
Contents

5 Randomness Extractors 1

5.1 Motivation and Definition 1
5.2 Connections with Hash Functions and Expanders 8
5.3 Constructing Extractors 12
5.4 More Connections with Expanders 19
5.5 Exercises 22

References 25

ii

5

Randomness Extractors

We now move on to the second major pseudorandom object of this survey: randomness extractors.
We begin by discussing the original motivation for extractors, which was to simulate randomized
algorithms with sources of biased and correlated bits. This motivation is still compelling, but ex-
tractors have taken on a much wider significance in the years since they were introduced. They
have found numerous applications in theoretical computer science beyond this initial motivating
one, in areas from cryptography to distributed algorithms to metric embeddings. More importantly
from the perspective of this survey, they have played a major unifying role in the theory of pseu-
dorandomness. Indeed, the links between the various pseudorandom objects we will study in this
survey (expander graphs, randomness extractors, list-decodable codes, pseudorandom generators,
samplers) were all discovered through work on extractors.

5.1 Motivation and Definition

5.1.1 Deterministic Extractors

Typically, when we design randomized algorithms or protocols, we assume that all algo-
rithms/parties have access to sources of perfect randomness, i.e. bits that are unbiased and com-
pletely independent. However, when we implement these algorithms, the physical sources of ran-
domness to which we have access may contain biases and correlations. For example, we may use
low-order bits of the system clock, the user’s mouse movements, or a noisy diode based on quantum
effects. While these sources may have some randomness in them, the assumption that the source is
perfect is a strong one, and thus it is of interest to try and relax it.

Ideally, what we would like is a compiler that takes any algorithm A that works correctly when
fed perfectly random bits Um, and produces a new algorithm A′ that will work even if it is fed
random bits X ∈ {0, 1}n that come from a “weak” random source. For example, if A is a BPP
algorithm, then we would like A′ to also run in probabilistic polynomial time. One way to design
such compilers is to design a randomness extractor Ext : {0, 1}n → {0, 1}m such that Ext(X) is
distributed uniformly in {0, 1}m.

1

IID-Bit Sources (aka Von Neumann Sources). A simple version of this question was al-
ready considered by von Neumann. He looked at sources that consist of boolean random variables
X1, X2, . . . , Xn ∈ {0, 1} that are independent but biased. That is, for every i, Pr [Xi = 1] = δ for
some unknown δ. How can such a source be converted into a source of independent, unbiased bits?
Von Neumann proposed the following extractor: Break all the variables in pairs and for each pair
output 0 if the outcome was 01, 1 if the outcome was 10 , and skip the pair if the outcome was 00
or 11. This will yield an unbiased random bit after 1/δ pairs on average.

Independent-Bit Sources. Lets now look at a bit more interesting class of sources in which
all the variables are still independent but the bias is no longer the same. Specifically, for every i,
Pr [Xi = 1] = δi and 0 < δ ≤ δi ≤ 1− δ. How can we deal with such a source?

Let’s be more precise about the problems we are studying. A source on {0, 1}n is simply a
random variable X taking values in {0, 1}n. In each of the above examples, there is an implicit
class of sources being studied. For example, IndBitsn,δ is the class of sources X on {0, 1}n where
the bits Xi are independent and satisfy δ ≤ Pr[Xi = 1] ≤ 1 − δ. We could define IIDBitsn,δ
to be the same with the further restriction that all of the Xi’s are identically distributed, i.e.
Pr[Xi = 1] = Pr[Xj = 1] for all i, j, thereby capturing von Neumann sources.

Definition 5.1 (deterministic extractors). 1 Let C be a class of sources on {0, 1}n. An ε-
extractor for C is a function Ext : {0, 1}n → {0, 1}m such that for every X ∈ C, Ext(X) is “ε-close”
to Um.

Note that we want a single function Ext that works for all sources in the class. This captures the
idea that we do not want to assume we know the exact distribution of the physical source we are
using, but only that it comes from some class. For example, for IndBitsn,δ, we know that the bits
are independent and none are too biased, but not the specific bias of each bit. Note also that we
only allow the extractor one sample from the source X. If we want to allow multiple independent
samples, then this should be modelled explicitly in our class of sources; ideally we would like to
minimize the independence assumptions used.

We still need to define what we mean for the output to be ε-close to Um.

Definition 5.2. For random variables X and Y taking values in U , their statistical difference (also
known as variation distance) is ∆(X,Y) = maxT⊆U |Pr[X ∈ T]− Pr[Y ∈ T]|. We say that X and
Y are ε-close if ∆(X,Y) ≤ ε.

Intuitively, any event in X happens in Y with the same probability ±ε. This is really the most
natural measure of distance for probability distributions (much more so than the `2 distance we
used in the study of random walks). In particular, it satisfies the following natural properties.

Lemma 5.3 (properties of statistical difference). Let X,Y, Z,X1, X2, Y1, Y2 be random vari-
ables taking values in a universe U . Then,

1 Such extractors are called deterministic or seedless to contrast with the probabilistic or seeded randomness extractors we will

see later.

2

(1) ∆(X,Y) ≥ 0, with equality iff X and Y are identically distributed,
(2) ∆(X,Y) ≤ 1, with equality iff X and Y have disjoint supports,
(3) ∆(X,Y) = ∆(Y,X),
(4) ∆(X,Z) ≤ ∆(X,Y) + ∆(X,Z),
(5) for every function f , we have ∆(f(X), f(Y)) ≤ ∆(X,Y),
(6) ∆((X1, X2), (Y1, Y2)) ≤ ∆(X1, Y1) + ∆(X2, Y2) if X1 and X2, as well as Y1 and Y2, are

independent, and
(7) ∆(X,Y) = 1

2 · |X − Y |1, where | · |1 is the `1 distance. (Thus, X is ε-close to Y iff we can
transform X into Y by “shifting” at most an ε fraction of probability mass.)

We now observe that extractors according to this definition give us the “compilers” we want.

Proposition 5.4. Let A(w; r) be a randomized algorithm such that A(w;Um) has error probability
at most γ, and let Ext : {0, 1}n → {0, 1}m be an ε-extractor for a class C of sources on {0, 1}n.
Define A′(w;x) = A(w; Ext(x)). Then for every source X ∈ C, A′(w;X) has error probability at
most γ + ε.

This application identifies some additional properties we’d like from our extractors. We’d like
the extractor itself to be efficiently computable (e.g. polynomial time). In particular, to get m
almost-uniform bits out, we should need at most n = poly(m) bits bits from the weak random
source.

We can cast our earlier extractor for sources of independent bits in this language:

Proposition 5.5. For every constant δ > 0, every n,m ∈ N, there is a polynomial-time computable
function Ext : {0, 1}n → {0, 1}m that is an ε-extractor for IndBitsn,δ, with ε = m · 2−Ω(n/m).

In particular, taking n = m2, we get exponentially small error with a source of polynomial
length.

Proof. Ext breaks the source into m blocks of length bn/mc and outputs the parity of each block.

Unpredictable-Bit Sources (aka Santha–Vazirani Sources). Another interesting class of
sources, which looks similar to the previous example is the class UnpredBitsn,δ of unpredictable-bit
sources. These are the sources that for every i, every x1, . . . , xn ∈ {0, 1} and some constant δ > 0,
satisfy

δ ≤ Pr [Xi = 1 | X1 = x1, X2 = x2, . . . , Xi−1 = xi−1] ≤ 1− δ

The parity extractor used above will be of no help with this source since the next bit could be
chosen in a way that the parity will be equal to 1 with probability δ. Problem 5.4 shows that there
does not exist any nontrivial extractor for these sources:

3

Proposition 5.6. For every n ∈ N, δ > 0, and fixed extraction function Ext : {0, 1}n → {0, 1}
there exists a source X ∈ UnpredBitsn,δ such that either Pr [Ext(X) = 1] ≤ δ or Pr [Ext(X) = 1] ≥
1− δ. That is, there is no ε-extractor for UnpredBitsn,δ for ε < 1/2− δ.

Nevertheless, as we will see, the answer to the question whether we can simulate BPP algorithms
with unpredictable sources will be “yes”! Indeed, we will even be able to handle a much more general
class of sources, introduced in the next section.

5.1.2 Entropy Measures and General Weak Sources

Intuitively, to extract m almost-uniform bits from a source, the source must have at least “m bits
of randomness” in it (e.g. its support cannot be much smaller than 2m). Ideally, this is all we would
like to assume about a source. Thus, we need some measure of how much randomness is in a random
variable; this can be done using various notions of entropy described below.

