(h(n))) = NTIME(g(h(n))) for time constructible f, g, h.

2

Figure 1: The complexity hierarchy. Beyond these separations questions of equivalence are open.

3

1.3 TM-specific results

Some slightly stronger results are known about fine relations between resources for the Turing
Machine model:

DTIME(f(n)) ⊆ SPACE(f(n)
log(f(n))) (SPACE(f(n)) [Hopcroft-Paul-Valiant]

DTIME(f(n)) (NTIME(f(n)) [Paul-Pippenger-Szemeredi-Trotter]

At first, the latter result seems quite close to the P vs. NP question, but it really only gives
a tiny separation between deterministic and nondeterministic time (something like log∗ n), so the
gap disappears as soon as we allow polynomial slackness (as in P vs. NP). These small gaps are
also the reason that the results are model-dependent.

2 Review of NP, P vs. NP

Proposition 3 L ∈ NP if and only if there exists a poly-time TM M and a polynomial p s.t.
x ∈ L⇔ ∃u ∈ [0, 1]p(n)M(x, u) = 1.

Where M may be called the “verifier,” and u is commonly referred to as the “witness,” “certificate,”
“proof,” or “solution.”

If P = NP, the following are easy:

• search problems (finding a witness)

• optimization

• machine learning

• breaking cryptosystems

• finding mathematical proofs (finding them becomes polynomial in their length in a formal
system)

Whereas if P 6= NP every NP-hard problem /∈ P.

3 Reductions

A ≤ B: is meant to capture that computational problem A is easier (no harder) than B. A and B
might be languages, functions, or even search problems (where there is a set of valid answers
on each input, see PS0).

Cook reduction (A ≤C B): A can be solved in polynomial time given an “oracle” for B.i.e.,
There exists a poly time “oracle TM” such that for every x, MB(x) = A(x). M can query
oracle B on any input q; it writes and receives B(q) back in one step (possibly on an oracle
tape). In case B is a search problem, we require that MO(x) = A(x) for every function O
that solves B (i.e. O(q) ∈ B(q) for all q).

Otherwise known as “poly-time Turing” or “poly-time oracle” reductions.

4

Karp reduction (A ≤p B): Applies when A and B are languages. Requires that there exists a
poly-time computable function f such that x ∈ A⇔ f(x) ∈ B.

Otherwise known as “poly-time mapping” or “poly-time many-one” reductions.

Logspace mapping reduction Analogous to a Karp reduction, but where f is computable in
log space.

Some desiderata when considering reductions:

• Reductions should be transitive (A ≤ B, B ≤ C ⇒ A ≤ C).

• If B is “easy,” A should be “easy” in the same sense:

for “easy” = P, Cook reductions suffice.

for “easy” = NP, Karp is appropriate since NP is not closed under complement (NP ?=
co-NP).

for “easy” = L, logspace reductions are suitable.

3.1 NP-completeness

Let C be a class of computational problems, B a computational problem, and ≤x a class of reduc-
tions.

C-hard B is C-hard with respect to ≤x if for every A ∈ C, we have A ≤x B

C-complete B is C-complete with respect to ≤x if

[1] B ∈ C

[2] B is C-hard with respect to ≤x.

Circuit satisfiability is a canonical NP-complete problem, and Boolean circuit size has a close
relationship with the time a Turing machine requires to compute a problem.

Boolean circuit a Boolean circuit of n inputs, m outputs, and a “fan-in” of k is a directed acyclic
graph with n sources (inputs without incoming edges), m sinks (outputs without outgoing
edges) and all non-source vertices v labelled with a Boolean function fv of arity equal to the
indegree of v, which is required to be at most k.

Unless otherwise stated, k = 2.

The “size” of a Boolean circuit is the number of nodes in it.

Boolean circuits naturally define mappings C : {0, 1}n ⇒ {0, 1}m.

Theorem 4 Let M be a time t(n) TM, where dlog t(n)e is space constructible. There exists a
sequence, C1, C2, . . . of Boolean circuits, where Cn has n inputs and t(n) outputs, such that:

1. ∀x ∈ {0, 1}n, Cn(x) = M(x) (where M(x) may be padded to t(n) bits)

2. |Cn| = poly(t(n)) =: S(n) (this bound may be improved to S(n) = O(t(n) · log(t)), see below)

5

Figure 2: The tableau of a Turing machine computing a Boolean circuit. The Turing machine
mimics the circuit’s computation iteratively, using only local results and the circuit’s Boolean
function to determine the next value.

6

3. (“uniformity”) There exists a TM M ′, running in time O(S(n)) and space O(log S(n)) s.t.
M ′(1n) = bCnc.

Proof: The “sloppy” or “loose” version is sketched here. This version demonstrates a polynomial
bound on the circuit size. A discussion follows about reducing this.

For a single tape TM, consider the tableau of M ’s computation on inputs of length n (see Figure
2). Each cell will be represented by a constant number of gates in the circuit (which encode the
tape cell contents, whether or not the head is present at that cell, and the state of the TM if the
head is present). Then we can create subcircuits, fM , which are constant-sized functions ensuring
correctness of the TM computation based on the transition function: each cell is determined by
three cells in the row immediately below it. Any Boolean function, and in particular fM can be
computed by a CM of constant size.

Thus, circuit Cn basically consists of many copies of CM , so M ′ simply keeps track of the row
and column when generating Cn. T (n) must be constructible in order to determine the dimensions
of the tableau.

The above results in a blow-up of (t(n)2)2. The first squaring is the conversion to a single tape
machine, and the second is due to the square tableau. By moving to a multi-tape machine and
making the TM oblivious, both may be eliminated. However, the transition to an oblivious TM
requires a logarithmic slowdown, and so the final blow-up is (t(n) · log(t(n))) (details are found in
the book).

7

