Foundations and Trends® in
sample

Vol. xx, No xx (xxxx) 1-71 n.w

(©) XXXX XXXXXXXXX
DOI: xxxxxx the essence of knowledge

Pseudorandomness ||

Salil P. Vadhan'

! Harvard UniversityCambridge, MA02138, USA, salil@eecs.harvard.edu

Abstract

This is the second volume of a 2-part survey on pseudorandomness, the theory of efficiently gen-
erating objects that “look random” despite being constructed using little or no randomness. The
survey places particular emphasis on the intimate connections that have been discovered between a
variety of fundamental “pseudorandom objects” that at first seem very different in nature: expander
graphs, randomness extractors, list-decodable error-correcting codes, samplers, and pseudorandom
generators. The survey also illustrates the significance the theory of pseudorandomness has for the
study of computational complexity, algorithms, cryptography, combinatorics, and communications.
The structure of the presentation is meant to be suitable for teaching in a graduate-level course,
with exercises accompanying each chapter.

To Amari

Acknowledgments

My exploration of pseudorandomness began in my graduate and postdoctoral years at MIT and
TAS, under the wonderful guidance of Shafi Goldwasser, Oded Goldreich, Madhu Sudan, and Avi
Wigderson. It was initiated by an exciting reading group organized at MIT by Luca Trevisan, which
immersed me in the subject and started my extensive collaboration with Luca. Through fortuitous
circumstances, I also began to work with Omer Reingold, starting another lifelong collaboration.
I am indebted to Shafi, Oded, Madhu, Avi, Luca, and Omer for all the insights and research
experiences they have shared with me.

I have also learned a great deal from my other collaborators on pseudorandomness, including
Boaz Barak, Eli Ben-Sasson, Michael Capalbo, Kai-Min Chung, Nenad Dedic, Ronen Gradwohl,
Dan Gutfreund, Venkat Guruswami, Alex Healy, Jesse Kamp, Danny Lewin, Chi-Jen Lu, Michael
Mitzenmacher, Shien Jin Ong, Michael Rabin, Anup Rao, Ran Raz, Leo Reyzin, Eyal Rozenman,
Madhur Tulsiani, Chris Umans, Emanuele Viola, and David Zuckerman. Needless to say, this list
omits many other researchers in the field with whom I have had stimulating discussions on related
topics.

The starting point for this survey was scribe notes taken by students in the 2004 version
of my graduate course on Pseudorandomness. I thank those students for their contribution:
Alexandr Andoni, Adi Akavia, Yan-Cheng Chang, Denis Chebikin, Hamilton Chong, Vitaly Feld-
man, Brian Greenberg, Chun-Yun Hsiao, Andrei Jorza, Adam Kirsch, Kevin Matulef, Mihai
Patragcu, John Provine, Pavlo Pylyavskyy, Arthur Rudolph, Saurabh Sanghvi, Grant Schoenebeck,
Jordanna Schutz, Sasha Schwartz, David Troiano, Vinod Vaikuntanathan, Kartik Venkatram, David
Woodruff. T also thank the students from the other offerings of the course; Dan Gutfreund, who gave
a couple of guest lectures in 2007; and all of my teaching fellows, Johnny Chen, Kai-Min Chung,
Minh Nguyen, and Emanuele Viola. Special thanks are due to Greg Price for his extensive feedback
on the lecture notes. Helpful comments and corrections have also been given by Trevor Bass, Zhou
Fan, Alex Healy, Andrei Jorza, Shira Mitchell, Jelani Nelson, Yakir Reshef, Shrenik Shah, Michael
von Korff, Neal Wadhwa, and Hoeteck Wee.

Contents

5 Randomness Extractors

5.1
5.2
5.3
5.4
5.5

Motivation and Definition

Connections with Hash Functions and Expanders
Constructing Extractors

More Connections with Expanders

Exercises

6 List-Decodable Codes

6.1
6.2
6.3

Definitions and Existence
List-Decoding Algorithms
Exercises

7 Pseudorandom Generators

7.1
7.2
7.3
7.4
7.5
7.6

Motivation and Definition

Cryptographic PRGs

Hybrid Arguments

Pseudorandom Generators from Average-Case Hardness
Worst-Case/Average-Case Reductions and Locally Decodable Codes
Local List Decoding

12
19
22

25

25
31
40

43

43
47
50
54
99
67

5

Randomness Extractors

We now move on to the second major pseudorandom object of this survey: randomness extractors.
We begin by discussing the original motivation for extractors, which was to simulate randomized
algorithms with sources of biased and correlated bits. This motivation is still compelling, but ex-
tractors have taken on a much wider significance in the years since they were introduced. They
have found numerous applications in theoretical computer science beyond this initial motivating
one, in areas from cryptography to distributed algorithms to metric embeddings. More importantly
from the perspective of this survey, they have played a major unifying role in the theory of pseu-
dorandomness. Indeed, the links between the various pseudorandom objects we will study in this
survey (expander graphs, randomness extractors, list-decodable codes, pseudorandom generators,
samplers) were all discovered through work on extractors.

5.1 Motivation and Definition

5.1.1 Deterministic Extractors

Typically, when we design randomized algorithms or protocols, we assume that all algo-
rithms/parties have access to sources of perfect randomness, i.e. bits that are unbiased and com-
pletely independent. However, when we implement these algorithms, the physical sources of ran-
domness to which we have access may contain biases and correlations. For example, we may use
low-order bits of the system clock, the user’s mouse movements, or a noisy diode based on quantum
effects. While these sources may have some randomness in them, the assumption that the source is
perfect is a strong one, and thus it is of interest to try and relax it.

Ideally, what we would like is a compiler that takes any algorithm A that works correctly when
fed perfectly random bits U,,, and produces a new algorithm A’ that will work even if it is fed
random bits X € {0,1}" that come from a “weak” random source. For example, if A is a BPP
algorithm, then we would like A’ to also run in probabilistic polynomial time. One way to design
such compilers is to design a randomness extractor Ext : {0,1}" — {0,1}" such that Ext(X) is
distributed uniformly in {0, 1}"™.

IID-Bit Sources (aka Von Neumann Sources). A simple version of this question was al-
ready considered by von Neumann. He looked at sources that consist of boolean random variables
X1, Xo,..., X, € {0,1} that are independent but biased. That is, for every i, Pr[X; = 1] = ¢ for
some unknown ¢. How can such a source be converted into a source of independent, unbiased bits?
Von Neumann proposed the following extractor: Break all the variables in pairs and for each pair
output 0 if the outcome was 01, 1 if the outcome was 10 , and skip the pair if the outcome was 00
or 11. This will yield an unbiased random bit after 1/§ pairs on average.

Independent-Bit Sources. Lets now look at a bit more interesting class of sources in which
all the variables are still independent but the bias is no longer the same. Specifically, for every i,
Pr(X;=1]=06;and 0 <6 <§; <1— 0. How can we deal with such a source?

Let’s be more precise about the problems we are studying. A source on {0,1}" is simply a
random variable X taking values in {0,1}"™. In each of the above examples, there is an implicit
class of sources being studied. For example, IndBits,, 5 is the class of sources X on {0,1}" where
the bits X; are independent and satisfy ¢ < Pr[X; = 1] < 1 — 6. We could define IIDBits,, 5
to be the same with the further restriction that all of the X;’s are identically distributed, i.e.
Pr[X; = 1] = Pr[X; = 1] for all 4, j, thereby capturing von Neumann sources.

Definition 5.1 (deterministic extractors). ! Let C be a class of sources on {0,1}". An e-
extractor for C is a function Ext : {0,1}"™ — {0, 1} such that for every X € C, Ext(X) is “e-close”
to Up,.

Note that we want a single function Ext that works for all sources in the class. This captures the
idea that we do not want to assume we know the exact distribution of the physical source we are
using, but only that it comes from some class. For example, for IndBits,, 5, we know that the bits
are independent and none are too biased, but not the specific bias of each bit. Note also that we
only allow the extractor one sample from the source X. If we want to allow multiple independent
samples, then this should be modelled explicitly in our class of sources; ideally we would like to
minimize the independence assumptions used.

We still need to define what we mean for the output to be e-close to Uy,.

Definition 5.2. For random variables X and Y taking values in U, their statistical difference (also
known as wvariation distance) is A(X,Y) = maxpcy | Pr[X € T] — Pr[Y € T]|. We say that X and
Y are e-close if A(X,Y) <e.

Intuitively, any event in X happens in Y with the same probability +e. This is really the most
natural measure of distance for probability distributions (much more so than the ¢o distance we
used in the study of random walks). In particular, it satisfies the following natural properties.

Lemma 5.3 (properties of statistical difference). Let XY, Z, X, X5, Y7, Y2 be random vari-
ables taking values in a universe Y. Then,

LSuch extractors are called deterministic or seedless to contrast with the probabilistic or seeded randomness extractors we will
see later.

(1) 0, with equality iff X and Y are identically distributed,
(2) 1, with equality iff X and Y have disjoint supports,

() i A(Y7 X)7
(4) AX,Z2) <AX,)Y)+A(X, Z),
(5)

(6)

)

(X,Y) >
(X,Y) <
(X,Y) =

> B b

for every function f, we have A(f(X), f(Y)) < A(X,Y),

A((X1,X2),(Y1,Y2)) < A(X1,Y7) + A(X2,Ys) if X7 and X, as well as Y7 and Ya, are
independent, and

(7) A(X,Y) = 3-|X —Y]|;, where |- |y is the ¢; distance. (Thus, X is e-close to Y iff we can
transform X into Y by “shifting” at most an e fraction of probability mass.)

We now observe that extractors according to this definition give us the “compilers” we want.

Proposition 5.4. Let A(w;r) be a randomized algorithm such that A(w; U,,) has error probability
at most v, and let Ext : {0,1}" — {0,1}" be an e-extractor for a class C of sources on {0,1}".
Define A’(w;x) = A(w;Ext(z)). Then for every source X € C, A'(w; X) has error probability at
most vy + €.

This application identifies some additional properties we’d like from our extractors. We’d like
the extractor itself to be efficiently computable (e.g. polynomial time). In particular, to get m
almost-uniform bits out, we should need at most n = poly(m) bits bits from the weak random
source.

We can cast our earlier extractor for sources of independent bits in this language:

Proposition 5.5. For every constant § > 0, every n,m € N, there is a polynomial-time computable
function Ext : {0,1}™ — {0,1}™ that is an e-extractor for IndBits,, 5, with & = m - 27%/m),

2

In particular, taking n = m*, we get exponentially small error with a source of polynomial

length.

Proof. Ext breaks the source into m blocks of length [n/m| and outputs the parity of each block.
O

Unpredictable-Bit Sources (aka Santha—Vazirani Sources). Another interesting class of
sources, which looks similar to the previous example is the class UnpredBits,, ;5 of unpredictable-bit
sources. These are the sources that for every i, every z1,...,2, € {0,1} and some constant § > 0,
satisfy

6§PT[XZ:1 | X1:l‘l,XQZI‘Q,...,XZ',l:l‘Z’,l] Sl*(;

The parity extractor used above will be of no help with this source since the next bit could be
chosen in a way that the parity will be equal to 1 with probability 6. Problem 5.4 shows that there
does not exist any nontrivial extractor for these sources:

3

Proposition 5.6. For every n € N, § > 0, and fixed extraction function Ext : {0,1}" — {0, 1}
there exists a source X € UnpredBits,, 5 such that either Pr [Ext(X) = 1] < ¢ or Pr [Ext(X) = 1] >
1 — 4. That is, there is no e-extractor for UnpredBits,, 5 for ¢ < 1/2 — 4.

Nevertheless, as we will see, the answer to the question whether we can simulate BPP algorithms
with unpredictable sources will be “yes”! Indeed, we will even be able to handle a much more general
class of sources, introduced in the next section.

5.1.2 Entropy Measures and General Weak Sources

Intuitively, to extract m almost-uniform bits from a source, the source must have at least “m bits
of randomness” in it (e.g. its support cannot be much smaller than 2™). Ideally, this is all we would
like to assume about a source. Thus, we need some measure of how much randomness is in a random
variable; this can be done using various notions of entropy described below.

Definition 5.7 (entropy measures). Let X be a random variable. Then

® the Shannon entropy of X is:

Hon(X)= E [10g

R
r—X

Pr[erc]]'

® the Rényi entropy of X is:

1 1
Ho(X) = log (Exgx[Pr X = x]]) = log CP(x)’ and

® the min-entropy of X is:

where all logs are base 2.