Definition 5.7 (entropy measures). Let X be a random variable. Then

• the Shannon entropy of X is:

HSh(X) = E
x

R←X

[
log

1
Pr [X = x]

]
.

• the Rényi entropy of X is:

H2(X) = log

(
1

E
x

R←X [Pr [X = x]]

)
= log

1
CP(X)

, and

• the min-entropy of X is:

H∞(X) = min
x

{
log

1
Pr [X = x]

}
,

where all logs are base 2.

All the three measures satisfy the following properties we would expect from a measure of
randomness:

Lemma 5.8 (properties of entropy). For each of of the entropy measures H ∈ {HSh ,H2,H∞}
and random variables X,Y , we have:

• H(X) ≥ 0, with equality iff X is supported on a single element,
• H(X) ≤ log |Supp(X)|, with equality iff X is uniform on Supp(X),
• if X,Y are independent, then H((X,Y)) = H(X) + H(Y),
• for every deterministic function f , we have H(f(X)) ≤ H(X), and
• for every X, we have H∞(X) ≤ H2(X) ≤ HSh(X).

4

To illustrate the differences between the three notions, consider a source X such that X = 0n

with probability 0.99 and X = Un with probability 0.01. Then HSh(X) ≥ 0.01n (contribution from
the uniform distribution), H2(X) ≤ log(1/.992) < 1 and H∞(X) ≤ log(1/.99) < 1 (contribution
from 0n). Note that even though X has Shannon entropy linear in n, we cannot expect to extract
bits that are close to uniform or carry out any useful randomized computations with one sample
from X, because it gives us nothing useful 99% of the time. Thus, we should use the stronger
measures of entropy given by H2 or H∞.

Then why is Shannon entropy so widely used in information theory results? The reason is that
such results typically study what happens when you have many independent samples from the
source. In such a case, it turns out that the the source is “close” to one where the min-entropy
is roughly equal to the Shannon entropy. Thus the distinction between these entropy measures
becomes less significant. (Recall that we only allow one sample from the source.) Moreover, Shannon
entropy satisfies many nice identities that make it quite easy to work with. Min-entropy and Renyi
entropy are much more delicate.

We will consider the task of extracting randomness from sources where all we know is a lower
bound on the min-entropy:

Definition 5.9. X is a k-source is H∞(X) ≥ k, i.e., if Pr [X = x] ≤ 2−k.

A typical setting of parameters is k = δn for some fixed δ, e.g., 0.01. We call δ the min-entropy
rate. Some different ranges that are commonly studied (and are useful for different applications):
k = polylog(n), k = nγ for a constant γ ∈ (0, 1), k = δn for a constant δ ∈ (0, 1), and k = n−O(1).
The middle two (k = nγ and k = δn) are the most natural for simulating randomized algorithms
with weak random sources.

Examples of k-sources:

• k random and independent bits, together with n − k fixed bits (in an arbitrary order).
These are called oblivious bit-fixing sources.
• k random and independent bits, and n−k bits that depend arbitrarily on the first k bits.

These are called adaptive bit-fixing sources.
• Unpredictable-bit sources with bias parameter δ. These are k-sources with k = log(1/(1−
δ)n) = Θ(δn).
• Uniform distribution on S ⊂ {0, 1}n with |S| = 2k. These are called flat k-sources.

It turns out that flat k-sources are really representative of general k-sources.

Lemma 5.10. Every k-source is a convex combination of flat k-sources (provided that 2k ∈ N),
i.e., X =

∑
piXi with 0 ≤ pi ≤ 1,

∑
pi = 1 and all the Xi are flat k-sources.

Proof. [Sketch] Consider each source on [N] (recall that N = 2n) as a vector X ∈ RN . Then X

is a k-source if and only if X(i) ∈ [0, 2−k] for every i ∈ [N] and
∑

iX(i) = 1. The set of vectors
X satisfying these linear inequalities is a polytope. By basic linear programming theory, all of the
points in the polytope are convex combinations of its vertices, which are defined to be the points

5

that make a maximal subset of the inequalities tight. By inspection, the vertices of the polytope
of k-sources are those sources where X(i) = 2−k for 2k values of i and X(i) = 0 for the remaining
values of i; these are simply the k-sources.

By Lemma 5.10, we can think of any k-source as being obtained by first selecting a flat k-source
Xi according to some distribution (given by the pi’s) and then selecting a random sample from Xi.
This means that if we can compile probabilistic algorithms to work with flat k-sources, then we can
compile them to work with any k-source.

5.1.3 Seeded Extractors

Proposition 5.6 tell us that it impossible to have deterministic extractors for unpredictable sources.
Here we consider k-sources, which are more general than unpredictable sources, and hence it is
also impossible to have deterministic extractors for them. The impossibility result for k-sources is
stronger and simpler to prove.

Proposition 5.11. For any Ext : {0, 1}n → {0, 1} there exists an (n−1)-source X so that Ext(X)
is constant.

Proof. There exists b ∈ {0, 1} so that |Ext−1(b)| ≥ 2n/2 = 2n−1. Then let X be the uniform
distribution on Ext−1(b).

On the other hand, if we reverse the order of quantifiers, allowing the extractor to depend on
the source, it is easy to see that good extractors exist and in fact a randomly chosen function will
be a good extractor with high probability.

Proposition 5.12. For every n, k,m ∈ N, every ε > 0, and every flat k-source X, if we choose
a random function Ext : {0, 1}n → {0, 1}m with m = k − 2 log(1/ε) − O(1), then Ext(X) will be
ε-close to Um with probability 1− 2−Ω(Kε2), where K = 2k.

(We will commonly use the convention that capital variables are 2 raised to the power of the
corresponding lowercase variable, such as K = 2k above.)

Proof. Choose our extractor randomly. We want it to have following property: for all T ⊆ [M],
|Pr[Ext(X) ⊆ T] − Pr[Um ⊆ T | ≤ ε. Equivalently, |{x ∈ Supp(X) : Ext(x) ∈ T}|/K differs from
the density µ(T) by at most ε. For each point x ∈ Supp(X), the probability that Ext(x) ∈ T is
µ(T), and these events are independent. By the Chernoff Bound, for each fixed T , this condition
holds with probability at least 1− 2−Ω(Kε2). Then the probability that condition is violated for at
least one T is at most 2M2−Ω(Kε2), which is less than 1 for m = k − 2 log(1/ε)−O(1).

Note that the failure probability is doubly-exponentially small in k. Naively, one might hope
that we could get an extractor that’s good for all flat k-sources by a union bound. But the number
of flat k-sources is

(
N
K

)
≈ NK (where N = 2n), which is unfortunately a larger double-exponential

in k. We can overcome this gap by allowing the extractor to be “slightly” probabilistic, i.e. allowing
the extractor a seed consisting of a small number of truly random bits in addition to the weak
random source. We can think of this seed of truly random bits as a random choice of an extractor
from family of extractors. This leads to the following crucial definition:

6

Definition 5.13 (seeded extractors). Extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-
extractor if for every k-source X on {0, 1}n, Ext(X,Ud) is ε-close to Um.

We want to give a construction that minimizes d and maximizes m. We prove the following
theorem.

Theorem 5.14. For every n ∈ N, k ∈ [0, n] and ε > 0, there exists a (k, ε)-extractor Ext :
{0, 1}n×{0, 1}d → {0, 1}m with m = k+d−2 log(1/ε)−O(1) and d = log(n−k)+2 log(1/ε)+O(1).

One setting of parameters to keep in mind (for our application of simulating randomized algo-
rithms with a weak source) is k = δn, with δ a fixed constant (e.g. δ = 0.01), and ε a fixed constant
(e.g. ε = 0.01).

Proof. We use the Probabilistic Method. By Lemma 5.10, it suffices for Ext to work for flat k-
sources. Choose the extractor Ext at random. Then the probability that the extractor fails is not
more than number of flat k-sources times times the probability Ext fails for a fixed flat k-source. By
the above proposition, the probability of failure for a fixed flat k-source is at most 2−Ω(KDε2), since
(X,Ud) is a flat (k+ d)-source) and m = k+ d− 2 log(1

ε)−O(1). Thus the total failure probability
is at most (

N

K

)
· 2−Ω(KDε2) ≤

(
Ne

K

)K
2−Ω(KDε2).

