Problem 1. (Concatenated Codes) For codes $\text{Enc}_1 : \{1, \ldots, N\} \rightarrow \Sigma_1^n$ and $\text{Enc}_2 : \Sigma_1 \rightarrow \Sigma_2^n$, their concatenation $\text{Enc} : \{1, \ldots, N\} \rightarrow \Sigma_1^n \Sigma_2^n$ is defined by

$$\text{Enc}(m) = \text{Enc}_2(\text{Enc}_1(m)_1) \text{Enc}_2(\text{Enc}_1(m)_2) \cdots \text{Enc}_2(\text{Enc}_1(m)_n).$$

This is typically used as a tool for reducing alphabet size, e.g. with $\Sigma_2 = \{0,1\}$.

(a). Prove that if Enc_1 has minimum distance δ_1 and Enc_2 has minimum distance δ_2, then Enc has minimum distance at least $\delta_1 \delta_2$.

(b). Prove that if Enc_1 is $(1 - \varepsilon_1, \ell_1)$ list-decodable and Enc_2 is (δ_2, ℓ_2) list-decodable, then Enc is $((1 - \varepsilon_1 \ell_2) \cdot \delta_2, \ell_1 \ell_2)$ list-decodable.

(c). By concatenating a Reed–Solomon code and a Hadamard code, show that for every $n \in \mathbb{N}$ and $\varepsilon > 0$, there is an explicit code $\text{Enc} : \{0,1\}^n \rightarrow \{0,1\}^{\hat{n}}$ with blocklength $\hat{n} = O(n^2/\varepsilon^2)$ with minimum distance at least $1/2 - \varepsilon$. (Throughout this problem, measure running time as a function of \hat{n} to handle the case that ε is smaller than $1/poly(n)$.) Furthermore, show that with blocklength $\hat{n} = poly(n,1/\varepsilon)$, we can obtain a code that is $(1/2 - \varepsilon, poly(1/\varepsilon))$ list-decodable in polynomial time. (Hint: the inner code can be decoded by brute force.)

Problem 2. (List-decoding Reed–Solomon Codes) You may ignore round-off errors in your solution to this problem.

(a). Show that there is a polynomial-time algorithm for list-decoding the Reed-Solomon codes of degree d over \mathbb{F}_q up to distance $1 - \sqrt{2d/q}$, improving the $1 - 2\sqrt{d/q}$ bound from lecture. (Hint: do not use fixed upper bounds on the individual degrees of the interpolating polynomial $Q(X,Y)$, but rather allow as many monomials as possible.)

(b). (*) Improve the list-decoding radius further to $1 - \sqrt{d/q}$ by using the ‘multiple-roots’ trick described in Section 4 of Lecture Notes 15.
Problem 3. (Codes vs. Hashing) Given any code $\text{Enc} : [N] \rightarrow [M]^n$, we can obtain a family of hash functions $\mathcal{H} = \{h_i : [N] \rightarrow [M] \}_{i \in [n]}$ defined by $h_i(x) = \text{Enc}(x)_i$, and conversely.

(a). Show that Enc has minimum distance at least δ iff \mathcal{H} has collision probability at most $1 - \delta$. That is, for all $x \neq y \in [N]$, we have $\Pr_{i}[h_i(x) = h_i(y)] \leq 1 - \delta$. (This a generalization of the definition of universal hash functions, which correspond to the case that $\delta = 1 - 1/M$.)

(b). It was shown in section that the Leftover Hash Lemma extends to families of functions with low collision probability; specifically if a family \mathcal{H} with range $[M]$ has collision probability at most $(1 + \varepsilon^2)/M$, then $\text{Ext}(x, h) = (h, h(x))$ is a (k, ε) extractor for $k = m + 2 \log(1/\varepsilon) + O(1)$, where $m = \log M$. Use this to prove the Johnson Bound for small alphabets: if a code $\text{Enc} : [N] \rightarrow [M]^n$ has minimum distance at least $1 - 1/M - \gamma/M$, then it is $(1 - 1/M - \sqrt{\gamma}, O(M/\gamma))$ list-decodable.

Problem 4. (Twenty Questions) In the game of 20 questions, an oracle has an arbitrary secret $s \in \{0, 1\}^n$ and the aim is to determine the secret by asking the oracle as few yes/no questions about s as possible. It is easy to see that n questions are necessary and sufficient. Here we consider a variant where the oracle has two secrets $s_1, s_2 \in \{0, 1\}^n$, and can adversarially decide to answer each question according to either s_1 or s_2. That is, for a question $f : \{0, 1\}^n \rightarrow \{0, 1\}$, the oracle may answer with either $f(s_1)$ or $f(s_2)$. Here it turns out to be impossible to pin down either of the secrets with certainty, no matter how many questions we ask, but we can hope to compute a small list L of secrets such that $|L \cap \{s_1, s_2\}| \neq 0$. (In fact, $|L|$ can be made as small as 2.) This variant of twenty questions apparently arose from Internet routing algorithms used by Akamai.

(a). Let $\text{Enc} : \{0, 1\}^n \rightarrow \{0, 1\}^n$ be a code such that that every two codewords in Enc agree in at least a $1/2 - \varepsilon$ fraction of positions and that Enc has a polynomial-time $(1/4 + \varepsilon, \ell)$ list-decoding algorithm. Show how to solve the above problem in polynomial time by asking the \hat{n} questions $\{f_i\}$ defined by $f_i(x) = \text{Enc}(x)_i$.

(b). Taking Enc to be the code constructed in Problem 1, deduce that $\hat{n} = \text{poly}(n)$ questions suffices.

Problem 5. (Limitations on the Seed Length) Prove that a cryptographic pseudorandom generator cannot have seed length $\ell(n) = O(\log n)$. Note where your proof fails if we only require that it is an $(n^d, 1/n^d)$ pseudorandom generator for a fixed constant d.