All the three measures satisfy the following properties we would expect from a measure of
randomness:

Lemma 5.8 (properties of entropy). For each of of the entropy measures H € {Hg,, Ho, Hoo }
and random variables X, Y, we have:

H(X) > 0, with equality iff X is supported on a single element,
H(X) <log|Supp(X)|, with equality iff X is uniform on Supp(X),
if X,Y are independent, then H((X,Y)) = H(X) + H(Y),

for every deterministic function f, we have H(f(X)) < H(X), and
for every X, we have Hoo(X) < Ho(X) < Hgp(X).

To illustrate the differences between the three notions, consider a source X such that X = 0™
with probability 0.99 and X = U,, with probability 0.01. Then Hgy,(X) > 0.01n (contribution from
the uniform distribution), Ha(X) < log(1/.99%) < 1 and Hy(X) < log(1/.99) < 1 (contribution
from 0™). Note that even though X has Shannon entropy linear in n, we cannot expect to extract
bits that are close to uniform or carry out any useful randomized computations with one sample
from X, because it gives us nothing useful 99% of the time. Thus, we should use the stronger
measures of entropy given by Ho or Hy.

Then why is Shannon entropy so widely used in information theory results? The reason is that
such results typically study what happens when you have many independent samples from the
source. In such a case, it turns out that the the source is “close” to one where the min-entropy
is roughly equal to the Shannon entropy. Thus the distinction between these entropy measures
becomes less significant. (Recall that we only allow one sample from the source.) Moreover, Shannon
entropy satisfies many nice identities that make it quite easy to work with. Min-entropy and Renyi
entropy are much more delicate.

We will consider the task of extracting randomness from sources where all we know is a lower
bound on the min-entropy:

Definition 5.9. X is a k-source is Hyo(X) > k, i.e., if Pr[X = 2] < 27F,

A typical setting of parameters is k = dn for some fixed 4, e.g., 0.01. We call § the min-entropy
rate. Some different ranges that are commonly studied (and are useful for different applications):
k = polylog(n), k = n” for a constant v € (0,1), k = dn for a constant 6 € (0,1), and k =n—0O(1).
The middle two (k = n" and k = dn) are the most natural for simulating randomized algorithms
with weak random sources.

Examples of k-sources:

¢ i random and independent bits, together with n — k fixed bits (in an arbitrary order).
These are called oblivious bit-fixzing sources.

¢ L random and independent bits, and n — k bits that depend arbitrarily on the first k bits.
These are called adaptive bit-fixing sources.

e Unpredictable-bit sources with bias parameter §. These are k-sources with & = log(1/(1—
0)") = O(dn).

e Uniform distribution on S C {0,1}" with |S| = 2*. These are called flat k-sources.

It turns out that flat k-sources are really representative of general k-sources.

Lemma 5.10. Every k-source is a convex combination of flat k-sources (provided that 2% € N),
ie, X =5 p;X; with 0 <p; <1, > p; =1 and all the X; are flat k-sources.

Proof. [Sketch] Consider each source on [N] (recall that N = 2") as a vector X € RY. Then X
is a k-source if and only if X (i) € [0,27%] for every i € [N] and >, X (i) = 1. The set of vectors
X satisfying these linear inequalities is a polytope. By basic linear programming theory, all of the
points in the polytope are convex combinations of its vertices, which are defined to be the points

5

that make a maximal subset of the inequalities tight. By inspection, the vertices of the polytope
of k-sources are those sources where X (i) = 27 for 2* values of i and X (i) = 0 for the remaining
values of 7; these are simply the k-sources. a

By Lemma 5.10, we can think of any k-source as being obtained by first selecting a flat k-source
X; according to some distribution (given by the p;’s) and then selecting a random sample from X;.
This means that if we can compile probabilistic algorithms to work with flat k-sources, then we can
compile them to work with any k-source.

5.1.3 Seeded Extractors

Proposition 5.6 tell us that it impossible to have deterministic extractors for unpredictable sources.
Here we consider k-sources, which are more general than unpredictable sources, and hence it is
also impossible to have deterministic extractors for them. The impossibility result for k-sources is
stronger and simpler to prove.

Proposition 5.11. For any Ext : {0,1}" — {0, 1} there exists an (n —1)-source X so that Ext(X)
is constant.

Proof. There exists b € {0,1} so that |[Ext~1(b)] > 27/2 = 277!, Then let X be the uniform
distribution on Ext~!(b).]

On the other hand, if we reverse the order of quantifiers, allowing the extractor to depend on
the source, it is easy to see that good extractors exist and in fact a randomly chosen function will
be a good extractor with high probability.

Proposition 5.12. For every n,k,m € N, every ¢ > 0, and every flat k-source X, if we choose
a random function Ext : {0,1}" — {0,1}"™ with m = k — 2log(1/e) — O(1), then Ext(X) will be
e-close to U,, with probability 1 — 2_Q(K52), where K = 2F.

(We will commonly use the convention that capital variables are 2 raised to the power of the
corresponding lowercase variable, such as K = 2¥ above.)

Proof. Choose our extractor randomly. We want it to have following property: for all 7' C [M],
| Pr[Ext(X) C T| — Pr[U,, C T| < e. Equivalently, [{z € Supp(X) : Ext(z) € T}|/K differs from
the density u(7T) by at most €. For each point € Supp(X), the probability that Ext(x) € T is
u(T), and these events are independent. By the Chernoff Bound, for each fixed T, this condition
holds with probability at least 1 — 2-UKe") Then the probability that condition is violated for at
least one T is at most 2M2-2Ke*) which is less than 1 for m = k — 2log(1/¢) — O(1).]

Note that the failure probability is doubly-exponentially small in k. Naively, one might hope
that we could get an extractor that’s good for all flat k-sources by a union bound. But the number
of flat k-sources is (%) ~ NX (where N = 2"), which is unfortunately a larger double-exponential
in k. We can overcome this gap by allowing the extractor to be “slightly” probabilistic, i.e. allowing
the extractor a seed consisting of a small number of truly random bits in addition to the weak
random source. We can think of this seed of truly random bits as a random choice of an extractor
from family of extractors. This leads to the following crucial definition:

6

Definition 5.13 (seeded extractors). Extractor Ext : {0,1}" x {0,1}¢ — {0,1}™ is a (k,e)-
extractor if for every k-source X on {0,1}", Ext(X,Uy) is e-close to U,,.

We want to give a construction that minimizes d and maximizes m. We prove the following
theorem.

Theorem 5.14. For every n € N, k € [0,n] and ¢ > 0, there exists a (k,¢)-extractor Ext :
{0,1}"x {0,1}¢ — {0,1}™ with m = k+d—21log(1/e)—O(1) and d = log(n—k)+2log(1/) +O(1).

One setting of parameters to keep in mind (for our application of simulating randomized algo-
rithms with a weak source) is k = on, with ¢ a fixed constant (e.g. 6 = 0.01), and ¢ a fixed constant
(e.g. € =0.01).

Proof. We use the Probabilistic Method. By Lemma 5.10, it suffices for Ext to work for flat k-
sources. Choose the extractor Ext at random. Then the probability that the extractor fails is not
more than number of flat k-sources times times the probability Ext fails for a fixed flat k-source. By
the above proposition, the probability of failure for a fixed flat k-source is at most 22K DEQ), since

(X,Uy) is a flat (k + d)-source) and m = k +d — 2log(2) — O(1). Thus the total failure probability

is at most
K
N —Q(KDe?) & —Q(K De?)
-2 < 2 .
K K

The latter expression is less than 1 if De? > clog(Ne/K) = ¢+ (n — k) + ¢ for constants ¢, ¢’.This
is equivalent to d = log(n — k) + 2log(1) + O(1).]

It turns out that both bounds (on m and d) are individually tight up to the O(1) terms.

Recall that our motivation for extractors was to simulate randomized algorithms given only a
weak random source, so allowing a truly random seed may seem to defeat the purpose. However, if
the seed is of logarithmic length as in Theorem 5.14, then instead of selecting it randomly, we can
enumerate all possibilities for the seed and take a majority vote.

Proposition 5.15. Let A(w;r) be a randomized algorithm such that A(w;U,,) has error proba-
bility at most 7, and let Ext : {0,1}" x {0,1}¢ — {0,1}™ be a (k, ¢)-extractor. Define

Al(w;z) = maj {A(w;Ext(z,y))}.
ye{0,1}¢

Then for every k-source X on {0,1}", A’(w; X) has error probability at most 2(y + ¢).

Proof. The probability that A(w;Ext(X,Uy)) is incorrect is not more than probability A(w;U,,)
is incorrect plus €, i.e. 7 + ¢, by the definition of statistical difference. Then the probability that
maj, A(w, Ext(X,y)) is incorrect is at most 2 - (y + ¢), because each error of maj, A(w; Ext(x,y))
corresponds to A(w; Ext(x, Uy)) erring with probability at least 1/2.]

7

Note that the enumeration incurs a 2% factor slowdown in the simulation. Thus, for this applica-
tion, we want to construct extractors where (a) d = O(logn); (b) Ext is computable in polynomial
time; and (c) m = k%W,

We remark that the error probability in Proposition 5.15 can actually be made exponentially
small (say 27%) by using an extractor that is designed for min-entropy roughly k — ¢ instead of k.

We note that even though seeded extractors suffice for simulating randomized algorithms with
only a weak source, they do not suffice for all applications of randomness in theoretical computer
science. The trick of eliminating the random seed by enumeration does not work, for example, in
cryptographic applications of randomness. Thus the study of deterministic extractors for restricted
classes of sources remains a very interesting and active research direction. We, however, will focus on
seeded extractors, due to their many applications and their connections to the other pseudorandom
objects we are studying.

5.2 Connections with Hash Functions and Expanders

As mentioned earlier, extractors have played a unifying role in the theory of pseudorandomness,
through their close connections with a variety of other pseudorandom objects. In this section, we will
see two of these connections. Specifically, how by reinterpreting them appropriately, extractors can
be viewed as providing families of hash functions, and as being a certain type of highly expanding
graphs.

5.2.1 Extractors as Hash Functions

One of the results we saw last time says that for any subset S C [N] of size K, if we choose a
completely random hash function h : [N] — [M] for M < K, then h will map the elements of
S almost-uniformly to [M]. Equivalently, if we let H be distributed uniformly over all functions
h: [N] — [M] and X be uniform on the set S, then (H, H(X)) is statistically close to (H,Up),
where we use the notation Ur to denote the uniform distribution on a set T'. Can we use a smaller
family of hash functions than the set of all functions h : [N] — [M]? This gives rise to the following
variant of extractors.

Definition 5.16 (strong extractors). Extractor Ext : {0,1}" x {0,1}¢ — {0,1}™ is a strong
(k,e)-extractor if for every k-source X on {0,1}", (Ug, Ext(X,Uy)) is e-close to (Uy, Uy,). Equiva-
lently, Ext’(z,y) = (y, Ext(x,y)) is a standard (k, ¢)-extractor.

The nonconstructive existence proof from last time can be extended to establish the existence
of very good strong extractors.

Theorem 5.17. For every n,k € N and € > 0 there exists a strong (k, €)-extractor Ext : {0, 1}" x
{0,1}¢ — {0,1}™ with m = k — 2log(1) — O(1) and d = log(n — k) + 2log(1) + O(1).

Note that the output length m & k instead of m = k + d; intuitively a strong extractor needs
to extract randomness that is independent of the seed and thus can only get the k bits from the
source.

We see that strong extractors can be viewed as very small families of hash functions having
the almost-uniform mapping property mentioned above. Indeed, our first explicit construction of
extractors is obtained by using pairwise independent hash functions.

Theorem 5.18 (Leftover Hash Lemma). If H = {h: {0,1}" — {0,1}™} is a pairwise indepen-

dent (or even 2-universal) family of hash functions where m = k — 2log(2), then Ext(z, h) &f h(z)
is a strong (k,)-extractor. Equivalently, Ext(x, h) = (h, h(zx)) is a standard (k, €)-extractor.

Note that the seed length is d = O(n), i.e., the number of random bits required to choose
h < H. This is far from optimal; for the purposes of simulating randomized algorithms we would
like d = O(logn). However, the output length of the extractor is m = k —2 log(%), which is optimal
up to an additive constant.

Proof. Let X be an arbitrary k-source on {0, 1}", H as above, and H & H. Let d be the seed length.
We show that (H, H(X)) is e-close to Uy x Uy, in the following three steps:

(1) We show that the collision probability of (H, H(X)) is close to that of Uy x Up,.

(2) We note that this is equivalent to saying that the ¢y distance between (H, H (X)) and
Uy x Uy, is small.

(3) Then we deduce that the statistical difference is small, by recalling that the statistical
difference equals half of the ¢; distance, which can be (loosely) bounded by the ¢5 distance.