The latter expression is less than 1 if Dε2 ≥ c log(Ne/K) = c · (n− k) + c′ for constants c, c′.This
is equivalent to d = log(n− k) + 2 log(1

ε) +O(1).

It turns out that both bounds (on m and d) are individually tight up to the O(1) terms.
Recall that our motivation for extractors was to simulate randomized algorithms given only a

weak random source, so allowing a truly random seed may seem to defeat the purpose. However, if
the seed is of logarithmic length as in Theorem 5.14, then instead of selecting it randomly, we can
enumerate all possibilities for the seed and take a majority vote.

Proposition 5.15. Let A(w; r) be a randomized algorithm such that A(w;Um) has error proba-
bility at most γ, and let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-extractor. Define

A′(w;x) = maj
y∈{0,1}d

{A(w; Ext(x, y))}.

Then for every k-source X on {0, 1}n, A′(w;X) has error probability at most 2(γ + ε).

Proof. The probability that A(w; Ext(X,Ud)) is incorrect is not more than probability A(w;Um)
is incorrect plus ε, i.e. γ + ε, by the definition of statistical difference. Then the probability that
majy A(w,Ext(X, y)) is incorrect is at most 2 · (γ + ε), because each error of majy A(w; Ext(x, y))
corresponds to A(w; Ext(x, Ud)) erring with probability at least 1/2.

7

Note that the enumeration incurs a 2d factor slowdown in the simulation. Thus, for this applica-
tion, we want to construct extractors where (a) d = O(log n); (b) Ext is computable in polynomial
time; and (c) m = kΩ(1).

We remark that the error probability in Proposition 5.15 can actually be made exponentially
small (say 2−t) by using an extractor that is designed for min-entropy roughly k − t instead of k.

We note that even though seeded extractors suffice for simulating randomized algorithms with
only a weak source, they do not suffice for all applications of randomness in theoretical computer
science. The trick of eliminating the random seed by enumeration does not work, for example, in
cryptographic applications of randomness. Thus the study of deterministic extractors for restricted
classes of sources remains a very interesting and active research direction. We, however, will focus on
seeded extractors, due to their many applications and their connections to the other pseudorandom
objects we are studying.

5.2 Connections with Hash Functions and Expanders

As mentioned earlier, extractors have played a unifying role in the theory of pseudorandomness,
through their close connections with a variety of other pseudorandom objects. In this section, we will
see two of these connections. Specifically, how by reinterpreting them appropriately, extractors can
be viewed as providing families of hash functions, and as being a certain type of highly expanding
graphs.

5.2.1 Extractors as Hash Functions

One of the results we saw last time says that for any subset S ⊆ [N] of size K, if we choose a
completely random hash function h : [N] → [M] for M � K, then h will map the elements of
S almost-uniformly to [M]. Equivalently, if we let H be distributed uniformly over all functions
h : [N] → [M] and X be uniform on the set S, then (H,H(X)) is statistically close to (H,U[M]),
where we use the notation UT to denote the uniform distribution on a set T . Can we use a smaller
family of hash functions than the set of all functions h : [N]→ [M]? This gives rise to the following
variant of extractors.

Definition 5.16 (strong extractors). Extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong
(k, ε)-extractor if for every k-source X on {0, 1}n, (Ud,Ext(X,Ud)) is ε-close to (Ud, Um). Equiva-
lently, Ext′(x, y) = (y,Ext(x, y)) is a standard (k, ε)-extractor.

The nonconstructive existence proof from last time can be extended to establish the existence
of very good strong extractors.

Theorem 5.17. For every n, k ∈ N and ε > 0 there exists a strong (k, ε)-extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m with m = k − 2 log(1

ε)−O(1) and d = log(n− k) + 2 log(1
ε) +O(1).

Note that the output length m ≈ k instead of m ≈ k + d; intuitively a strong extractor needs
to extract randomness that is independent of the seed and thus can only get the k bits from the
source.

8

We see that strong extractors can be viewed as very small families of hash functions having
the almost-uniform mapping property mentioned above. Indeed, our first explicit construction of
extractors is obtained by using pairwise independent hash functions.

Theorem 5.18 (Leftover Hash Lemma). If H = {h : {0, 1}n → {0, 1}m} is a pairwise indepen-
dent (or even 2-universal) family of hash functions where m = k − 2 log(1

ε), then Ext(x, h) def= h(x)
is a strong (k, ε)-extractor. Equivalently, Ext(x, h) = (h, h(x)) is a standard (k, ε)-extractor.

Note that the seed length is d = O(n), i.e., the number of random bits required to choose
h

R←H. This is far from optimal; for the purposes of simulating randomized algorithms we would
like d = O(log n). However, the output length of the extractor is m = k−2 log(1

ε), which is optimal
up to an additive constant.

Proof. Let X be an arbitrary k-source on {0, 1}n, H as above, and H R←H. Let d be the seed length.
We show that (H,H(X)) is ε-close to Ud × Um in the following three steps:

(1) We show that the collision probability of (H,H(X)) is close to that of Ud × Um.
(2) We note that this is equivalent to saying that the `2 distance between (H,H(X)) and

Ud × Um is small.
(3) Then we deduce that the statistical difference is small, by recalling that the statistical

difference equals half of the `1 distance, which can be (loosely) bounded by the `2 distance.

Proof of 1: By definition, CP(H,H(X)) = Pr [(H,H(X)) = (H ′, H ′(X ′))], where (H ′, X ′) is
independent of and identically distributed to (H,X). Note that (H,H(X)) = (H ′, H ′(X)) if and
only if H = H ′ and either X = X ′ or X 6= X ′ but H(X) = H(X ′). Thus

CP(H,H(X)) = CP(H) ·
(

CP(X) + Pr
[
H(X) = H(X ′) | X 6= X ′

])
≤ 1

D

(
1
K

+
1
M

)
=

1 + ε2

DM
.

To see the penultimate inequality, note that CP(H) = 1/D because there are D hash functions,
CP(X) ≤ 1/K because H∞(X) ≥ k, and Pr [H(X) = H(X ′) |X 6= X ′] = 1/M by pairwise inde-
pendence.

Proof of 2:

‖(H,H(X))− Ud × Um‖2 = CP(H,H(X))− 1
DM

≤ 1 + ε2

DM
− 1
DM

=
ε2

DM
.

Proof of 3: Recalling that the statistical difference between two random variables X and Y is

9

equal to 1
2 |X − Y |1, we have:

∆((H,H(X)), Ud × Um) =
1
2
|(H,H(X))− Ud × Um|1

≤
√
DM

2
‖(H,H(X))− Ud × Um‖

≤
√
DM

2
·
√

ε2

DM

=
ε

2
.

Thus, we have in fact obtained a strong (k, ε/2)-extractor.

The proof above actually shows that Ext(x, h) = h(x) extracts with respect to collision prob-
ability, or equivalently, with respect to the `2-norm. This property may be expressed in terms of
Renyi entropy H2(Z) def= log(1/CP(Z)). Indeed, we can define Ext : {0, 1}n × {0, 1}d −→ {0, 1}m
to be a (k, ε) Renyi-entropy extractor if H2(X) ≥ k implies H2(Ext(X,Ud)) ≥ m − ε (or
H2(Ud,Ext(X,Ud)) ≥ m+ d− ε for strong Renyi-entropy extractors). Then the above proof shows
that pairwise-independent hash functions yield strong Renyi-entropy extractors.

In general, it turns out that an extractor with respect to Renyi entropy must have seed length
d ≥ Ω(min{m,n−k}) (as opposed to d = O(log n)); this explains why the seed length in the above
extractor is large.

5.2.2 Extractors vs. Expanders

Extractors have a natural interpretation as graphs. Specifically, we can interpret an extractor Ext :
{0, 1}n × {0, 1}d −→ {0, 1}m as the neighbor function of a bipartite multigraph G = ([N], [M], E)
with N = 2n left-vertices, M = 2m right-vertices, and left-degree D = 2d,2 where the r’th neighbor
of left-vertex u is Ext(u, r). Typically n � m, so the graph is very unbalanced. It turns out that
the extraction property of Ext is related to various “expansion” properties of G. In this section, we
explore this relationship.

