1 Conclusions

Some main points to take away from this course:

- There is strong evidence that randomized algorithms are not significantly more powerful than deterministic algorithms. However, we currently only know how to prove this in general (e.g. \(\text{BPP} = \text{P} \)) based on other conjectures in complexity theory (the existence of sufficiently hard functions in \(\text{E} \)).

- The pseudorandom objects we studied have many other applications in theoretical computer science beyond simply eliminating randomness.

- There are deep connections between the pseudorandom objects, as reviewed more formally below.

We now present all of our main objects of study (expanders, extractors, samplers, list-decodable codes, and black-box PRG constructions) in the ‘list-decoding’ framework we used in Lecture Notes 16. All of these objects can be presented as functions \(\Gamma : [N] \times [D] \to [D] \times [M] \). (In some cases, the output is more naturally viewed as a single element rather than a pair.) For a set \(T \subseteq [D] \times [M] \) and \(\varepsilon \geq 0 \), we define \(\text{LIST}(T; \varepsilon) = \{ x \in [N] : \Pr_y[\Gamma(x, y)] \geq \varepsilon \} \).

Then all of our objects can be presented as follows.

Expanders.

- \(\Gamma(x, y) \) is the \(y \)'th neighbor of \(x \).
- Restrict to \(T \) of size less than \(KA \), where \(A \) is the expansion factor.
- Require that for every such \(T \), \(\vert \text{LIST}(T, 1) \vert < K \).

Extractors.

- \(\Gamma(x, y) = \text{Ext}(x, y) \).
- Consider all sets \(T \).
- Require that for every \(T \), \(\vert \text{LIST}(T; \mu(T) + \varepsilon) \vert < K \), where \(k = \log K \) is (roughly) the min-entropy threshold for the extractor.
Black-Box PRG Constructions.

- \(\Gamma(x, y) = G^x(y) \) is the output of the PRG when \(x \) is the truth-table of the hard function and \(y \) is the seed.
- Consider all sets \(T \).
- Require that each element of list \(\text{LIST}(T, \mu(T) + \varepsilon) \) can be efficiently locally decoded using an oracle to \(T \) and \(k = \log K \) bits of advice.

List-Decodable Codes.

- \(\Gamma(x, y) = (y, \text{Enc}(x)y) \).
- Restrict to \(T \) of the form \(T_r = \{(y, r(y)) : y \in [D]\} \) for a received word \(r : [D] \to [M] \).
- Require that for every \(r \), we have \(|\text{LIST}(T_r, 1/M + \varepsilon)| \leq K \). Here \(K \) is the bound on list size.
- Typically we want decoding to be efficient, in the sense that given \(r \), all of the elements of \(\text{LIST}(T_r, 1/M + \varepsilon) \) can be enumerated in polynomial time.

Black-Box Worst-Case to Average-Case Constructions.

- \(\Gamma(x, y) \) is \(\hat{f}(y) \), where \(\hat{f} \) is the average-case-hard function constructed from the worst-case hard function \(f_x \) whose truth table is \(x \).
- Restrict to \(T \) of the form \(T_r = \{(y, r(y)) : y \in [D]\} \) for a received word \(r : [D] \to [M] \).
- Require that for every \(r \), each element of list \(\text{LIST}(T_r, 1/M + \varepsilon) \) can be efficiently locally decoded using an oracle to \(r \) and \(k = \log K \) bits of advice.

In the rest of these notes, we survey some of the topics that we did not cover.

2 And Beyond

Some major topics we did not cover (to be surveyed in class):

- Are circuit lower bounds necessary for derandomization?
- Extractors and PRGs from Reed–Muller codes.
- Cryptographic pseudorandomness.
- Algebraic pseudorandomness.
- Hardness amplification.
- Derandomizing space-bounded computation.
- Deterministic extractors.