Proof of 1: By definition, CP(H, H(X)) = Pr[(H,H(X)) = (H',H'(X'))], where (H', X") is
independent of and identically distributed to (H, X). Note that (H, H(X)) = (H', H'(X)) if and
only if H = H' and either X = X’ or X # X’ but H(X) = H(X’). Thus

CP(H,H(X)) = CP(H)- (CP(X) +Pr[H(X) = H(X') | X # X’])
1 /1 1 1+ ¢
- D\K M DM
To see the penultimate inequality, note that CP(H) = 1/D because there are D hash functions,

CP(X) < 1/K because Hoo(X) > k, and Pr[H(X) = H(X') |X # X'| = 1/M by pairwise inde-
pendence.

Proof of 2:
1
— 2 — -
(H,H(X)) —Uqg x Upl| CP(H,H(X)) DI
1+¢e? 1 g2

= DM DM DM’
Proof of 3: Recalling that the statistical difference between two random variables X and Y is

9

equal to 1|X — Y|;, we have:

1
A((H, H(X)).Ug % Up) = 3 |(HH(X)) ~ Uy x U,

VDM

< 5 I(H H(X)) = Ua x Un||

< VDM g2

- 2 DM

- £

= 5

Thus, we have in fact obtained a strong (k,e/2)-extractor.]

The proof above actually shows that Ext(x,h) = h(z) extracts with respect to collision prob-
ability, or equivalently, with respect to the fs-norm. This property may be expressed in terms of
Renyi entropy Ha(Z) % log(1/CP(Z)). Indeed, we can define Ext : {0,1}" x {0,1}¢ — {0,1}™
to be a (k,e) Renyi-entropy extractor if Hao(X) > k implies Ho(Ext(X,Uy)) > m — e (or
Ho(Uy, Ext(X,Uy)) > m + d — € for strong Renyi-entropy extractors). Then the above proof shows
that pairwise-independent hash functions yield strong Renyi-entropy extractors.

In general, it turns out that an extractor with respect to Renyi entropy must have seed length
d > Q(min{m,n —k}) (as opposed to d = O(logn)); this explains why the seed length in the above
extractor is large.

5.2.2 Extractors vs. Expanders

Extractors have a natural interpretation as graphs. Specifically, we can interpret an extractor Ext :
{0,1}" x {0,1}% — {0,1}™ as the neighbor function of a bipartite multigraph G = ([N], [M], E)
with N = 2" left-vertices, M = 2™ right-vertices, and left-degree D = 2% 2 where the r’th neighbor
of left-vertex u is Ext(u,r). Typically n > m, so the graph is very unbalanced. It turns out that
the extraction property of Ext is related to various “expansion” properties of G. In this section, we
explore this relationship.

Let Ext : {0,1}" x {0,1}¢ — {0,1}™ be a (k, ¢)-extractor and G = ([N], [M], E) the associated
graph. Recall that it suffices to examine Ext with respect to flat k-sources: in this case, the extractor
property says that given a subset S of size k on the left, a random neighbor of a random element
of S should be close to uniform on the right. In particular, if S C [N] is a subset on the left of
size k, then |N(S)| > (1 —e)M. This property is just like vertex expansion, except that it ensures
expansion only for sets of size exactly K, not any size < K. We call such a graph an (= K, A)
vertex expander. Indeed, this gives rise to the following weaker variant of extractors.

Definition 5.19 (dispersers). A function Disp : {0,1}" x {0,1}¢ — {0,1}™ is a (k, ¢)-disperser
if for every k-source X on {0,1}", Disp(X, Uy) has a support of size at least (1 —¢) - 2™.

While extractors can be used to simulate BPP algorithms with a weak random source, dispersers
can be used to simulate RP algorithms with a weak random source.
Then, we have:

2This connection is the reason we use d to denote the seed length of an extractor.

10

Proposition 5.20. A function Disp : {0,1}" x {0,1}¢ — {0,1}™ is a (k, ¢)-disperser iff the corre-
sponding bipartite multigraph G = ([N], [M], E) with left-degree D is an (= K, A) vertex expander
forA=(1-¢)-M/K.

Note that extractors and dispersers are interesting even when M < K, so the expansion pa-
rameter A may be less than 1. Indeed, A < 1 is interesting for vertex “expanders” when the
graph is highly imbalanced. Still, for an optimal extractor, we have M = O(s?K D) (because
m =k +d — 2log(1/e) — ©(1)), which corresponds to expansion factor A = ©(e2D). (An optimal
disperser actually gives A = ©(D/log(1/¢)).) Note this is smaller than the expansion factor of D /2
in Ramanujan graphs and D — O(1) in random graphs; the reason is that those expansion factors
are for “small” sets, whereas here we are asking for sets to expand to almost the entire right-hand
side.

Now let’s look for a graph-theoretic property that is equivalent to the extraction property. Ext
is a (k, e)-extractor iff for every set S C [N] of size K,

A(Ext(Us, Uipy), Uipn) = e [Pr [Ext(Us, Uyp)) € T] = Pr [Upnp € T]| < ¢,

where Ug denotes the uniform distribution on S. This inequality may be expressed in graph-theoretic
terms as follows. For every set T' C [M],

Pr [Ext(Us,U[D]) € T] —Pr [U[M] € T]‘ <e

I EC N
S|ID M|~
e(S,T)

o] —M(S)M(T)‘ < eu(s).

where (S, T) is the number of edges from S to T
Thus, we have:

Proposition 5.21. Ext is a (k,e)-extractor iff the corresponding bipartite multigraph G =
([N], [M], E) with left-degree D has the property that |e(S,T)/ND — pu(S)u(T)| < ep(S) for every
S C [N] of size K and every T' C [M].

Note that this is very similar to the Expander Mixing Lemma (Lemma 4.15) which states that
if a graph G has spectral expansion A, then for all sets S,T C [N] we have

“5T) S)u(T)| < A alS)HD).

ND
It follows that if A\/u(S)u(T) < eu(S) for all S C [N] of size K and all T C [N], then G gives rise
to a (k,e)-extractor (by turning G into a D-regular bipartite graph with IV vertices on each side in
the natural way). It suffices for A < ¢e./K/N for this to work.
We can use this connection to turn our explicit construction of spectral expanders into an
explicit construction of extractors. To achieve A < e- /K /N, we can take an appropriate power of

11

a constant-degree expander. Specifically, if G is a Dg-regular expander on N vertices with bounded
second eigenvalue, we can consider the tth power of Gy, G = G}, where t = O(log((1/€)y/N/K)) =
O(n — k +1og(1/¢)). The degree of G is D = D}, so d = log D = O(t). This yields the following
result:

Theorem 5.22. For every n,k € N and ¢ > 0, there is an explicit (k, e)-extractor Ext : {0, 1}" X
{0,1}¢ — {0,1}" with d = O(n — k + log(1/¢)).

Note that the seed length is significantly better than in the construction from pairwise-
independent hashing when k is close to n, say & > n — O(logn) (i.e. K = Q(N/logN)). The
output length is just n, which is much larger than the typical output length for extractors (usually
m < n). Using a Ramanujan graph (rather than an arbitrary constant-degree expander), the seed
length can be improved to d = n — k + 2log(1/e) + O(1), which yields an optimal output length
n==k+d—2log(l/e) — O(1).

Another way of proving Theorem 5.22 is to use the fact that a random step on an expanders
decreases the £y distance to uniform, like in the proof of the Leftover Hash Lemma. This analysis
shows that we actually get a Renyi-entropy extractor; and thus explains the large seed length
d~=n—k.

The following table summarizes the main differences between “classic” expanders and extractors.

Expanders Extractors

Measured by vertex or spectral expansion | Measured by min-entropy /statistical difference
Typically constant degree Typically logarithmic or poly-logarithmic degree
All sets of size at most K expand All sets of size exactly (or at least) K expand
Typically balanced Typically unbalanced, bipartite graphs

Fig. 5.1 Differences between “classic” expanders and extractors

5.3 Constructing Extractors

In the previous sections, we have seen that very good extractors exist — extracting almost all of
the min-entropy from a source with only a logarithmic seed length. But the explicit constructions
we have seen (via pairwise-independent hashing and spectral expanders) are still quite far from
optimal in seed length, and in particular cannot be used to give a polynomial-time simulation of
BPP with a weak random source.

Fortunately, much better extractor constructions are known — ones that extract any constant
fraction of the min-entropy using a logarithmic seed length, or extract all of the min-entropy using a
polylogarithmic seed length. In this lecture, we will see how to construct such extractors (assuming
a certain condenser construction that we will see in Chapter 6).

5.3.1 Block Sources
We introduce a useful model of sources that has more structure than an arbitrary k-source:

12

Definition 5.23. X = (X1, Xy,..., Xy) is a (k1, ke, ..., k) block source if for every x1,...,z;i_1,
Xilx,=a1,..X; 1=2;_, 1 & kj-source. If ky = kg = --- = ky = k, then we call X a t x k block source.

Note that a (k1,ks2,...,kt) block source is also a (k1 + --- + k¢)-source, but it comes with
additional structure — each block is guaranteed to contribute some min-entropy. Thus, extracting
randomness from block sources is an easier task than extracting from general sources.

The study of block sources has a couple of motivations.

e They are a natural and plausible model of sources in their own right. Indeed, they are
more general than unpredictable-bit sources of Section 5.1.1: if X € UnpredBits,, ;5 is
broken into ¢ blocks of length ¢ = n/t, then the result is a ¢ x §’¢ block source, where
6 =log(1/(1 —9)).

® We can construct extractors for general weak sources by converting a general weak source
into a block source. We will see how to do this later in the lecture.

We now illustrate how extracting from block sources is easier than from general sources. The
idea is that we can extract almost-uniform bits from later blocks that are essentially independent of
earlier blocks, and hence use these as a seed to extract more bits from the earlier blocks. Specifically,
for the case of two blocks we have the following;:

Lemma 5.24. Let Ext; : {0,1}™ x {0,1}% — {0,1}"™ be a (ki,e1)-extractor, and Exts :
{0,132 x {0,1}92 — {0,1}™2 be a (kg,e2)-extractor with mg > di. Define Ext/((z1,z2),y2) =
(Exti(x1,y1), 22), where (y1, 2z2) is obtained by partitioning Exte(x2,y2) into a prefix y; of length
dy and a suffix zo of length msy — dj.

Then for every (ki, k2) block source X = (X3, Xy) taking values in {0,1}™ x {0,1}"2, it holds
that Ext’ (X, Uy,) is (g1 + €2)-close to Upyy X Upny—d, -

Proof. Since X is a kg-source conditioned on any value of X; and Exts is a (kg,e2)-extractor, it
follows that (X1,Y1, Z2) = (X1, Exta(X2,Uy,)) is e2-close to (X1, Unm,) = (X1, U4y, Umg—d,)-
Thus, (Ext1(X1,Y1),Z2) is eg-close to (Ext1(X1,Uq,),Umy—da,), which is ej-close to
(U, Umny—d,) because X is a kj-source and Exty is a (kg e1)-extractor.
By the triangle inequality, Ext’ (X, Uy,) = (Ext1 (X1, Y1), Z2) is (1 +e2)-close to (Upmy, Umny—d,)-
O

The benefit of this composition is that the seed length of Ext’ depends only one of the extractors
(namely Extg) rather than being the sum of the seed lengths. (If this is reminiscent of the zig-zag
product, it is because they are closely related — see Section 5.4.2). Thus, we get to extract from
multiple blocks at the “price of one.” Moreover, since we can take di = msy, which is typically much
larger than do, the seed length of Ext’ can even be smaller than that of Exty.

The lemma extends naturally to extracting from many blocks:

Lemma 5.25. For i = 1,...,t, let Ext; : {0,1}" x {0,1}% — {0,1}™ be a (k;, ¢;)-extractor, and
suppose that m; > d;_ for every i = 1,...,t, where we define dy = 0. Define Ext’((x1,...,2¢),y:) =

13

(z1,...,2t), where for i = t,...,1, we inductively define (y;—1,2;) to be a partition of Ext;(z;, y;)
into a d;_;-bit prefix and a (m; — d;—_1)-bit suffix.

Then for every (ki,..., k) block source X = (X1,..., X¢) taking values in {0,1}"* x---{0,1}",
it holds that Ext'(X, Uy,) is e-close to Uy, for e = Zle g; and m = Zﬁzl(mi —di—1).

We remark that this composition preserves “strongness.” If each of the Ext;’s correspond to
strong extractors in the sense that their seeds are prefixes of their outputs, then Ext’ will also
correspond to a strong extractor. If in addition d; = ds = -+ = d, then this construction can be
seen as simply using the same seed to extract from all blocks.

Already with this simple composition, we can simulate BPP with an unpredictable-bit source
(even though deterministic extraction from such sources is impossible by Proposition 5.6). As noted
above, by breaking an unpredictable-bit source X with parameter § into blocks of length ¢, we obtain
a t X k block source for t =n/l, k = §'¢, and §' = log(1/(1 —9)).