Let Ext : {0, 1}n×{0, 1}d −→ {0, 1}m be a (k, ε)-extractor and G = ([N], [M], E) the associated
graph. Recall that it suffices to examine Ext with respect to flat k-sources: in this case, the extractor
property says that given a subset S of size k on the left, a random neighbor of a random element
of S should be close to uniform on the right. In particular, if S ⊆ [N] is a subset on the left of
size k, then |N(S)| ≥ (1− ε)M . This property is just like vertex expansion, except that it ensures
expansion only for sets of size exactly K, not any size ≤ K. We call such a graph an (= K,A)
vertex expander. Indeed, this gives rise to the following weaker variant of extractors.

Definition 5.19 (dispersers). A function Disp : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-disperser
if for every k-source X on {0, 1}n, Disp(X,Ud) has a support of size at least (1− ε) · 2m.

While extractors can be used to simulate BPP algorithms with a weak random source, dispersers
can be used to simulate RP algorithms with a weak random source.

Then, we have:

2 This connection is the reason we use d to denote the seed length of an extractor.

10

Proposition 5.20. A function Disp : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-disperser iff the corre-
sponding bipartite multigraph G = ([N], [M], E) with left-degree D is an (= K,A) vertex expander
for A = (1− ε) ·M/K.

Note that extractors and dispersers are interesting even when M � K, so the expansion pa-
rameter A may be less than 1. Indeed, A < 1 is interesting for vertex “expanders” when the
graph is highly imbalanced. Still, for an optimal extractor, we have M = Θ(ε2KD) (because
m = k + d− 2 log(1/ε)−Θ(1)), which corresponds to expansion factor A = Θ(ε2D). (An optimal
disperser actually gives A = Θ(D/ log(1/ε)).) Note this is smaller than the expansion factor of D/2
in Ramanujan graphs and D − O(1) in random graphs; the reason is that those expansion factors
are for “small” sets, whereas here we are asking for sets to expand to almost the entire right-hand
side.

Now let’s look for a graph-theoretic property that is equivalent to the extraction property. Ext
is a (k, ε)-extractor iff for every set S ⊆ [N] of size K,

∆(Ext(US , U[D]), U[M]) = max
T⊆[M]

∣∣∣Pr
[
Ext(US , U[D]) ∈ T

]
− Pr

[
U[M] ∈ T

]∣∣∣ ≤ ε,
where US denotes the uniform distribution on S. This inequality may be expressed in graph-theoretic
terms as follows. For every set T ⊆ [M],∣∣∣Pr

[
Ext(US , U[D]) ∈ T

]
− Pr

[
U[M] ∈ T

]∣∣∣ ≤ ε
⇔

∣∣∣∣e(S, T)
|S|D

− |T |
M

∣∣∣∣ ≤ ε
⇔

∣∣∣∣e(S, T)
ND

− µ(S)µ(T)
∣∣∣∣ ≤ εµ(S),

where e(S, T) is the number of edges from S to T .
Thus, we have:

Proposition 5.21. Ext is a (k, ε)-extractor iff the corresponding bipartite multigraph G =
([N], [M], E) with left-degree D has the property that |e(S, T)/ND − µ(S)µ(T)| ≤ εµ(S) for every
S ⊆ [N] of size K and every T ⊆ [M].

Note that this is very similar to the Expander Mixing Lemma (Lemma 4.15) which states that
if a graph G has spectral expansion λ, then for all sets S, T ⊆ [N] we have∣∣∣∣e(S, T)

ND
− µ(S)µ(T)

∣∣∣∣ ≤ λ√µ(S)µ(T).

It follows that if λ
√
µ(S)µ(T) ≤ εµ(S) for all S ⊆ [N] of size K and all T ⊆ [N], then G gives rise

to a (k, ε)-extractor (by turning G into a D-regular bipartite graph with N vertices on each side in
the natural way). It suffices for λ ≤ ε ·

√
K/N for this to work.

We can use this connection to turn our explicit construction of spectral expanders into an
explicit construction of extractors. To achieve λ ≤ ε ·

√
K/N , we can take an appropriate power of

11

a constant-degree expander. Specifically, if G0 is a D0-regular expander on N vertices with bounded
second eigenvalue, we can consider the tth power of G0, G = Gt0, where t = O(log((1/ε)

√
N/K)) =

O(n − k + log(1/ε)). The degree of G is D = Dt
0, so d = logD = O(t). This yields the following

result:

Theorem 5.22. For every n, k ∈ N and ε > 0, there is an explicit (k, ε)-extractor Ext : {0, 1}n ×
{0, 1}d −→ {0, 1}n with d = O(n− k + log(1/ε)).

Note that the seed length is significantly better than in the construction from pairwise-
independent hashing when k is close to n, say k ≥ n − O(log n) (i.e. K = Ω(N/ logN)). The
output length is just n, which is much larger than the typical output length for extractors (usually
m� n). Using a Ramanujan graph (rather than an arbitrary constant-degree expander), the seed
length can be improved to d = n − k + 2 log(1/ε) + O(1), which yields an optimal output length
n = k + d− 2 log(1/ε)−O(1).

Another way of proving Theorem 5.22 is to use the fact that a random step on an expanders
decreases the `2 distance to uniform, like in the proof of the Leftover Hash Lemma. This analysis
shows that we actually get a Renyi-entropy extractor; and thus explains the large seed length
d ≈ n− k.

The following table summarizes the main differences between “classic” expanders and extractors.

Expanders Extractors

Measured by vertex or spectral expansion Measured by min-entropy/statistical difference
Typically constant degree Typically logarithmic or poly-logarithmic degree
All sets of size at most K expand All sets of size exactly (or at least) K expand
Typically balanced Typically unbalanced, bipartite graphs

Fig. 5.1 Differences between “classic” expanders and extractors

5.3 Constructing Extractors

In the previous sections, we have seen that very good extractors exist — extracting almost all of
the min-entropy from a source with only a logarithmic seed length. But the explicit constructions
we have seen (via pairwise-independent hashing and spectral expanders) are still quite far from
optimal in seed length, and in particular cannot be used to give a polynomial-time simulation of
BPP with a weak random source.

Fortunately, much better extractor constructions are known — ones that extract any constant
fraction of the min-entropy using a logarithmic seed length, or extract all of the min-entropy using a
polylogarithmic seed length. In this lecture, we will see how to construct such extractors (assuming
a certain condenser construction that we will see in Chapter 6).

5.3.1 Block Sources

We introduce a useful model of sources that has more structure than an arbitrary k-source:

12

Definition 5.23. X = (X1, X2, . . . , Xt) is a (k1, k2, . . . , kt) block source if for every x1, . . . , xi−1,
Xi|X1=x1,...,Xi−1=xi−1 is a ki-source. If k1 = k2 = · · · = kt = k, then we call X a t× k block source.

Note that a (k1, k2, . . . , kt) block source is also a (k1 + · · · + kt)-source, but it comes with
additional structure — each block is guaranteed to contribute some min-entropy. Thus, extracting
randomness from block sources is an easier task than extracting from general sources.

The study of block sources has a couple of motivations.

• They are a natural and plausible model of sources in their own right. Indeed, they are
more general than unpredictable-bit sources of Section 5.1.1: if X ∈ UnpredBitsn,δ is
broken into t blocks of length ` = n/t, then the result is a t × δ′` block source, where
δ′ = log(1/(1− δ)).
• We can construct extractors for general weak sources by converting a general weak source

into a block source. We will see how to do this later in the lecture.

We now illustrate how extracting from block sources is easier than from general sources. The
idea is that we can extract almost-uniform bits from later blocks that are essentially independent of
earlier blocks, and hence use these as a seed to extract more bits from the earlier blocks. Specifically,
for the case of two blocks we have the following:

Lemma 5.24. Let Ext1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 be a (k1, ε1)-extractor, and Ext2 :
{0, 1}n2 × {0, 1}d2 → {0, 1}m2 be a (k2, ε2)-extractor with m2 ≥ d1. Define Ext′((x1, x2), y2) =
(Ext1(x1, y1), z2), where (y1, z2) is obtained by partitioning Ext2(x2, y2) into a prefix y1 of length
d1 and a suffix z2 of length m2 − d1.

Then for every (k1, k2) block source X = (X1, X2) taking values in {0, 1}n1 × {0, 1}n2 , it holds
that Ext′(X,Ud2) is (ε1 + ε2)-close to Um1 × Um2−d1 .

