
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 5

February 8, 2010 Scribe: Brad Seiler

1 Agenda

• PATH is NL−Complete

• NL ⊆ P

• NL ⊆ L2

• NL = co-NL

• TQBF is PSPACE−Complete

2 Recap

We learned about NL = NPSPACE(log n).
We have a hierarchy pictured below:

Also recall the PATH problem: PATH = {(G, s, t) | G directed graph with path from s to t}

3 PATH is NL−Complete

Theorem 1 PATH is NL-complete with respect to ≤`

Proof:

1. PATH ∈ NL from last time.

2. Claim: PATH is NL−hard.
Given A ∈ NL, let M be a nondeterministic logspace Turing machine that recognizes A. We
seek a logspace mapping reduction from A to PATH.

Map x 7→ (GM,x, s, t) where GM,x is the configuration graph of M on input x defined by:

1

• The vertices are the configurations of M on the input x (note that there are poly(n)
vertices.)

• s is the starting configuration

• t is the accepting configuration, which is unique WLOG.

• Include the directed edge (u, v) ⇐⇒ one step of M can go from configuration u to
configuration v.

x ∈ A ⇐⇒ M has an accepting computation on input x ⇐⇒ ∃ a path from s to t in GM,x.

4 NL ⊆ P

Corollary 2 NL ⊆ P

Proof: PATH ∈ P by BFS or DFS.

Corollary 3 For space-constructible s(n) ≥ log n, NSPACE(s(n)) ⊆
⋃

c DTIME(cs(n))

Proof: We know that
NSPACE(log n) ⊆

⋃
k

DTIME(nk)

which implies by translation/padding that

NSPACE(log f(n)) ⊆
⋃
k

DTIME(f(n)k)

for f(n) ≥ n, f(n) time constructible. Take f(n) = 2s(n) to complete the proof.

This updates the diagram. The translation principle used above gives us a similar hierarchy on
PSPACE.

2

5 NL ⊆ L2

Theorem 4 (Savitch’s Theorem) PATH ∈ L2 = SPACE(log2(n))

Proof: Define

REACHG(u, v, i) =
{

1 ∃ path from u to v of length ≤ i
0 otherwise

(G, s, t) ∈ PATH ⇐⇒ REACHG(s, t, n) = 1

where n is the number of vertices. We describe a recursive algorithm for REACHG(u, v, i).

Base cases: i = 0 accept iff u = v.
i = 1 accept iff u = v or (u, v) is in G.

Recursion: For each vertex w, check REACHG(u, w, di/2e) and REACHG(w, v, di/2e). If both accept,
halt and accept. If you run out vertices, reject.

The space used by REACHG(s, t, n) is bounded above by:

(depth of recursion)(space per level) = (log n)(log n + O(1)) = O(log2 n)

We note that the time of the algorithm is fairly large. We can bound it by:

(number of recursive calls per level)(depth)(time per level) = (n)log n ·O(n) ≈ 2log2 n.

Corollary 5 NL ⊆ L2 and additionally (by translation) NPSPACE = PSPACE.

We know that PATH can be solved in polynomial time, and in can be solved in polylogarithmic
space. However, it is open whether these two bounds can be achieved simultaneously:

Open Problem 6 PATH ∈ TISP(poly(n), polylog(n))?

In contrast, for undirected graphs, such an algorithm is known. In fact, it was recently shown (2005)
that logarithmic (rather than polylogarithmic) space is achievable.

Theorem 7 (Reingold’s Theorem) UPATH ∈ L = TISP(poly(n), log(n)).

6 NL = co-NL

NB: This construction seems obvious, but until it was demonstrated it was widely believed in the
field that this equality was not true.

Theorem 8 (Immerman-Szelepcsényi Theorem) NL = co-NL.

3

Proof: It suffices to show that PATH is in NL.
To show this, prove that if (G, s, t) /∈ PATH, then there is a poly-length “certificate” of this fact
that can be checked in logspace given one-way access to the certificate. (The certificate corresponds
to the nondeterministic choices of the NL algorithm.)
Fix (G, s, t). Define:

Ci = {v | v reachable from s within i steps}

Note that Cn is the whole connected component of s. Define ci = |Ci|.
Given only ci = |Ci| for some i, we can certify:

1. v /∈ Ci+1 for a given v ∈ G.

2. The value of ci+1 = |Ci+1|.

Proof:

1. To certify that v /∈ Ci+1, provide

(u1, path1), (u2, path2), . . . , (uk, pathk)

where k = ci, pathj is a path of length ≤ i from s to uj , and require that u1 < u2 < . . . < uk

relative to the original input order, and ∀j, v 6= uj and (uj , v) is not an edge. This way, given
that we believe that there are only k nodes reachable in i steps, this certifies all k nodes,
so v cannot be one of them and is not immediately reachable from one of them. Ordering
restriction means only the last vertex needs to be remembered to prevent repeats.

2. Go over all vertices in the input order. For each vertex, provide either a certificate that
v ∈ Ci+1 (construct a path) or provide a certificate that v /∈ Ci+1 by the above. The
program need only check the certificate and increment the appropriate counter to assure that
all vertices are accounted for.

So we repeatedly use (2) to get certificates for c1 = |C1|, then c2 = |C2|, then c3 = |C3|, and so
on, until we have certified cn−1 = |Cn−1|, and then we use (1) to certify that t /∈ Cn. (All these
certificates can be concatenated together. The logspace verifier only needs to remember the value
of ci after verifying the i’th certificate.)

Corollary 9 For space-constructible s(n) ≥ log n, NSPACE(s(n)) = co-NSPACE(s(n)).
NSPACE(n) = context-sensitive languages is closed under complement.

New diagram:

4

7 TQBF is PSPACE−Complete

On PSPACE:
Recall 3SAT: ∃x ∈ {0, 1}n : ϕ(x) = 1, where ϕ is a propositional formula in 3-CNF.
TQBF: ∃x1∀x2∃x3 . . . Qnxn : ϕ(x1, . . . , xn) = 1, where ϕ is again in 3-CNF. Can be viewed as
a game alternating between an existential and a universal player. Zermelo’s Theorem says that
one of the players has a winning strategy, and the question is which one? It can be shown that
PSPACE↔ complexity of playing games optimally.

Theorem 10 TQBF is PSPACE−complete.

Proof: Next time. (Proof by import future .)

5