Suppose that 0 is a constant. Set ¢ = (10/6")logn, so that X is a ¢ x k block source for
k = 10logn, and define e = n~2. Letting Ext : {0,1}* x {0,1}% — {0,1}%™™ be the (k,¢) extractor
using pairwise-independent hash functions (Theorem 5.18), we have:

d = O()=0(logn) and
1
m = k—2logg—0(1)>k/2

Composing Ext with itself ¢ times as in Lemma 5.24, we obtain Ext’ : {0, 1}"x{0,1}¢ — {0, 1}47™
such that Ext’(X,Uy) is ¢/-close to uniform, for ¢ = 1/n. (Specifically, Ext'((z1,...,x¢),h) =
(h,h(z1),...,h(x;)).) This tells us that Ext’ essentially extracts half of the min-entropy from X,
given a random seed of logarithmic length. Plugging this extractor into the construction of Propo-
sition 5.15 gives us the following result.

Theorem 5.26. For every constant § > 0, we can simulate BPP with an unpredictable-bit source
of parameter §. More precisely, for every L. € BPP and every constant > 0, there is a polynomial-
time algorithm A and a polynomial ¢ such that for every w € {0,1}* and every source X €
UnpredBits, (|, 5, the probability that A(w; X) errs is at most 1/[w|.

5.3.2 Reducing General Sources to Block Sources

Given the results of the previous section, a common approach to constructing extractors for general
k-sources is to reduce the case of general k-sources to that of block sources.

One approach to doing this is as follows. Given a k-source X of length n, where k = dn, pick a
(pseudo)random subset S of the bits of X, and let W = X|g be the bits of X in those positions. If
the set S is of size ¢, then we expect that W will have at least roughly ¢ bits of min-entropy (with
high probability over the choice of S). Moreover, W can have at most ¢ bits of min-entropy, so if
¢ < on, intuitively there must still should be at least min-entropy left in X. (This is justified by
Lemma 5.27 below.) Thus, the pair (W, X) should be a block source. This approach can be shown
to work for appropriate ways of sampling the set S, and recursive applications of it was the original
approach to constructing good extractors (and is still useful in various contexts today). The fact
mentioned above, that conditioning on a string of length ¢ reduces min-entropy by at most ¢ bits,
is given by the following lemma (which is very useful when working with min-entropy) .

14

Lemma 5.27 (chain rule for min-entropy). If (W, X) are two jointly distributed random vari-
ables, where (W, X) is a k-source and W has length at most ¢, then for every € > 0, it holds that
with probability at least 1 — ¢ over w <~ W, X |p—y, is a (k — £ — log(1/¢))-source.

This is referred to as the “chain rule” for min-entropy by analogy with the chain rule for
Shannon entropy, which states that Hgp,(X|W) = Hg, (W, X) — Hg, (W), where the conditional
Shannon entropy is defined to be Hg, (X |W) = Ewiw[HSh(X‘W:w)]' Thus, if Hg, (W, X) > k and
W is of length at most ¢, we have Hg, (X |W) > k — £. The chain rule for min-entropy is not quite
as clean; we need to assume that W has small support (rather than just small min-entropy) and
we lose log(1/e) bits of additional min-entropy.

Another approach, which we will follow, is based on the observation that every source of high
min-entropy rate (namely, greater than 1/2) is (close to) a block source, as shown by the lemma
below. Thus, we will try to convert arbitrary sources into ones of high min-entropy rate

Lemma 5.28. If X is an (n — A)-source of length n, and X = (X, X2) is a partition of X into
blocks of lengths n; and ng, then for every € > 0, (X1, X3) is e-close to some (n; — A,ng — A —
log(1/e)) block source.

Consider A = an for a constant a < 1/2, and n; = ng = n/2. Then each block contributes min-
entropy at least (1/2— a)n. The proofs of Lemmas 5.27 and 5.28 are left as exercises (Problem 5.1).

We are still left with the question of converting a general k-source into one of high min-entropy
rate. We will do this via the following kind of object.

Definition 5.29. A function Con : {0,1}" x {0,1}¢ — {0,1}™ is a k —. k' condenser if for every
k-source X on {0,1}", Con(X, Uy) is e-close to some k’-source. Con is lossless if k' = k + d.

If ¥ /m > k/n, then the condenser increases the min-entropy rate, intuitively making extraction an
easier task.

In Chapter 6, we will construct the following kind of condenser, using connections with both
expander graphs and list-decodable error-correcting codes:

Theorem 5.30. For every constant o > 0, for all positive integers n > k and all € > 0, there is an
explicit

k e k+d
lossless condenser C : {0,1}" x {0,1}? — {0,1}™ with d = O(logn +1log(1/¢)) and m = (1 +)k +
O(log(n/e)).

Note that setting a to be a small constant, we obtain an output min-entropy rate arbitrarily close
to 1.

5.3.3 The Extractor

In this section, we will use the ideas outlined in the previous section — namely condensing and
block-source extraction — to construct an extractor that is optimal up to constant factors (assuming
the condenser of Theorem 5.30).

15

Theorem 5.31. Assume Theorem 5.30. Then for all positive integers n > k and all € > 0, there
is an explicit (k,¢) extractor Ext : {0,1}" x {0,1}¢ — {0,1}™ with m > k/2 and d = O(log(n/e)).

We will use the following building block, constructed in Problem 5.5.

Lemma 5.32. Assume Theorem 5.30. Then for every constantt > 0 and all positive integers n > k
and all € > 0, there is an explicit (k,e) extractor Ext : {0,1}" x {0,1}¢ — {0,1}"™ with m > k/2
and d = k/t + O(log(n/e)).

The point is that this extractor has a seed length that is an arbitrarily large constant factor
(approximately ¢/2) smaller than its output length. Thus, if we use it as Exty in the block-source
extraction of Lemma 5.24, the resulting seed length will be smaller than that of Ext; by an arbi-
trarily large constant factor. (The seed length of the composed extractor Ext’ in Lemma 5.24 is the
same of that as Exto, which will be a constant factor smaller than its output length mso, which we
can take to be equal to the seed length d; of Ext;.)

Overview of the Construction. Note that for small min-entropies k, namely & = O(log(n/¢)),
the extractor we want is already given by Lemma 5.32 with seed length d smaller than the output
length m by any constant factor. (If we allow d > m, then extraction is trivial — just output
the seed.) Thus, our goal will be to recursively construct extractors for large min-entropies using
extractors for smaller min-entropies. Of course, if Ext : {0,1}" x {0,1}% — {0,1}™ is a (ko,¢)
extractor, say with m = ko/2, then it is also a (k,e) extractor for every k > ko. The problem is
that the output length is only ko/2 rather than k/2. Thus, we need to increase the output length.
This can be achieved by simply applying extractors for smaller min-entropies several times:

Lemma 5.33. Suppose Ext; : {0,1}" x {0,1}% — {0,1}™ is a (k1,e1) extractor and Exty :
{0,1}" x {0,1}% — {0,1}™2 is a (kg,e2) extractor for ko = k; — my — log(1/e3). Then Ext’ :
{0,137 x {0, 1}4+d2 — {0, 1}™+™M2 ig a (ky,e1 + &2 + €3) extractor.

The proof of this lemma follows from Lemma 5.27. After conditioning a ki-source X on W =
Ext1(X, Uy,), X still has min-entropy at least k1 — my — log(1/e3) = k2 (except with probability
e3), and thus Exta(X, Ug,) can extract an additional mg almost-uniform bits.

To see how we might apply this, consider setting k1 = .8k and m1 = k1/2, 61 =e9 =e3=¢ >
271k ko = k1 — my — log(1/e3) € [.3k,.4k], and ma = ko/2. Then we obtain a (k,3e) extractor
Ext’ with output length m = mq + mo > k/2 from two extractors for min-entropies ki, ko that
are smaller than k£ by a constant factor, and we can hope to construct the latter two extractors
recursively via the same construction.

Now, however, the problem is that the seed length grows by a constant factor in each level of
recursion (e.g. if d; = dy = d in Lemma 5.33, we get seed length 2d rather than d). Fortunately, as
mentioned above, block source extraction using the extractor of Lemma 5.32 gives us a method to
reduce the seed length by a constant factor. In order to apply block source extraction, we first need
to convert our source to a block source; by Lemma 5.28, we can do this by using our condenser to
make its entropy rate close to 1.

16

One remaining issue is that the error ¢ still grows by a constant factor in each level of recursion.
However, we can start with polynomially small error at the base of the recursion and there are only
logarithmically many levels of recursion, so we can afford this blow-up.

We now proceed with the proof details. It will be notationally convenient to do the steps in the
reverse order from the description above — first we will reduce the seed length by a constant factor
via block-source extraction, and then apply Lemma 5.33 to increase the output length.

Proof. [Theorem 5.31] Fix n € N and 9 > 0. Set d = clog(n/eg) for an error parameter £y and
a sufficiently large constant ¢ to be determined in the proof below. (To avoid ambiguity, we will
keep the dependence on c¢ explicit throughout the proof, and all big-Oh notation hides universal
constants independent of ¢.) For k € [0,n], let i(k) be the smallest nonnegative integer i such
that k& < 2¢.8d. This will be the level of recursion in which we handle min-entropy k; note that
i(k) <logk < logn.

For every k € [0,n], we will construct an explicit Exty : {0,1}" x {0,1}¢ — {0,1}*/2 that is
a (k,ei(k)) extractor, for an appropriate sequence g < g1 < go---. Note that we require the seed
length to remain d and the fraction of min-entropy extracted to remain 1/2 for all values of k. The
construction will be by induction on i(k).

Base Case: i(k) = 0, i.e. & < 8d. The construction of Extj, follows from Lemma 5.32, setting
t = 9 and taking c to be a sufficiently large constant.

Inductive Case: We construct Exty for i(k) > 1 from extractors Exty with i(k') < i(k) as
follows. Given a k-source X of length n, Ext; works as follows.

(1) We apply our condenser (Theorem 5.30) to convert X into a source X’ that is £o-close to
a k-source of length (9/8)k + O(log(n/ep)). This requires a seed of length O(log(n/ep)).

(2) We divide X’ into two equal-sized halves (X1, X5). By Lemma 5.28, (X1, X2) is 2¢¢-close
to a 2 x Kk’ block source for

K = k/2 — k/8 — O(log(n/<o)) -

Note that i(k’) < i(k). Since i(k) > 1, we also have k' > 3d — O(log(n/ep)) > 2d, for a
sufficiently large choice of the constant c.

(3) Now we apply block-source extraction as in Lemma 5.24. We take Exts to be a (2d, o)
extractor from Lemma 5.32 with parameter ¢ = 16, which will give us my = d output
bits using a seed of length dy = (2d)/16 + O(log(n/e¢)). For Ext;, we use our recursively
constructed Extys, which has seed length d, error g, and output length K/2 > k/6
(where the latter inequality holds for a sufficiently large choice of the constant ¢, because
k> 8d > 8clog(1/e)).

All in all, our extractor so far has seed length at most d/8 + O(log(n/ep)), error at most
Eitk)—1 T O(ep), and output length at least k/6. This would be sufficient for our induction except
that the output length is only k/6 rather than k/2. We remedy this by applying Lemma 5.33.

With one application of the extractor above, we extract at least m; = k/6 bits of the source
min-entropy. Then with another application of the extractor above for min-entropy threshold ko =

17

k —my —log(1/e) = 5k/6 —log(1/¢), by Lemma 5.33, we extract another (5k/6 —log(1/¢))/6 bits
and so on. After four applications, we have extracted all but (5/6)* - k + O(log(1/¢)) < k/2 bits
of the min-entropy. Our seed length is then 4 - (d/8 + O(log(n/ep))) < d and the total error is
Eitk) = O(Ei(k)—-1)-

Solving the recurrence for the error, we get &; = 200 . gy < poly(n) - €9, so we can obtain error
e by setting 9 = £/poly(n). As far as explicitness, we note that computing Extj consists of four
evaluations of our condenser from Theorem 5.30, four evaluations of Exty for values of k&’ such that
i(k") < (i(k) — 1), four evaluations of the explicit extractor from Lemma 5.32, and simple string
manipulations that can be done in time poly(n,d). Thus, the total computation time is at most
4F) . poly(n, d) = poly(n, d). O

Repeatedly applying Lemma 5.33 using extractors from Theorem 5.31, we can extract any
constant fraction of the min-entropy using a logarithmic seed length, and all the min-entropy using
a polylogarithmic seed length.

Corollary 5.34. Assume Theorem 5.30. Then the following holds for every constant o > 0. For
every n € N, k € [0,n], and € > 0, there is an explicit (k,e) extractor Ext : {0,1}" x {0,1}¢ —
{0,1}™ with m > (1 — @)k and d = O(log(n/¢)).