Proof. Since X2 is a k2-source conditioned on any value of X1 and Ext2 is a (k2, ε2)-extractor, it
follows that (X1, Y1, Z2) = (X1,Ext2(X2, Ud2)) is ε2-close to (X1, Um2) = (X1, Ud1 , Um2−d1).

Thus, (Ext1(X1, Y1), Z2) is ε2-close to (Ext1(X1, Ud1), Um2−d1), which is ε1-close to
(Um1 , Um2−d1) because X1 is a k1-source and Ext1 is a (k1, ε1)-extractor.

By the triangle inequality, Ext′(X,Ud2) = (Ext1(X1, Y1), Z2) is (ε1 +ε2)-close to (Um1 , Um2−d1).

The benefit of this composition is that the seed length of Ext′ depends only one of the extractors
(namely Ext2) rather than being the sum of the seed lengths. (If this is reminiscent of the zig-zag
product, it is because they are closely related — see Section 5.4.2). Thus, we get to extract from
multiple blocks at the “price of one.” Moreover, since we can take d1 = m2, which is typically much
larger than d2, the seed length of Ext′ can even be smaller than that of Ext1.

The lemma extends naturally to extracting from many blocks:

Lemma 5.25. For i = 1, . . . , t, let Exti : {0, 1}ni × {0, 1}di → {0, 1}mi be a (ki, εi)-extractor, and
suppose that mi ≥ di−1 for every i = 1, . . . , t, where we define d0 = 0. Define Ext′((x1, . . . , xt), yt) =

13

(z1, . . . , zt), where for i = t, . . . , 1, we inductively define (yi−1, zi) to be a partition of Exti(xi, yi)
into a di−1-bit prefix and a (mi − di−1)-bit suffix.

Then for every (k1, . . . , kt) block source X = (X1, . . . , Xt) taking values in {0, 1}n1×· · · {0, 1}nt ,
it holds that Ext′(X,Udt) is ε-close to Um for ε =

∑t
i=1 εi and m =

∑t
i=1(mi − di−1).

We remark that this composition preserves “strongness.” If each of the Exti’s correspond to
strong extractors in the sense that their seeds are prefixes of their outputs, then Ext′ will also
correspond to a strong extractor. If in addition d1 = d2 = · · · = dt, then this construction can be
seen as simply using the same seed to extract from all blocks.

Already with this simple composition, we can simulate BPP with an unpredictable-bit source
(even though deterministic extraction from such sources is impossible by Proposition 5.6). As noted
above, by breaking an unpredictable-bit source X with parameter δ into blocks of length `, we obtain
a t× k block source for t = n/`, k = δ′`, and δ′ = log(1/(1− δ)).

Suppose that δ is a constant. Set ` = (10/δ′) log n, so that X is a t × k block source for
k = 10 log n, and define ε = n−2. Letting Ext : {0, 1}`×{0, 1}d → {0, 1}d+m be the (k, ε) extractor
using pairwise-independent hash functions (Theorem 5.18), we have:

d = O(`) = O(log n) and

m = k − 2 log
1
ε
−O(1) > k/2

Composing Ext with itself t times as in Lemma 5.24, we obtain Ext′ : {0, 1}t·`×{0, 1}d → {0, 1}d+t·m

such that Ext′(X,Ud) is ε′-close to uniform, for ε′ = 1/n. (Specifically, Ext′((x1, . . . , xt), h) =
(h, h(x1), . . . , h(xt)).) This tells us that Ext′ essentially extracts half of the min-entropy from X,
given a random seed of logarithmic length. Plugging this extractor into the construction of Propo-
sition 5.15 gives us the following result.

Theorem 5.26. For every constant δ > 0, we can simulate BPP with an unpredictable-bit source
of parameter δ. More precisely, for every L ∈ BPP and every constant δ > 0, there is a polynomial-
time algorithm A and a polynomial q such that for every w ∈ {0, 1}∗ and every source X ∈
UnpredBitsq(|w|),δ, the probability that A(w;X) errs is at most 1/|w|.

5.3.2 Reducing General Sources to Block Sources

Given the results of the previous section, a common approach to constructing extractors for general
k-sources is to reduce the case of general k-sources to that of block sources.

One approach to doing this is as follows. Given a k-source X of length n, where k = δn, pick a
(pseudo)random subset S of the bits of X, and let W = X|S be the bits of X in those positions. If
the set S is of size `, then we expect that W will have at least roughly δ` bits of min-entropy (with
high probability over the choice of S). Moreover, W can have at most ` bits of min-entropy, so if
` < δn, intuitively there must still should be at least min-entropy left in X. (This is justified by
Lemma 5.27 below.) Thus, the pair (W,X) should be a block source. This approach can be shown
to work for appropriate ways of sampling the set S, and recursive applications of it was the original
approach to constructing good extractors (and is still useful in various contexts today). The fact
mentioned above, that conditioning on a string of length ` reduces min-entropy by at most ` bits,
is given by the following lemma (which is very useful when working with min-entropy) .

14

Lemma 5.27 (chain rule for min-entropy). If (W,X) are two jointly distributed random vari-
ables, where (W,X) is a k-source and W has length at most `, then for every ε > 0, it holds that
with probability at least 1− ε over w R←W , X|W=w is a (k − `− log(1/ε))-source.

This is referred to as the “chain rule” for min-entropy by analogy with the chain rule for
Shannon entropy, which states that HSh(X|W) = HSh(W,X) − HSh(W), where the conditional
Shannon entropy is defined to be HSh(X|W) = E

w
R←W [HSh(X|W=w)]. Thus, if HSh(W,X) ≥ k and

W is of length at most `, we have HSh(X|W) ≥ k − `. The chain rule for min-entropy is not quite
as clean; we need to assume that W has small support (rather than just small min-entropy) and
we lose log(1/ε) bits of additional min-entropy.

Another approach, which we will follow, is based on the observation that every source of high
min-entropy rate (namely, greater than 1/2) is (close to) a block source, as shown by the lemma
below. Thus, we will try to convert arbitrary sources into ones of high min-entropy rate

Lemma 5.28. If X is an (n −∆)-source of length n, and X = (X1, X2) is a partition of X into
blocks of lengths n1 and n2, then for every ε > 0, (X1, X2) is ε-close to some (n1 − ∆, n2 − ∆ −
log(1/ε)) block source.

Consider ∆ = αn for a constant α < 1/2, and n1 = n2 = n/2. Then each block contributes min-
entropy at least (1/2−α)n. The proofs of Lemmas 5.27 and 5.28 are left as exercises (Problem 5.1).

We are still left with the question of converting a general k-source into one of high min-entropy
rate. We will do this via the following kind of object.

Definition 5.29. A function Con : {0, 1}n × {0, 1}d → {0, 1}m is a k →ε k
′ condenser if for every

k-source X on {0, 1}n, Con(X,Ud) is ε-close to some k′-source. Con is lossless if k′ = k + d.

If k′/m > k/n, then the condenser increases the min-entropy rate, intuitively making extraction an
easier task.

In Chapter 6, we will construct the following kind of condenser, using connections with both
expander graphs and list-decodable error-correcting codes:

Theorem 5.30. For every constant α > 0, for all positive integers n ≥ k and all ε > 0, there is an
explicit

k →ε k + d

lossless condenser C : {0, 1}n×{0, 1}d → {0, 1}m with d = O(log n+ log(1/ε)) and m = (1 +α)k+
O(log(n/ε)).

Note that setting α to be a small constant, we obtain an output min-entropy rate arbitrarily close
to 1.

5.3.3 The Extractor

In this section, we will use the ideas outlined in the previous section — namely condensing and
block-source extraction — to construct an extractor that is optimal up to constant factors (assuming
the condenser of Theorem 5.30).

15

Theorem 5.31. Assume Theorem 5.30. Then for all positive integers n ≥ k and all ε > 0, there
is an explicit (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m ≥ k/2 and d = O(log(n/ε)).

We will use the following building block, constructed in Problem 5.5.

Lemma 5.32. Assume Theorem 5.30. Then for every constant t > 0 and all positive integers n ≥ k
and all ε > 0, there is an explicit (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m ≥ k/2
and d = k/t+O(log(n/ε)).

The point is that this extractor has a seed length that is an arbitrarily large constant factor
(approximately t/2) smaller than its output length. Thus, if we use it as Ext2 in the block-source
extraction of Lemma 5.24, the resulting seed length will be smaller than that of Ext1 by an arbi-
trarily large constant factor. (The seed length of the composed extractor Ext′ in Lemma 5.24 is the
same of that as Ext2, which will be a constant factor smaller than its output length m2, which we
can take to be equal to the seed length d1 of Ext1.)

Overview of the Construction. Note that for small min-entropies k, namely k = O(log(n/ε)),
the extractor we want is already given by Lemma 5.32 with seed length d smaller than the output
length m by any constant factor. (If we allow d ≥ m, then extraction is trivial — just output
the seed.) Thus, our goal will be to recursively construct extractors for large min-entropies using
extractors for smaller min-entropies. Of course, if Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k0, ε)
extractor, say with m = k0/2, then it is also a (k, ε) extractor for every k ≥ k0. The problem is
that the output length is only k0/2 rather than k/2. Thus, we need to increase the output length.
This can be achieved by simply applying extractors for smaller min-entropies several times:

Lemma 5.33. Suppose Ext1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 is a (k1, ε1) extractor and Ext2 :
{0, 1}n × {0, 1}d2 → {0, 1}m2 is a (k2, ε2) extractor for k2 = k1 − m1 − log(1/ε3). Then Ext′ :
{0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 is a (k1, ε1 + ε2 + ε3) extractor.

The proof of this lemma follows from Lemma 5.27. After conditioning a k1-source X on W =
Ext1(X,Ud1), X still has min-entropy at least k1 −m1 − log(1/ε3) = k2 (except with probability
ε3), and thus Ext2(X,Ud2) can extract an additional m2 almost-uniform bits.

To see how we might apply this, consider setting k1 = .8k and m1 = k1/2, ε1 = ε2 = ε3 = ε ≥
2−.1k, k2 = k1 − m1 − log(1/ε3) ∈ [.3k, .4k], and m2 = k2/2. Then we obtain a (k, 3ε) extractor
Ext′ with output length m = m1 + m2 > k/2 from two extractors for min-entropies k1, k2 that
are smaller than k by a constant factor, and we can hope to construct the latter two extractors
recursively via the same construction.

Now, however, the problem is that the seed length grows by a constant factor in each level of
recursion (e.g. if d1 = d2 = d in Lemma 5.33, we get seed length 2d rather than d). Fortunately, as
mentioned above, block source extraction using the extractor of Lemma 5.32 gives us a method to
reduce the seed length by a constant factor. In order to apply block source extraction, we first need
to convert our source to a block source; by Lemma 5.28, we can do this by using our condenser to
make its entropy rate close to 1.

16

One remaining issue is that the error ε still grows by a constant factor in each level of recursion.
However, we can start with polynomially small error at the base of the recursion and there are only
logarithmically many levels of recursion, so we can afford this blow-up.

We now proceed with the proof details. It will be notationally convenient to do the steps in the
reverse order from the description above — first we will reduce the seed length by a constant factor
via block-source extraction, and then apply Lemma 5.33 to increase the output length.

Proof. [Theorem 5.31] Fix n ∈ N and ε0 > 0. Set d = c log(n/ε0) for an error parameter ε0 and
a sufficiently large constant c to be determined in the proof below. (To avoid ambiguity, we will
keep the dependence on c explicit throughout the proof, and all big-Oh notation hides universal
constants independent of c.) For k ∈ [0, n], let i(k) be the smallest nonnegative integer i such
that k ≤ 2i · 8d. This will be the level of recursion in which we handle min-entropy k; note that
i(k) ≤ log k ≤ log n.

For every k ∈ [0, n], we will construct an explicit Extk : {0, 1}n × {0, 1}d → {0, 1}k/2 that is
a (k, εi(k)) extractor, for an appropriate sequence ε0 ≤ ε1 ≤ ε2 · · · . Note that we require the seed
length to remain d and the fraction of min-entropy extracted to remain 1/2 for all values of k. The
construction will be by induction on i(k).

Base Case: i(k) = 0, i.e. k ≤ 8d. The construction of Extk follows from Lemma 5.32, setting
t = 9 and taking c to be a sufficiently large constant.

Inductive Case: We construct Extk for i(k) ≥ 1 from extractors Extk′ with i(k′) < i(k) as
follows. Given a k-source X of length n, Extk works as follows.

(1) We apply our condenser (Theorem 5.30) to convert X into a source X ′ that is ε0-close to
a k-source of length (9/8)k +O(log(n/ε0)). This requires a seed of length O(log(n/ε0)).

(2) We divide X ′ into two equal-sized halves (X1, X2). By Lemma 5.28, (X1, X2) is 2ε0-close
to a 2× k′ block source for

k′ = k/2− k/8−O(log(n/ε0)) .

Note that i(k′) < i(k). Since i(k) ≥ 1, we also have k′ ≥ 3d − O(log(n/ε0)) ≥ 2d, for a
sufficiently large choice of the constant c.

(3) Now we apply block-source extraction as in Lemma 5.24. We take Ext2 to be a (2d, ε0)
extractor from Lemma 5.32 with parameter t = 16, which will give us m2 = d output
bits using a seed of length d2 = (2d)/16 +O(log(n/ε0)). For Ext1, we use our recursively
constructed Extk′ , which has seed length d, error εi(k′), and output length k′/2 ≥ k/6
(where the latter inequality holds for a sufficiently large choice of the constant c, because
k > 8d > 8c log(1/ε)).

All in all, our extractor so far has seed length at most d/8 + O(log(n/ε0)), error at most
εi(k)−1 + O(ε0), and output length at least k/6. This would be sufficient for our induction except
that the output length is only k/6 rather than k/2. We remedy this by applying Lemma 5.33.

With one application of the extractor above, we extract at least m1 = k/6 bits of the source
min-entropy. Then with another application of the extractor above for min-entropy threshold k2 =

17

k −m1 − log(1/ε) = 5k/6− log(1/ε), by Lemma 5.33, we extract another (5k/6− log(1/ε))/6 bits
and so on. After four applications, we have extracted all but (5/6)4 · k + O(log(1/ε)) ≤ k/2 bits
of the min-entropy. Our seed length is then 4 · (d/8 + O(log(n/ε0))) ≤ d and the total error is
εi(k) = O(εi(k)−1).

Solving the recurrence for the error, we get εi = 2O(i) · ε0 ≤ poly(n) · ε0, so we can obtain error
ε by setting ε0 = ε/poly(n). As far as explicitness, we note that computing Extk consists of four
evaluations of our condenser from Theorem 5.30, four evaluations of Extk′ for values of k′ such that
i(k′) < (i(k) − 1), four evaluations of the explicit extractor from Lemma 5.32, and simple string
manipulations that can be done in time poly(n, d). Thus, the total computation time is at most
4i(k) · poly(n, d) = poly(n, d).

Repeatedly applying Lemma 5.33 using extractors from Theorem 5.31, we can extract any
constant fraction of the min-entropy using a logarithmic seed length, and all the min-entropy using
a polylogarithmic seed length.

Corollary 5.34. Assume Theorem 5.30. Then the following holds for every constant α > 0. For
every n ∈ N, k ∈ [0, n], and ε > 0, there is an explicit (k, ε) extractor Ext : {0, 1}n × {0, 1}d →
{0, 1}m with m ≥ (1− α)k and d = O(log(n/ε)).

Corollary 5.35. Assume Theorem 5.30. Then for every n ∈ N, k ∈ [0, n], and ε > 0, there
is an explicit (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with m = k − O(log(1/ε)) and
d = O(log k · log(n/ε)).

We remark that the above construction can be modified to yield strong extractors achieving the
same output lengths as above (so the entropy of the seed need not be lost in Corollary 5.35).

A summary of the extractor parameters we have seen is in Table 5.1.

Method Seed Length d Output Length m

Optimal and Nonconstructive log(n− k) +O(1) k + d−O(1)
Necessary for BPP Simulation O(log n) kΩ(1)

Spectral Expanders O(n− k) n

Pairwise Independent Hashing O(n) k + d−O(1)

Corollary 5.34 O(log n) (1− γ)k, any constant γ > 0
Corollary 5.35 O(log2 n) k −O(1)

Table 5.1 Parameters for some constructions of (k, .01) extractors.

While Theorem 5.31 and Corollary 5.34 give extractors that are optimal up to constant factors
in both the seed length and output length, it remains an important open problem to get one or both
of these to be optimal to within an additive constants while keeping the other optimal to within a
constant factor.