Corollary 5.35. Assume Theorem 5.30. Then for every n € N, k € [0,n], and € > 0, there
is an explicit (k,e) extractor Ext : {0,1}" x {0,1}¢ — {0,1}™ with m = k — O(log(1/¢)) and
d = O(logk -log(n/e)).

We remark that the above construction can be modified to yield strong extractors achieving the
same output lengths as above (so the entropy of the seed need not be lost in Corollary 5.35).
A summary of the extractor parameters we have seen is in Table 5.1.

Method Seed Length d Output Length m
Optimal and Nonconstructive | log(n — k) + O(1) kE+d—0O(1)
Necessary for BPP Simulation O(logn) k()
Spectral Expanders O(n —k) n
Pairwise Independent Hashing O(n) k+d—0(1)
Corollary 5.34 O(logn) (1 —~)k, any constant v > 0
Corollary 5.35 O(log® n) k—0O(1)

Table 5.1 Parameters for some constructions of (k,.01) extractors.

While Theorem 5.31 and Corollary 5.34 give extractors that are optimal up to constant factors
in both the seed length and output length, it remains an important open problem to get one or both
of these to be optimal to within an additive constants while keeping the other optimal to within a
constant factor.

18

Open Problem 5.36. Give an explicit construction of (k,.01) extractors Ext : {0,1}" x {0,1}¢ —
{0, 1}™ with seed length d = O(log n) and output length m = k+d—O(1) (or even m = (1—o(1))-k).

By using the condenser of Theorem 5.30, it suffices to solve achieve the above for high min-
entropy rate, e.g. k = .99n.

Open Problem 5.37. Give an explicit construction of (k,.01) extractors Ext : {0,1}" x {0,1}¢ —
{0,1}™ with seed length d = logn 4+ O(1) and m = Q(k) (or even m = k%)),

One of the reasons that these open problems are significant is that, in many applications of
extractors, the resulting complexity depends ezponentially on the seed length d and/or the en-
tropy loss k + d — m. (An example is the simulation of BPP with weak random sources given by
Proposition 5.15.) Thus, additive constants in these parameters corresponds to constant factors in
complexity.

Another open problem is more aesthetic in nature. The construction of Theorem 5.31 makes use
of the condenser of Theorem 5.31, the Leftover Hash Lemma (Theorem 5.18) and the composition
techniques of Lemmas 5.24 and Lemma 5.33 in a somewhat complex recursion. It is of interest to
have a construction that is more direct. In addition to the aesthetic appeal, such a construction
would likely be more practical to implement and provide more insight into extractors. In Chapter 7,
we will see a very direct construction based on a connection between extractors and pseudorandom
generators, but its parameters will be somewhat worse than Theorem 5.31. Thus the following
remains open:

Theorem 5.38. Give a “direct” construction of (k,¢) extractors Ext : {0,1}" x {0,1}¢ — {0,1}™
with seed length d = O(log(n/e)) and m = Q(k).

5.4 More Connections with Expanders

5.4.1 Lossless Condensers vs. Expanders

In the previous section, we saw the notion of a k —. k' condenser Con : {0,1}" x {0,1}¢ — {0,1}™,
where for every k-source X on {0,1}", Con(X, Uy) is e-close to some k’-source. We can define the
entropy loss of a condenser to be £ = k 4+ d — k’. As we have discussed, an extractor (i.e. m = k/)
must have ¢ > 2log(1/e) — O(1), whereas if we allow m to be larger than k' (specifically, m >
k' +log(1/e) + O(1)), then it is possible for a condenser to be lossless (i.e. have £ = 0).

As we have seen for extractors in Section 5.2.2, every function Con : {0,1}" x {0,1}¢ — {0,1}™
can be viewed as a bipartite multigraph G with N = 2" left vertices, left-degree D = 2%, and
M = 2™ right-vertices where the y’th neighbor of left-vertex x is Con(z,y). Generalizing what we
showed for extractors, the condenser property implies a vertex-expansion property of the graph
G. Specifically, recalling that an (= K, A) vertex expander is one in which sets of size exactly K
expand by a factor of A, then we have:

19

Proposition 5.39. If Con : {0,1}" x {0,1}¢ — {0,1}™ is a k —. k' condenser, then the corre-
sponding bipartite graph is a (= K, A) vertex expander for A = (1 —¢)- K'/K = (1 —¢)-D/L,
where K =28, K’ =2F D =29% [=29¢ and ¢ = k+ d — K is the entropy loss of Con.

Thus, if L < (1 —¢€) - D, the expansion factor A is in fact bigger than 1 (but the case A < 1 is
still interesting and nontrivial, because the graph is unbalanced). In general, the vertex expansion
property is weaker than the property of being a condenser — for example, when m = £/, it corre-
sponds to a disperser rather than an extractor (Proposition 5.20). However, for the special case of
lossless condensers (i.e. L = 1), it turns out that the two properties are equivalent.

Proposition 5.40. A function Con : {0,1}"x{0,1}¢ — {0,1}™ is a k —. k+d (lossless) condenser
if and only if the corresponding bipartite graph is a (= K, A) vertex expander for A = (1 —¢)- D,
where K = 2F, K’ = 2 and D = 27 (provided 2¥ € N).

Proof. The “only if” direction follows from Proposition 5.39, so we only prove the “if” direction.
Assume that the bipartite graph corresponding to Con is a (= K, (1 — ¢) - D) vertex expander. To
show that Con is a lossless condenser, by Lemma 5.10 it suffices to show that Con(X, Uy) is e-close
to a k’-source for every flat k-source X. Let S be the support of X, which is of size K. By the vertex
expansion of the graph, |[N(S)| > (1 —¢) - DK. Since there are only DK edges leaving S, we can
make all of these edges lead to distinct vertices by shifting an e fraction of them. Let T' C [M] be
the set of K D vertices hit after this shifting. Then Con(X, Uy) is e-close to the uniform distribution
on T, which is a (k + d)-source.]

Thus, the lossless condenser that we assumed in the previous lecture follows immediately from
the following expander:

Theorem 5.41. For every constant « > 0, every N € N, K < N, and € > 0, there
is an explicit (K, (1 — ¢)D) expander with N left-vertices, M right-vertices, left-degree D =
O((log N)(log K)/e)'*/® and M < D? - K'*®. Moreover, D is a power of 2.

We will construct this expander in Chapter 6, using ideas based on list-decodable error-correcting
codes.

Note that the kind of expander given by this theorem can be used for the data structure
application in Problem 4.6 — storing a K/2-sized subset S C [N] with M = K1+ . polylog(N)
bits in such a way that membership can be probabilistically tested by reading only 1 bit of the data
structure. (An efficient solution to this application actually requires more than the graph being
explicit in the usual sense, but also that there are efficient algorithms for finding all left-vertices
having at least a 0 fraction neighbors in a given set T' C [M] of right vertices, but it turns out that
the expanders we will construct have this property.)

A deficiency of the expander of Theorem 5.41 is that the size of the right-hand side is polynomial
in K and D (for constant «), whereas the optimal bound is M = O(K D/e). Achieving the latter,
while keeping the left-degree polylogarithmic, is an open problem:

20

Open Problem 5.42. Construct (= K, A) bipartite expanders with N left-vertices, degree D =
poly(log N), expansion A = .99D, and M = O(K D) right-hand vertices.

We remark that a construction where D is quasipolynomial in log N is known. By Proposi-
tion 5.40, a solution to Open Problem 5.42 would give lossless condensers whose output is of
extremely high min-entropy (k' = m — O(1)), and thus we could get extractors that extract all the
min-entropy by then applying extractors based on spectral expanders (Theorem 5.22), thereby also
solving Open Problem 5.36.

5.4.2 Block-Source Extraction vs. the Zig-Zag Product

Recall the block-source extraction method presented last time. We define Ext’ : {0,1}"%"2 x
{0,1}% — {0,1}™ by Ext'((z1,72),y2) = Exty (w1, Exta(z2,v2)). (Here we consider the special
case that mg = dj.)

Viewing the extractors as bipartite graphs, the left-vertex set is [IV1] x [N2] and the left-degree
is Dy. A random step from a vertex (z1,z2) € [N1] x [Na] corresponds to taking a random step
from x5 in Go to obtain a right-hand vertex y; € {0,1}"2, which we view as an edge label y for
(1. We then move to the y’th neighbor of x;.

This is just like the first two steps of the zig-zag graph product. Why do we need a third step in
the zig-zag product? It is because of the slightly different goals in the two setting. In a (spectral)
expander, we consider an arbitrary initial distribution that does not have too much (Renyi) entropy,
and need to add entropy to it. In a block-source extractor, our initial distribution is constrained
to be a block source (so both blocks have a certain amount of min-entropy), and our goal is to
produce an almost-uniform output (even if we end up with less bits than the initial entropy).

Thus, in the zig-zag setting, we must consider the following extreme cases (that are ruled out
for block sources):

® The second block has no entropy given the first. Here, the step using G5 will add entropy,
but not enough to make y; close to uniform. Thus, we have no guarantees on the behavior
of the G1-step, and we may lose entropy with it. For this reason, we keep track of the
edge used in the G1-step — that is, we remember b; such that z; is the b;’th neighbor of
z1 = Ext(x1,y1). This ensures that the (edge-rotation) mapping (z1,y1) — (21,b1) is a
permutation and does not lose any entropy. We can think of by as a “buffer” that retains
any extra entropy in (x1,y;) that did not get extracted into z;. So a natural idea is to
just do block source extraction, but output (z1,b1) rather than just z;. However, this
runs into trouble with the next case.

® The first block has no entropy but the second block is completely uniform given the first.
In this case, the G2 step cannot add any entropy and the Gi step does not add any
entropy because it is a permutation. However, the G step transfers entropy into z1. So if
we add another expander-step from b; at the end, we can argue that it will add entropy.
This gives rise to the 3-step definition of the zig-zag product.

While we analyzed the zig-zag product with respect to spectral expansion (i.e. Rényi entropy),
it is also possible to do analyze it in terms of a condenser-like definition (i.e. distributions e-close

21

to having some min-entropy). all” It turns out that a variant of the zig-zag product for condensers
leads to a construction of constant-degree bipartite expanders with expansion (1 —¢) - D for the
balanced (M = N) or slightly unbalanced (e.g. M = Q(N)) case. However, as mentioned in Open
Problems 4.39, 4.40, and 5.42, there are still several significant open problems concerning the explicit
construction of expanders with vertex expansion close to the degree, involving achieving expansion
D — O(1), the non-bipartite case, and achieving a near-optimal number of right-hand vertices.

5.5 Exercises

Problem 5.1, (Mi | Statiobionl Diff ;

(1) Prove that for every two random variables X and Y,
1
AX,Y) = max|E[f(X)] - Ef(V)]| = 5 - [X = Y],

where the maximum is over all [0, 1]-valued functions f. (Hint: first identify the functions
f that maximize | E[f(X)] — E[f(Y)]|.)

(2) Suppose that (W, X) are jointly distributed random variables where W takes values in
{0, 1} and (W, X) is a k-source. Show that for every £ > 0, with probability at least 1 —¢
over w <~ W, we have X |yy—, is a (k — £ — log(1/¢))-source.

(3) Suppose that X is an (n — A)-source taking values in {0,1}", and we let X consist of
the first ny bits of X and X5 the remaining ny = n — nj bits. Show that for every € > 0,
(X1, X2) is e-close to some (n; — A,ny — A —log(1/e)) block source.

Problem 5.2. (Extractors vs. Samplers) One of the problems we have revisited several times
is that of randomness-efficient sampling: Given oracle access to a function f : {0,1}" — [0, 1],
approximate its average value p(f) to within some small additive error. Most of the samplers we
have seen work as follows: they choose some n random bits, use these to decide on some D samples
21,...,2p € {0,1}™, and output the average of f(z1),..., f(zp). We call such a procedure a (4, ¢)-
averaging sampler if, for any function f, the probability that the sampler’s output differs from p(f)
by more than ¢ is at most . In this problem, we will see that averaging samplers are essentially
equivalent to extractors.

Given Ext: {0,1}"x{0,1}¢ — {0, 1}™, we obtain a sampler Smp which chooses x<-{0,1}", and
uses {Ext(z,y) : y € {0,1}} as its D = 2% samples. Conversely, every sampler Smp using n random
bits to produce D = 2¢ samples in {0, 1}™ defines a function Ext: {0,1}" x {0,1}¢ — {0,1}™.

(1) Prove that if Ext is a (k — 1,¢)-extractor, then Smp is a (2¥/2",)-averaging sampler.

(2) Prove that if Smp is a (2¥/2", &)-sampler, then Ext is a (k + log(1/¢), 2¢)-extractor.