18

Open Problem 5.36. Give an explicit construction of (k, .01) extractors Ext : {0, 1}n×{0, 1}d →
{0, 1}m with seed length d = O(log n) and output length m = k+d−O(1) (or even m = (1−o(1))·k).

By using the condenser of Theorem 5.30, it suffices to solve achieve the above for high min-
entropy rate, e.g. k = .99n.

Open Problem 5.37. Give an explicit construction of (k, .01) extractors Ext : {0, 1}n×{0, 1}d →
{0, 1}m with seed length d = log n+O(1) and m = Ω(k) (or even m = kΩ(1)).

One of the reasons that these open problems are significant is that, in many applications of
extractors, the resulting complexity depends exponentially on the seed length d and/or the en-
tropy loss k + d −m. (An example is the simulation of BPP with weak random sources given by
Proposition 5.15.) Thus, additive constants in these parameters corresponds to constant factors in
complexity.

Another open problem is more aesthetic in nature. The construction of Theorem 5.31 makes use
of the condenser of Theorem 5.31, the Leftover Hash Lemma (Theorem 5.18) and the composition
techniques of Lemmas 5.24 and Lemma 5.33 in a somewhat complex recursion. It is of interest to
have a construction that is more direct. In addition to the aesthetic appeal, such a construction
would likely be more practical to implement and provide more insight into extractors. In Chapter 7,
we will see a very direct construction based on a connection between extractors and pseudorandom
generators, but its parameters will be somewhat worse than Theorem 5.31. Thus the following
remains open:

Theorem 5.38. Give a “direct” construction of (k, ε) extractors Ext : {0, 1}n×{0, 1}d → {0, 1}m
with seed length d = O(log(n/ε)) and m = Ω(k).

5.4 More Connections with Expanders

5.4.1 Lossless Condensers vs. Expanders

In the previous section, we saw the notion of a k →ε k
′ condenser Con : {0, 1}n×{0, 1}d → {0, 1}m,

where for every k-source X on {0, 1}n, Con(X,Ud) is ε-close to some k′-source. We can define the
entropy loss of a condenser to be ` = k + d − k′. As we have discussed, an extractor (i.e. m = k′)
must have ` ≥ 2 log(1/ε) − O(1), whereas if we allow m to be larger than k′ (specifically, m ≥
k′ + log(1/ε) +O(1)), then it is possible for a condenser to be lossless (i.e. have ` = 0).

As we have seen for extractors in Section 5.2.2, every function Con : {0, 1}n×{0, 1}d → {0, 1}m
can be viewed as a bipartite multigraph G with N = 2n left vertices, left-degree D = 2d, and
M = 2m right-vertices where the y’th neighbor of left-vertex x is Con(x, y). Generalizing what we
showed for extractors, the condenser property implies a vertex-expansion property of the graph
G. Specifically, recalling that an (= K,A) vertex expander is one in which sets of size exactly K

expand by a factor of A, then we have:

19

Proposition 5.39. If Con : {0, 1}n × {0, 1}d → {0, 1}m is a k →ε k
′ condenser, then the corre-

sponding bipartite graph is a (= K,A) vertex expander for A = (1 − ε) ·K ′/K = (1 − ε) · D/L,
where K = 2k, K ′ = 2k

′
, D = 2d, L = 2`, and ` = k + d− k′ is the entropy loss of Con.

Thus, if L < (1− ε) ·D, the expansion factor A is in fact bigger than 1 (but the case A < 1 is
still interesting and nontrivial, because the graph is unbalanced). In general, the vertex expansion
property is weaker than the property of being a condenser — for example, when m = k′, it corre-
sponds to a disperser rather than an extractor (Proposition 5.20). However, for the special case of
lossless condensers (i.e. L = 1), it turns out that the two properties are equivalent.

Proposition 5.40. A function Con : {0, 1}n×{0, 1}d → {0, 1}m is a k →ε k+d (lossless) condenser
if and only if the corresponding bipartite graph is a (= K,A) vertex expander for A = (1− ε) ·D,
where K = 2k, K ′ = 2k

′
, and D = 2d (provided 2k ∈ N).

Proof. The “only if” direction follows from Proposition 5.39, so we only prove the “if” direction.
Assume that the bipartite graph corresponding to Con is a (= K, (1− ε) ·D) vertex expander. To
show that Con is a lossless condenser, by Lemma 5.10 it suffices to show that Con(X,Ud) is ε-close
to a k′-source for every flat k-source X. Let S be the support of X, which is of size K. By the vertex
expansion of the graph, |N(S)| ≥ (1 − ε) ·DK. Since there are only DK edges leaving S, we can
make all of these edges lead to distinct vertices by shifting an ε fraction of them. Let T ⊂ [M] be
the set of KD vertices hit after this shifting. Then Con(X,Ud) is ε-close to the uniform distribution
on T , which is a (k + d)-source.

Thus, the lossless condenser that we assumed in the previous lecture follows immediately from
the following expander:

Theorem 5.41. For every constant α > 0, every N ∈ N, K ≤ N , and ε > 0, there
is an explicit (K, (1 − ε)D) expander with N left-vertices, M right-vertices, left-degree D =
O((logN)(logK)/ε)1+1/α and M ≤ D2 ·K1+α. Moreover, D is a power of 2.

We will construct this expander in Chapter 6, using ideas based on list-decodable error-correcting
codes.

Note that the kind of expander given by this theorem can be used for the data structure
application in Problem 4.6 — storing a K/2-sized subset S ⊆ [N] with M = K1+α · polylog(N)
bits in such a way that membership can be probabilistically tested by reading only 1 bit of the data
structure. (An efficient solution to this application actually requires more than the graph being
explicit in the usual sense, but also that there are efficient algorithms for finding all left-vertices
having at least a δ fraction neighbors in a given set T ⊆ [M] of right vertices, but it turns out that
the expanders we will construct have this property.)

A deficiency of the expander of Theorem 5.41 is that the size of the right-hand side is polynomial
in K and D (for constant α), whereas the optimal bound is M = O(KD/ε). Achieving the latter,
while keeping the left-degree polylogarithmic, is an open problem:

20

Open Problem 5.42. Construct (= K,A) bipartite expanders with N left-vertices, degree D =
poly(logN), expansion A = .99D, and M = O(KD) right-hand vertices.

We remark that a construction where D is quasipolynomial in logN is known. By Proposi-
tion 5.40, a solution to Open Problem 5.42 would give lossless condensers whose output is of
extremely high min-entropy (k′ = m−O(1)), and thus we could get extractors that extract all the
min-entropy by then applying extractors based on spectral expanders (Theorem 5.22), thereby also
solving Open Problem 5.36.

5.4.2 Block-Source Extraction vs. the Zig-Zag Product

Recall the block-source extraction method presented last time. We define Ext′ : {0, 1}n1+n2 ×
{0, 1}d2 → {0, 1}m1 by Ext′((x1, x2), y2) = Ext1(x1,Ext2(x2, y2)). (Here we consider the special
case that m2 = d1.)

Viewing the extractors as bipartite graphs, the left-vertex set is [N1]× [N2] and the left-degree
is D2. A random step from a vertex (x1, x2) ∈ [N1] × [N2] corresponds to taking a random step
from x2 in G2 to obtain a right-hand vertex y1 ∈ {0, 1}m2 , which we view as an edge label y for
G1. We then move to the y’th neighbor of x1.

This is just like the first two steps of the zig-zag graph product. Why do we need a third step in
the zig-zag product? It is because of the slightly different goals in the two setting. In a (spectral)
expander, we consider an arbitrary initial distribution that does not have too much (Renyi) entropy,
and need to add entropy to it. In a block-source extractor, our initial distribution is constrained
to be a block source (so both blocks have a certain amount of min-entropy), and our goal is to
produce an almost-uniform output (even if we end up with less bits than the initial entropy).

Thus, in the zig-zag setting, we must consider the following extreme cases (that are ruled out
for block sources):

• The second block has no entropy given the first. Here, the step using G2 will add entropy,
but not enough to make y1 close to uniform. Thus, we have no guarantees on the behavior
of the G1-step, and we may lose entropy with it. For this reason, we keep track of the
edge used in the G1-step — that is, we remember b1 such that x1 is the b1’th neighbor of
z1 = Ext(x1, y1). This ensures that the (edge-rotation) mapping (x1, y1) 7→ (z1, b1) is a
permutation and does not lose any entropy. We can think of b1 as a “buffer” that retains
any extra entropy in (x1, y1) that did not get extracted into z1. So a natural idea is to
just do block source extraction, but output (z1, b1) rather than just z1. However, this
runs into trouble with the next case.
• The first block has no entropy but the second block is completely uniform given the first.