(3) Suppose we are given a constant-error BPP algorithm which uses r = r(n) random bits
on inputs of length n. Show how, using Part 1 and the extractor of Theorem 5.31, we
can reduce its error probability to 27¢ using O(r) + £ random bits, for any polynomial
¢ = £(n). (Note that this improves the r + O(¢) given by expander walks for ¢ > r.)
Conclude that every problem in BPP has a randomized algorithm which only errs for
24" choices of its g random bits!

22

Problem 5.3. (Encryption and Deterministic Extraction) A (one-time) encryption scheme with
key length n and message length m consists of an encryption function Enc: {0,1}" x {0,1}"" —
{0,1}* and a decryption function Dec: {0,1}" x {0,1}¢ — {0,1}™ such that Dec(k, Enc(k,u)) = u
for every k € {0,1}" and v € {0,1}™. Let K be a random variable taking values in {0, 1}". We say
that (Enc, Dec) is (statistically) e-secure with respect to K if for every two messages u,v € {0,1}™,
we have A(Enc(K,u),Enc(K,v)) < e. For example, the one-time pad, where n = m = { and
Enc(k,u) = k @& u = Dec(k,u) is O-secure (aka perfectly secure) with respect to the uniform
distribution K = U,,. For a class C of sources on {0,1}", we say that the encryption scheme
(Enc, Dec) is e-secure with respect to C if Enc is e-secure with respect to every K € C.

(1) Show that if there exists a deterministic e-extractor Ext: {0,1}"™ — {0,1}" for C, then
there exists an 2e-secure encryption scheme with respect to C.

(2) Conversely, use the following steps to show that if there exists an e-secure encryption
scheme (Enc, Dec) with respect to C, where Enc: {0,1}" x {0,1}™ — {0,1}", then there
exists a deterministic 2e-extractor Ext: {0,1}" — {0, 1}m2le(1/9)=0() for ¢, provided
m > logn + 2log(1/e) + O(1).

(a) For each fixed key k € {0,1}", define a source X}, on {0, 1}* by X}, = Enc(k, U,,),
and let C' be the class of all these sources (i.e., C' = {Xy : k € {0,1}"}). Show
that there exists a deterministic e-extractor Ext’: {0, 1}¢ — {0, 1}m~2los(1/2)=0(1)
for C’, provided m > logn + 2log(1/¢) + O(1).

(b) Show that if Ext’ is a deterministic e-extractor for ¢’ and Enc is e-secure with
respect to C, then Ext(k) = Ext/(Enc(k,0™)) is a deterministic 2e-extractor for
C.

Thus, a class of sources can be used for secure encryption iff it is deterministically extractable.

Problem 5.4. (Extracting from Unpredictable-Bit Sources)

(1) Let X be a source taking values in {0, 1}" such that for all z,y, Pr[X = z]/Pr[X = y] <
(1—4)/6. Show that X € UnpredBits,, 4.

(2) Prove that for every function Ext: {0,1}" — {0,1} and every § > 0, there exists a source
X € UnpredBits,, 5 with parameter § such that Pr[Ext(X) = 1] < § or Pr[Ext(X) = 0] >
1—6. (Hint: for b € {0, 1}, consider X that is uniform on Ext~!(b) with probability 1 —§
and is uniform on Ext~!(b) with probability ¢.)

(3) (*) Show how to extract from sources in UnpredBits,, 5 using a seeded extractor with a
seed of constant length. That is, the seed length should not depend on the length n of
the source, but only on the bias parameter § and the statistical difference ¢ from uniform
desired. The number of bits extracted should be Q(dn).

23

Problem 5.5. (The Building-Block Extractor) Assume the condenser stated in Theorem 5.30.
Show that for every constant t > 0 and all positive integers n > k and all € > 0, there is an ezplicit
(k,e)-extractor Ext: {0,1}" x {0,1}¢ — {0,1}™ with m = k/2 and d = k/t + O(log(n/¢)). (Hint:
convert the source into a block source with blocks of length k/O(t) + O(log(n/¢)).)

Problem 5.6. (Extracting from Symbol-Fixing Sources*®) A generalization of a bit-fixing source is
a symbol-fixing source X taking values in X" for some alphabet ¥, where subset of the coordinates of
X are fixed and the rest are uniformly distributed and independent elements of 3. For ¥ = {0, 1,2}
and k € [0,n], give an explicit e-extractor Ext : ¥ — {0,1}™ for the class of of symbol-fixing
sources on X" with min-entropy at least k, with m = Q(k) and ¢ = 2=%(*), (Hint: use a random
walk on a consistently labelled 3-regular expander graph.)

24

6

List-Decodable Codes

6.1 Definitions and Existence

The field of coding theory is motivated by the problem of communicating reliably over noisy chan-
nels — where the data sent over the channel may come out corrupted on the other end, but we
nevertheless want the receiver to be able to correct the errors and recover the original message.
There is a vast literature studying aspects of this problem from the perspectives of electrical engi-
neering (communications and information theory), computer science (algorithms and complexity),
and mathematics (combinatorics and algebra). In this survey, we are interested in codes as “pseu-
dorandom objects,” ones that are intimately related with the other objects we are studying. In
particular, we will see how to use ideas from coding theory to construct the condensers and unbal-
anced expanders that we assumed in the previous chapter (Theorem 5.41).

The approach to communicating over a noisy channel is to restrict the data we send to be from
a certain set of strings that can be easily disambiguated (even after being corrupted).

Definition 6.1. A g-ary code is a set C C ", where ¥ is an alphabet of size q. Elements of C are
called codewords. Some key parameters:

® 7 is the block length.
e n = log, |C| is the message length.
e p=n/(n-log|X|) is the (relative) rate of the code.

An encoding function for C is an injective mapping Enc: {1,...,|C|} — C. Given such an encod-
ing function, we view the elements of {1,...,|C|} as messages. When n = log|C| is an integer, we
often think of messages as strings in {0, 1}".

Note that every code C whose message length is an integer has an encoding function Enc. We
view C and Enc as being essentially the same object (with Enc merely providing a “labelling” of
codewords), with the former being useful for studying the combinatorics of codes and the latter for
algorithmic purposes.

25

We remark that our notation differs from the standard notation in coding theory in several ways.
Typically in coding theory, the input alphabet is taken to be the same as the output alphabet (rather
than {0,1} and ¥, respectively), the blocklength is denoted n, and the message length (over X) is
denoted k and is referred to as the rate.

So far, we haven’t talked at all about the error-correcting properties of codes. Here we need to
specify two things: the model of errors (as introduced by the noisy channel) and the notion of a
successful recovery.

For the errors, the main distinction is between random errors and worst-case errors. For random
errors, one needs to specify a stochastic model of the channel. The most basic one is the binary
symmetric channel (over alphabet ¥ = {0, 1}), where each bit is flipped independently with proba-
bility 6. People also study more complex channel models, but as usual with stochastic models, there
is always the question of how well the theoretical model correctly captures the real-life distribution
of errors. We, however, will focus on worst-case errors, where we simply assume that fewer than a ¢
fraction of symbols have been changed. That is, when we send a codeword ¢ € X" over the channel,
the received word r € X" differs from c in fewer than §7 places. Equivalently, ¢ are r are close in
Hamming distance:

Definition 6.2 (Hamming distance). For two strings z,y € X", their (relative) Hamming dis-
tance dg(x,y) equals Pr;[z; # y;]. The agreement is defined to be agr(z,y) = 1 — dg(z,y).
For a string x € X" and § € [0, 1], the (open) Hamming ball of radius § around z is the set B(z, §)

of strings y € X" such that dy(x,y) < §. Define H,(8,7) to be such that |B(x,d)| = g7

For the notion of a successful recovery, the traditional model requires that we can uniquely
decode the message from the received word (in the case of random errors, this need only hold with
high probability). Our main focus will be on a more relaxed notion which allows us to produce a
small list of candidate messages. As we will see, the advantage of such list-decoding is that it allows
us to correct a larger fraction of errors.

Definition 6.3. Let Enc: {0,1}" — X" be an encoding algorithm for a code C. A §-decoding
algorithm for Enc is a function Dec : X% — {0,1}" such that for every m € {0,1}" and r € X"
satisfying di(Enc(m),r) < d, we have Dec(r) = m. If such a function Dec exists, we call the code
d-decodable.

A (6, L)-list-decoding algorithm for Enc is a function Dec : £ — ({0,1}")¥ such that for every
m € {0,1}" and r € X" satisfying d(Enc(m),r) < §, we have m € Dec(r). If such a function Dec
exists, we call the code (9, L)-list-decodable.

Note that a §-decoding algorithm is the same as a (4, 1)-list-decoding algorithm. It is not hard to
see that, if we do not care about computational efficiency, the existence of such decoding algorithms
depends only on the combinatorics of the set of codewords.

Definition 6.4. The (relative) minimum distance of a code C C ¥" equals mingyec dg(z,y).

26

Proposition 6.5. Let C C " be a code with any encoding function.

(1) For én € N, C is 6-decodable iff its minimum distance is at least 26 — 1/n.
(2) C is (6, L)-list-decodable iff for every r € ¥ we have |B(r,d) NC| < L.

Because of the factor of 2 in Item 1, unique decoding is only possible at distances up to 1/2,
whereas we will see that list-decoding is possible at distances approaching (with small lists).

The main goals in constructing codes are to have infinite families of codes (e.g. for every message
length n) in which we:

Maximize the fraction § of errors correctible (e.g. constant independent of n and n).
Maximize the rate p (e.g. a constant independent of n and 7).

Minimize the alphabet size ¢ (e.g. a constant, ideally ¢ = 2).

Keep the list size L relatively small (e.g. a constant or poly(n)).

Have computationally efficient encoding and decoding algorithms.

In particular, coding theorists are very interested in obtaining the optimal tradeoff between the
constants § and p with efficiently encodable and decodable codes.

6.1.1 Existential Bounds

The existence of very good codes can be shown using the probabilistic method.

Theorem 6.6. (1) For all n,q € N and ¢ € (0,1 — 1/q), there exists a g-ary code of block
length 7, minimum distance at least §, and rate p > 1 — Hy (9, n).
(2) For all all integers n,q,L € N and 6 € (0,1 — 1/q), there exists a (J, L)-list-decodable
g-ary code of block length 7 and rate p > 1 — Hy(6,7) — 1/(L + 1).

Proof. [Sketch]

(1) Pick the codewords cy,...,cy in sequence ensuring that ¢; is at distance at least § from
C1,...,¢i—1. The union of the Hamming balls of radius ¢ around ci,...,¢;—1 contains at
most (i — 1) - ¢! O.n)7 — N . gHa(07) g6 there is always a choice of ¢; outside these balls
provided that N - ¢fa(07) < g7,

(2) We use the probabilistic method. Choose the ¢”* elements of the code randomly and inde-
pendently from ¥". The probability that there is a Hamming Ball of radius § containing

RN R o

which is less than 1 by our setting of parameters.

L + 1 codewords is at most

27

Note that while the rate bounds are essentially the same for achieving minimum distance and the
list-decoding radius ¢ (as we take large list size), recall that minimum distance ¢ only corresponds
to unique decoding up to radius roughly 6/2. Indeed, the bound for list-decoding is known to be
tight up to the dependence on L (Problem 6.1, while the bound on minimum distance is not tight
in general. Indeed, there are families “algebraic-geometric” codes with constant alphabet size ¢,
constant minimum distance ¢ > 0, and constant rate p > 0 where p > 1 — H,(d,n) for sufficiently
large 7. (Thus, this is a rare counterexample to the phenomenon “random is best”.) Identifying the
best tradeoff between p and d, even for binary codes, is a long-standing open problem in coding
theory.

Open Problem 6.7. For each constant ¢ € (0,1), identify the largest p > 0 such that for every
e > 0, there exists an infinite family of codes C; C {0,1}" of rate at least p — ¢ and minimum
distance at least .

Let’s look at some special cases of the parameters in the above theorem. For binary codes
(¢ = 2), it turns out that H2(d,7) is at most the Shannon entropy Hgy, (d) of a {0, 1}-valued random
variable B s.t. Pr[B = 1] = §, so the rate is roughly 1 — Hg(d) (as we take a large list size).
(More generally, H,(6,7) is bounded by a g-ary analogue of Shannon entropy.) This is known to be
tight for list-decoding, but it is unknown whether it is tight for unique decoding. We will be most
interested in the case § — 1/2, which corresponds to correcting the maximum possible fraction of
errors for binary codes. (No nontrivial decoding is possible for binary codes at distance greater than
1/2, since a completely random received word will be at distance roughly 1/2 with most codewords.)
In which case the rate is 1 — Hgp,(1/2 — &) = O(£?), i.e. i = O(n/e?) (for list size L = O(1/&?)).