In this case, the G2 step cannot add any entropy and the G1 step does not add any
entropy because it is a permutation. However, the G1 step transfers entropy into z1. So if
we add another expander-step from b1 at the end, we can argue that it will add entropy.
This gives rise to the 3-step definition of the zig-zag product.

While we analyzed the zig-zag product with respect to spectral expansion (i.e. Rényi entropy),
it is also possible to do analyze it in terms of a condenser-like definition (i.e. distributions ε-close

21

to having some min-entropy). all” It turns out that a variant of the zig-zag product for condensers
leads to a construction of constant-degree bipartite expanders with expansion (1 − ε) · D for the
balanced (M = N) or slightly unbalanced (e.g. M = Ω(N)) case. However, as mentioned in Open
Problems 4.39, 4.40, and 5.42, there are still several significant open problems concerning the explicit
construction of expanders with vertex expansion close to the degree, involving achieving expansion
D −O(1), the non-bipartite case, and achieving a near-optimal number of right-hand vertices.

5.5 Exercises

Problem 5.1. (Min-entropy and Statistical Difference)

(1) Prove that for every two random variables X and Y ,

∆(X,Y) = max
f
|E[f(X)]− E[f(Y)]| = 1

2
· |X − Y |1,

where the maximum is over all [0, 1]-valued functions f . (Hint: first identify the functions
f that maximize |E[f(X)]− E[f(Y)]|.)

(2) Suppose that (W,X) are jointly distributed random variables where W takes values in
{0, 1}` and (W,X) is a k-source. Show that for every ε > 0, with probability at least 1−ε
over w R←W , we have X|W=w is a (k − `− log(1/ε))-source.

(3) Suppose that X is an (n −∆)-source taking values in {0, 1}n, and we let X1 consist of
the first n1 bits of X and X2 the remaining n2 = n− n1 bits. Show that for every ε > 0,
(X1, X2) is ε-close to some (n1 −∆, n2 −∆− log(1/ε)) block source.

Problem 5.2. (Extractors vs. Samplers) One of the problems we have revisited several times
is that of randomness-efficient sampling: Given oracle access to a function f : {0, 1}m → [0, 1],
approximate its average value µ(f) to within some small additive error. Most of the samplers we
have seen work as follows: they choose some n random bits, use these to decide on some D samples
z1, . . . , zD ∈ {0, 1}m, and output the average of f(z1), . . . , f(zD). We call such a procedure a (δ, ε)-
averaging sampler if, for any function f , the probability that the sampler’s output differs from µ(f)
by more than ε is at most δ. In this problem, we will see that averaging samplers are essentially
equivalent to extractors.

Given Ext: {0, 1}n×{0, 1}d → {0, 1}m, we obtain a sampler Smp which chooses x R←{0, 1}n, and
uses {Ext(x, y) : y ∈ {0, 1}d} as its D = 2d samples. Conversely, every sampler Smp using n random
bits to produce D = 2d samples in {0, 1}m defines a function Ext: {0, 1}n × {0, 1}d → {0, 1}m.

(1) Prove that if Ext is a (k − 1, ε)-extractor, then Smp is a (2k/2n, ε)-averaging sampler.
(2) Prove that if Smp is a (2k/2n, ε)-sampler, then Ext is a (k + log(1/ε), 2ε)-extractor.
(3) Suppose we are given a constant-error BPP algorithm which uses r = r(n) random bits

on inputs of length n. Show how, using Part 1 and the extractor of Theorem 5.31, we
can reduce its error probability to 2−` using O(r) + ` random bits, for any polynomial
` = `(n). (Note that this improves the r + O(`) given by expander walks for ` � r.)
Conclude that every problem in BPP has a randomized algorithm which only errs for
2q

0.01
choices of its q random bits!

22

Problem 5.3. (Encryption and Deterministic Extraction) A (one-time) encryption scheme with
key length n and message length m consists of an encryption function Enc: {0, 1}n × {0, 1}m →
{0, 1}` and a decryption function Dec: {0, 1}n × {0, 1}` → {0, 1}m such that Dec(k,Enc(k, u)) = u

for every k ∈ {0, 1}n and u ∈ {0, 1}m. Let K be a random variable taking values in {0, 1}n. We say
that (Enc,Dec) is (statistically) ε-secure with respect to K if for every two messages u, v ∈ {0, 1}m,
we have ∆(Enc(K,u),Enc(K, v)) ≤ ε. For example, the one-time pad, where n = m = ` and
Enc(k, u) = k ⊕ u = Dec(k, u) is 0-secure (aka perfectly secure) with respect to the uniform
distribution K = Um. For a class C of sources on {0, 1}n, we say that the encryption scheme
(Enc,Dec) is ε-secure with respect to C if Enc is ε-secure with respect to every K ∈ C.

(1) Show that if there exists a deterministic ε-extractor Ext: {0, 1}n → {0, 1}m for C, then
there exists an 2ε-secure encryption scheme with respect to C.

(2) Conversely, use the following steps to show that if there exists an ε-secure encryption
scheme (Enc,Dec) with respect to C, where Enc: {0, 1}n × {0, 1}m → {0, 1}`, then there
exists a deterministic 2ε-extractor Ext: {0, 1}n → {0, 1}m−2 log(1/ε)−O(1) for C, provided
m ≥ log n+ 2 log(1/ε) +O(1).

(a) For each fixed key k ∈ {0, 1}n, define a source Xk on {0, 1}` by Xk = Enc(k, Um),
and let C′ be the class of all these sources (i.e., C′ = {Xk : k ∈ {0, 1}n}). Show
that there exists a deterministic ε-extractor Ext′ : {0, 1}` → {0, 1}m−2 log(1/ε)−O(1)

for C′, provided m ≥ log n+ 2 log(1/ε) +O(1).

(b) Show that if Ext′ is a deterministic ε-extractor for C′ and Enc is ε-secure with
respect to C, then Ext(k) = Ext′(Enc(k, 0m)) is a deterministic 2ε-extractor for
C.

Thus, a class of sources can be used for secure encryption iff it is deterministically extractable.

Problem 5.4. (Extracting from Unpredictable-Bit Sources)

(1) Let X be a source taking values in {0, 1}n such that for all x, y, Pr[X = x]/Pr[X = y] ≤
(1− δ)/δ. Show that X ∈ UnpredBitsn,δ.

(2) Prove that for every function Ext: {0, 1}n → {0, 1} and every δ > 0, there exists a source
X ∈ UnpredBitsn,δ with parameter δ such that Pr[Ext(X) = 1] ≤ δ or Pr[Ext(X) = 0] ≥
1− δ. (Hint: for b ∈ {0, 1}, consider X that is uniform on Ext−1(b) with probability 1− δ
and is uniform on Ext−1(b) with probability δ.)

(3) (*) Show how to extract from sources in UnpredBitsn,δ using a seeded extractor with a
seed of constant length. That is, the seed length should not depend on the length n of
the source, but only on the bias parameter δ and the statistical difference ε from uniform
desired. The number of bits extracted should be Ω(δn).

23

Problem 5.5. (The Building-Block Extractor) Assume the condenser stated in Theorem 5.30.
Show that for every constant t > 0 and all positive integers n ≥ k and all ε > 0, there is an explicit
(k, ε)-extractor Ext: {0, 1}n × {0, 1}d → {0, 1}m with m = k/2 and d = k/t + O(log(n/ε)). (Hint:
convert the source into a block source with blocks of length k/O(t) +O(log(n/ε)).)

Problem 5.6. (Extracting from Symbol-Fixing Sources*) A generalization of a bit-fixing source is
a symbol-fixing source X taking values in Σn for some alphabet Σ, where subset of the coordinates of
X are fixed and the rest are uniformly distributed and independent elements of Σ. For Σ = {0, 1, 2}
and k ∈ [0, n], give an explicit ε-extractor Ext : Σn → {0, 1}m for the class of of symbol-fixing
sources on Σn with min-entropy at least k, with m = Ω(k) and ε = 2−Ω(k). (Hint: use a random
walk on a consistently labelled 3-regular expander graph.)

24