For large alphabets ¢, we have Hy(d,7) < H>(0,7)/log g+ 0, in which case the rate approaches
1 — 9 as q grows. We will be most interested in the case § = 1 — ¢, where the above bounds
imply codes where we can correct a § = 1 — ¢ fraction of errors with a rate of p = .99¢, a list
size of L = O(1/e) and an alphabet of size poly(1/e). Alternatively, it is possible to achieve rate
p = (1 4+ v)e with an alphabet size of ¢ = (1/¢)°1/7),

While we are primarily interested in list-decodable codes, minimum distance is often easier to
bound. The following allows us to translate bounds on minimum distance into bounds on list-
decodability.

Proposition 6.8 (Johnson Bound). (1) If C has minimum distance 1 — ¢, then it is (1 —
O(v/¢),0(1/+/¢))-list-decodable.
(2) If a binary code C has minimum distance 1/2 — ¢, then it is (1/2 — O(y/e),0(1/¢))-
list-decodable.

Proof. We prove Item 1, and leave Item 2 as an exercise. The proof is by inclusion-exclusion.
Suppose for contradiction that there are codewords c1, ..., cs at distance less than 1 —¢’ from some

28

r € X", for ¢ =2/ and s = [2/¢']. Then:

1 > fraction of positions where r agrees with some C;
>) agr(r,Ci)— Y agr(Ci,Cy)
i 1<i<j<s
> s — (7).
2
> 2-1=1
where the last inequality is by our setting of parameters. Contradiction. O

Note the quadratic loss in the distance parameter. This means that optimal codes with respect
to minimum distance are not necessarily optimal with respect to list-decoding. Nevertheless, if we
do not care about the exact tradeoff between the rate and the decoding radius, the above can yield
codes where the decoding radius is as large as possible (approaching 1 for large alphabets and 1/2
for binary alphabets).

6.1.2 Explicit Codes

As usual, most applications of error-correcting codes (in particular the original motivating one)
require computationally efficient encoding and decoding. For now, we focus on only the efficiency
of encoding.

Definition 6.9. A code Enc : {0,1}" — X% is (fully) explicit if given a message m € {0,1}" and
an index ¢ € 7, the i’th symbol of Enc(m) can be computed in time poly(n,logn,log |3|).

The reason we talk about computing individual symbols of the codeword rather than the entire
codeword is to have a meaningful definition even for codes where the blocklength 7 is superpoly-
nomial in the message length n. One can also consider weaker notions of explicitness, where we
simply require that the entire codeword Enc(m) can be computed in time poly(n, log |3]).

The constructions of codes that we describe will involve arithmetic over finite fields, so we recall
some facts about the complexity of such arithmetic (previously mentioned in Section 3.5.2):

For every prime power ¢ = p* there is a field F, of size ¢, and this field is unique up to
isomorphism (renaming elements). The prime p is called the characteristic of the field. F, has
a description of length O(logq) enabling addition, multiplication, and division to be formed in
polynomial time (i.e. time poly(logq)). (This description is simply an irreducible polynomial f of
degree k over F), = 7Z.) If ¢ = p* for a given prime p and integer k, this description can be found
probabilistically in time poly(log p, k) = poly(log ¢) and deterministically in time poly(p, k). Note
that for even finding a prime p of a desired bitlength, we only know time poly(p) deterministic
algorithms. Thus, for computational purposes, a convenient choice is often to instead take p = 2
and k large, in which case everything can be done deterministically in time poly(k) = poly(log q).
With such a choice, all of the constructions below meet our definition of explicitness.

In describing the explicit constructions below, it will be convenient to think of the codewords
as functions c : [A] — ¥ rather than as strings in X7

29

Construction 6.10 (Hadamard Code). For n € N, the (binary) Hadamard code of message
length n is the binary code of blocklength n = 2" consisting of all functions c : Z§ — Zy that are
linear (modulo 2).

Proposition 6.11. The Hadamard code:

(1) is explicit with respect to the encoding function that takes a message m € ZI to the
linear function ¢, defined by ¢,,(x) = >, m;x; mod 2.

(2) has minimum distance 1/2, and

(3) is (1/2 —&,0(1/€?)) list-decodable for every & > 0.

Proof. Explicitness is clear by inspection. The minimum distance follows from the fact that for
every two distinct linear functions ¢, : ZJ' — Za, Pryc(z) = (z)] = Pry[(c — ¢)(x) = 0] = 1/2.
The list-decodability follows from the Johnson Bound. O

The advantages of the Hadamard code are its small alphabet (binary) and optimal distance
(1/2), but unfortunately its rate is exponentially small (p = n/2"). By increasing both the field
size and degree, we can obtain complementary properties

Construction 6.12. For a prime power ¢ and d € N, the g-ary Reed—Solomon code of degree d is
the code of blocklength 7 = ¢ and message length n = (d + 1) - log ¢ consisting of all polynomials
p:Fy — F, of degree at most d.

Proposition 6.13. The g-ary Reed—Solomon Code of degree d:

(1) is explicit with respect to the encoding function that takes a vector of coefficients m €
]Ff]l+1 to the polynomial p,, defined by p,,(z) = Z?:o mizt.
(2) has minimum distance 6 =1 — d/q, and

(3) is (1/2 — O(\/d/q),0(y/q/d)) list-decodable.

Note that by setting ¢ = O(d), Reed-Solomon codes simultaneously achieve constant rate and
constant distance, the only disadvantage being that the alphabet is of nonconstant size (namely
qg=n>n.)

Another useful setting of parameters for Reed-Solomon codes in complexity theory is ¢ =
poly(d), which gives polynomial rate (n = poly(n)) and distance tending to 1 polynomially fast
(6 =1 - 1/poly(n)).

The following codes “interpolate” between Hadamard and Reed-Solomon codes, by allowing the
number of variables, the degree, and field size all to vary.

30

Construction 6.14. For a prime power ¢ and d,m € N, the g-ary Reed—Muller code of degree d
and dimension t is the code of blocklength 7 = ¢™ and message length n = (m;d) -log g consisting

of all polynomials p : Fy* — FF, of (total) degree at most d.

Proposition 6.15. The g-ary Reed—Muller Code of degree d and dimension m:

(1) is explicit with respect to the encoding function that takes a vector of coefficients v €
m+d)

o
(2) has minimum distance 6 > 1 — d/q, and
(3) is (1/2 — O(\/d/q),O(+/q/d)) list-decodable.

to the corresponding polynomial p,.

Note that Reed—Solomon Codes are simply Reed—Muller codes of dimension m = 1, and
Hadamard codes are essentially Reed—Muller codes of degree d = 1 and alphabet size ¢ = 2 (except
that the Reed-Muller code also contains affine linear functions).

6.2 List-Decoding Algorithms

In this section, we will describe efficient list-decoding algorithms for the Reed—Solomon code and
variants. It will be convenient to work with the following notation:

Definition 6.16. Let C be a code with encoding function Enc : {1,...,N} — ¥". For r € ¥,
define LIST(r,e) = {m : agr(m,r) > €}.

Then the task of (1 — ¢) list-decoding (according to Definition 6.3) is equivalent to producing
the elements of LIST(r, <) given r € ¥, In this section, we will see algorithms that do this in time
polynomial in the bit-length of r, i.e. time poly(7,log|X|).

6.2.1 Review of Algebra

The list-decoding algorithms will require some additional algebraic facts and notation:

e For every field F, F[Xy,..., X,,] is the integral domain consisting of formal polynomials
Q(X1,...,X,) with coefficients in F, where addition and multiplication of polynomials
is defined in the usual way.

e A nonzero polynomial Q(Xy,...,X,) is irreducible if we cannot write Q = RS where
R, S are nonconstant polynomials. For a finite field [F, of characteristic p and d € N, a
univariate irreducible polynomial of degree d over I, can be found in deterministically
in time poly(p,logq, d).

e F[Xy,...,X,] is a unique factorization domain. That is, every nonzero polynomial) can
be factored as Q = Q1Q2 - - - @, where each (); is irreducible and this factorization is
unique up to reordering and multiplication by constants from F. Given the description of
a finite field F,» and the polynomial @), this factorization can be done probabilistically
in time poly(logp, k, |@|) and deterministically in time poly(p, k, |Q)).

31

e For a nonzero polynomial Q(Y, Z) € F[Y, Z] and f(Y) € F[Y], if Q(Y, f(Y)) = 0, then
Z — f(Y) is one of the irreducible factors of Q(Y,Z) (and thus f(Y) can be found in
polynomial time). This is analogous to the fact that if ¢ € Z is a root of an integer
polynomial Q(Z), then Z — ¢ is one of the factors of Q (and can be proven in the same
way, by long division).

6.2.2 List-Decoding Reed-Solomon Codes

Solomon code of degree d, for € = 24/d/q. That is, given a function r : F; — F, and d € N, all
polynomials of degree at most d that agree with r on more than eq = 2+/dq inputs can be found in

polynomial time.

In fact the constant of 2 can be improved to 1, matching the combinatorial list-decoding radius
for Reed—Solomon codes given by an optimized form of the Johnson Bound, but we will not do this
optimization here.

Proof. We are given a received word r : F;, — F,, and want to find all elements of LIST(r,¢) for

5:2\/%.

Step 1: Find a low-degree) “explaining” r. Specifically, Q(Y, Z) will be a nonzero bivariate
polynomial of degree at most dy in its first variable Y and dz in its second variable, and will satisfy
Q(y,r(y)) = 0 for all y € F,. Each such y imposes a linear constraint on the (dy + 1)(dz + 1)
coefficients of (). Thus, this system has a nonzero solution provided (dy + 1)(dz + 1) > ¢, and it
can be found in polynomial time by linear algebra (over Fy).

Step 2: Argue that each f(Y) € LIST(r,e) is a “root” of (. Specifically, it will be the
case that Q(Y, f(Y)) = 0 for each f € LIST(r,e). The reason is that Q(Y, f(Y)) is a univariate
polynomial of degree at most dy + d - dz, and has more than eq zeroes (one for each place that
f and r agree). Thus, we can conclude Q(Y, f(Y)) = 0 provided eq > dy + d - dz. Then we can
enumerate all of the elements of LIST(r) by factoring Q(Y, Z) and taking all the factors of the form

Z — f(Y).

For this algorithm to work, the two conditions we need to satisfy are
(dy + 1)(dz +1) > g,
and
eq>dy +d-dy.
These conditions can be satisfied by setting dy = |eq/2], dz = |eq/(2d)], and € = 24/d/q. O
Note that the rate of Reed-Solomon codes is p = (d + 1)/q = ©(£?). The alphabet size is q =
Q(n/p) = Q(n/e?). In contrast, the random codes of Theorem 6.6 achieve p ~ ¢ and q = poly(1/e).

It is not known whether the known bounds on the list-decodability of Reed—Solomon codes can be
improved, even with inefficient decoding.

32

Open Problem 6.18. Is the g-ary Reed—Solomon Code of degree d (1 — eps)-list-decodable for

e < \/d/q?

6.2.3 Parvaresh—Vardy Codes

Our aim is to improve the rate-distance tradeoff to p = ©(e). Intuitively, the power of the Reed—
Solomon list-decoding algorithm comes from the fact that we can interpolate the ¢ points (y,r(y))
of the received word using a bivariate polynomial () of degree roughly /g in each variable (think
of d = O(1) for now). If we could use m variables instead of 2, then the degrees would only have to

be around ¢'/™.

First attempt: Replace Step 1 with finding an (m+1)-variate polynomial Q(Y, Z1, ..., Z,,) of de-
gree dy inY and dz in each Z; such that Q(y, r(y),7(y),...,r(y)) = 0 for every y € F,. Then, we will
be able to choose a nonzero polynomial Q of degree roughly ¢'/™ such that Q(Y, f(Y),..., f(Y)) =0
for every f € LIST(r,e), and hence it follows that Z — f(Y) divides the bivariate polynomial
Q*(Y,Z)=Q(, Z,...,Z). Unfortunately, @* might be the zero polynomial even if @) is nonzero.

Second attempt: Replace Step 1 with finding an (m + 1)-variate polynomial Q(Y, Z1, ..., Zy)
of degree dy in Y and dz = h — 1 in each Z; such that Q(y,r(y),(y)",r()"",...,r)"") =0
for every y € F,. Then, it follows that Q*(Y, Z) = Q(Y, Z, Z", ..., thfl) is nonzero if @) is nonzero
because every monomial in) with individual degrees at most h — 1 in Z1,--- , Z,, gets mapped to
a different power of Z. However, here the difficulty is that the degree of Q*(Y, f(Y)) is too high
(roughly d* = dy +d - k™ > d7}) for us to satisfy the constraint eq > d*.

Parvaresh—Vardy codes get the best of both worlds by providing more information with each
symbol — not just the evaluation of f at each point, but the evaluation of m — 1 other polynomials,
each of which is still of degree d (as is good for Step 1), but can be viewed as raising f to successive
powers of h for the purposes of the getting a nonzero polynomial in one variable Z in Step 2.

To introduce this idea, we need some additional algebra.

e For univariate polynomials f(Y) and E(Y), we define f(Y) mod E(Y) to be the remain-
der when f is divided by E. If E(Y) is of degree k, then f(Y) mod E(Y') is of degree at
most k — 1.

e The ring F[Y]/E(Y) consists of all polynomials of degree at most k — 1 with arithmetic
modulo E(Y) (analogous to Z,, consisting integers smaller than n with arithmetic modulo
n). If E is irreducible then, F[Y]/E(Y) is a field (analogous to Z, being a field when p
is prime). Indeed, this is how the finite field of size p* is constructed: take F = Ly and
E(Y) to be an irreducible polynomial of degree k over Z,, and then F[Y]|/E(Y) is the
(unique) field of size p*.

e A multivariate polynomial Q(Y, Z1, ..., Zy) can be reduced modulo E(Y') by writing it
as a polynomial in variables Z1, ..., Z,, with coefficients in F[Y] and then reducing each
coefficient modulo E(Y"). After reducing @ modulo E, we think of @ as a polynomial in
variables Z1, ..., Z,, with coefficients in the field F[Y]/E(Y).

33

Construction 6.19 (Parvaresh—Vardy Codes). For a prime power ¢, m,d,h € N, and an ir-
reducible polynomial F(Y') of degree larger than d, the g-ary Parvaresh—Vardy code of degree d,
power h, redundancy m, and irreducible E is defined as follows:

® The alphabet is ¥ = F".

® The blocklength is n = gq.

® The message space is IFf]lH, where we view each message as representing a polynomial
f(Y) of degree at most d over F,.

e For y € F,, the y’th symbol of the Enc(f) is

o), 1), -+, fin—1(W)],
where f;(Y) = f(Y)" mod E(Y).

Theorem 6.20. For every prime power ¢, d € N, and irreducible polynomial E of degree d+ 1, the
g-ary Parvaresh—Vardy code of degree d, redundancy m = [log(d/q)], power h = 2, and irreducible
E has has rate p = Q(d/q) and can be list-decoded in polynomial time up to distance § = 1—-0(d/q).

Proof. We are given a received word r : Fy — ", and want to find all elements of LIST(r,¢), for
some € = O(d/q).

Step 1: Find a low-degree @ “explaining” r. We find a polynomial Q(Y, Zy, ..., Z;,—1) of
degree at most dy in its first variable Y and at most h — 1 in each of the remaining variables, and
satisfying Q(y,r(y)) =0 for all y € F,.
This is possible provided
dy - h"™ > q. (6.1)

Moreover, we may assume that @ is not divisible by E(Y'). If it is, we can divide out all the
factors of E(Y'), which will not affect the conditions Q(y,7(y)) = 0 since E has no roots (being
irreducible).

Step 2: Argue that each f(Y) € LIST(r,¢) is a “root” of a related univariate polynomial
Q*. First, we argue as before that for f € LIST(r,), we have

QY fo(Y),..., fm-1(Y)) = 0.
Since each f; has degree at most deg(E) — 1 = d, this will be ensured provided
eq>dy +(h—1)-d-m. (6.2)
Once we have this, we can reduce both sides modulo E(Y') and deduce

0 = Q. foY), Ai(Y),..., fm-1(Y)) mod E(Y)
= QY. f(Y), (V)" f(Y)"™ ") mod E(Y)

34

Thus, if we define the univariate polynomial
Q (2)=Q(Y,Z,2",....Z" ") mod E(Y),

then f(Y) is a root of Q* over the field F,[Y]/E(Y).

Observe that Q* is nonzero because @ is not divisible by E(Y') and has degree at most h — 1 in
each Z;. Thus, we can find all elements of LIST(r,¢) by factoring Q*(Z).

For this algorithm to work, we need to satisfy Conditions (6.1) and (6.2). We can satisfy Con-
dition (6.2) by setting dy = [eq — dhm], in which case Condition (6.2) is satisfied for

1 dhm
_{_7_

e= = 0(d/q), (6.3)

for h = 2 and m = [log(q/d)]. Observing that the rate is p = d/(mq) = Q(d/q), this completes
the proof of the theorem. Note that the obstacles to obtaining a tradeoff that is optimal to within
constant factors (i.e. p = ©(g)) are the factors of m appearing in both the expressions for ¢ and p.

O

6.2.4 Folded Reed—Solomon Codes

We now sketch how to further improve the rate-distance tradeoff to be near-optimal.

Theorem 6.21. The following holds for all constants € > p > 0. For every n € N, there is an
explicit code of message length n and rate p that can be list-decoded in polynomial time from
distance 1 — ¢, with alphabet size ¢ = poly(n).

We will sketch how to achieve ¢ = O(p). Consider the Parvaresh-Vardy construction with
irreducible polynomial E(Y) = Y9~ — ~, where v is a generator of the multiplicative group Fg-
(That is, {7,7%,...,77 1} = F, \ {0}.) Then it turns out that f4(Y) = f(7Y) mod E(Y). So, we
set h = ¢ and the degree of f;(Y) = f*(Y) mod E(Y) = f(4'Y) is d even though E has degree
q — 1. For each nonzero element y of Fy, the y’th symbol of the PV encoding of f(Y’) is then

F@) FOw)s - FO™ I =), 7Y, f 7T,

where we write y = 7.

Thus, the symbols of the PV encoding have a lot of overlap. For example, the ¥7’th symbol and
the 47T1’th symbol share all but one component. Intuitively, this means that we should only have
to send roughly a 1/m fraction of the symbols of the codeword, saving us a factor of m in the rate.
(The other symbols can be automatically filled in by the receiver.) Thus, the rate becomes p ~ d/q,
just like in Reed—Solomon codes.

However, there is still an extra factor m in the agreement £ we needed when analyzing the PV
codes (Equation 6.3), which prohibits us from achieving p = ©(e). To deal with this, we don’t just
require that Q(y,r(y)) = 0 for each y, but instead require that @ has a root of multiplicity s at each
point (y,7(y)). Formally, this means that the polynomial Q(Y + vy, Zo +r(y)o,- -+, Zm—-1+7(Y)m-1)
has no monomials of degree smaller than s.

Then Condition (6.2) becomes

egs>dy +(h—1)-d-m.

35

However, we pay a price in Condition (6.1), because asking for a root of multiplicity s amounts to
(7?:“18) constraints on the coefficients of @ (one for each monomial of degree smaller than s). Thus
Condition (6.1) becomes:
m+s—1
dy - h™ > q- ()

m

Putting the two together, we can decode from agreement

("N dhm
e= + :
sh™ sq

Recalling that h = g, setting s = (h — 1)(m + 1)/4 and m = O(log(q/d)) < ¢/4, we have

s m e/(m m+1 e m+1
<l m Dl O G oy

Further optimizations along the lines of Problem 6.4 can eliminate this constant factor and make
€ = p+ v for an arbitrarily small v, which is optimal. Also, with a more sophisticated variant of
code concatenation (see Problem 6.2) it is is possible achieve ¢ = p + v with an alphabet size that
is independent of n, namely ¢ = 2P°Y (/7). However, for a fixed constant-sized alphabet, e.g. ¢ = 2,
it is still not known how to achieve list-decoding capacity.

Open Problem 6.22. For any desired constants p,d > 0 such that p > 1 — Hg,(d), construct
an explicit family of of codes Enc,, : {0,1}" — {0,1}" that have rate at least p and are (6, L)
list-decodable for L = poly(n).

6.2.5 List-decoding views of expanders and extractors

Previously, we have seen close connections between expanders and extractors (and related objects,
such as condensers). In this section, we will see how these objects are also closely related to list-
decodable codes, by presenting all of them in a single, list-decoding-like framework. We begin with
the syntactic correspondence.

Construction 6.23 (Syntactic Correspondence of Codes, Extractors, and Expanders).
Given a code Enc : [N] — [M]P, we define the corresponding extractor Ext : [N] x [D] — [D] x [M]
and the neighbor function of the corresponding expander I' : [N] x [D] — [D] x [M] via the
correspondence:

Ext(z,y) = I'(z,y) = (y, Enc(z)y).

Note that this correspondence yields extractors and expanders with output/right-hand-side
[D] x [M] and where the first component equals the seed/edge-label. (Recall that for such an
extractor Ext, the second component is called a strong extractor.) Conversely, any such extractor
or expander yields a code Enc.

36

Definition 6.24. Let Enc, Ext, and I' be the corresponding code, extractor, and expander as in
Construction 6.23. For a subset 7' C [D] x [M] and € € [0, 1), we define

LIST(T,¢) def {z: P;r[(y, Enc(z),) € T] > ¢}
= {z: P;r[Ext(a:,y) eT]|>e}
= {z: P;r[l“(x,y) eT]>c¢e}

We define LIST(T', 1) analogously, except that replace “> ¢” with “=1".

Now we can formulate the standard list-decoding property of codes in this language as follows:

Proposition 6.25. Enc : [N] — [M]P is (1 — 1/M — ¢, K) list-decodable iff for every r € [M]P,
we have

ILIST(T,,1/M +¢)| < K,
where T, = {(y,ry) : y € [D]}.

Now let’s look at extractors.

Proposition 6.26. If Ext : [N] x [D] — [M] is a (k,) extractor then for every T' C [D] x [M], we
have
|LIST(T', ;(T') + ¢)| < K, (6.4)

where K = 2 and u(T) = |T|/M.
Conversely, if (6.4) holds for every T C [D] x [M], then Ext is a (k + log(1/¢), 2¢) extractor.

This lemma says that the extractor property is equivalent to a “list-decoding-like property,” up to
a factor of 2 in the error € and an extra additive entropy loss of log(1/¢) (both of which are usually
considered insignificant).

Let’s compare this to the standard list-decoding property of codes as formulated in Propo-
sition 6.25. Note that the only difference between the condition in Lemma 6.25 and the one in
Proposition 6.26 is that in the former, we restrict to sets T" of the form 7,.. That is, we restrict to
sets T' C [D] x [M] that contain exactly one element of the form (y,-) for each y.

Corollary 6.27. If Ext : [N] x [D] — [D] x [M] is a (k,e) extractor (satisfying Ext(z,y) =
(y, Ext’(z,y))), then the corresponding code Enc is (1 — 1/M — ¢, K) list-decodable.

A converse holds when the alphabet size is small.

Proposition 6.28. If Enc : [N] — [M]” is (1—1/M —¢, K) list-decodable, then the corresponding
function Ext : [N] x [D] — [D] x [M] given by Ext(z,y) = (y, Enc(z)y) is a (k + log(1/e), M - ¢)
extractor.

37

Proof. Let X be a (k + log(1/¢))-source and Y = Ujpj. Then the statistical difference between
Ext(X,Y) and Y x Uy equals
A(Ext(X,Y),Y xUpy) = E [A(Enc(X)y, Ung)]
y«iy

M
< > E [maxPr[Enc(X)y =zl—-1/M

gy - F
where the last inequality follows from the ¢; formulation of statistical difference.
So if we define r € [M]P by setting r, to be the value z maximizing Pr[Enc(X), = z] — 1/M,

we have:
M
A(Ext(X,Y),Y x Upg) < 5 (Pr[(Y,Enc(X)y) € T;] — 1/M),

M

< 5 (Pr[X € LIST(T,,1/M +¢)] + ¢)
M
= (o~ (ktlog(1/e) |

< 3 (2 K+ 5)

< M -e.

O

Thus, the quantitative relationship between extractors and list-decodable codes deteriorates
extremely fast as the output length/alphabet size increases. Nevertheless, the list-decoding view
of extractors as given in Proposition 6.26 turns out to be quite useful (as we will see later in the
course).

For expanders, the list-decoding view is quite simple to state and prove.

Lemma 6.29. For K € N, I' : [N] x [D] — [D] x [M] is an (= K, A) expander iff for every set
T C [D] x [M] such that |T'| < KA, we have:

ILIST(T, 1)| < K.

Proof.
I’ not an (= K, A) expander
& 3S C[N]st. |S|=K and [N(S)| < KA
< IS C[N]st. |S]> K and |[N(S)| < KA
< dT C[D] x [M] s.t. |[LIST(T,1)| > K and |T'| < KA,

where the last equivalence follows because if T' = N(S), then S C LIST(T,1), and conversely if
S = LIST(T, 1) then N(S) C T. O

On one hand, this list-decoding property seems easier to establish than the ones for codes and
extractors because we look at LIST(T, 1) instead of LIST(T, u(T') 4+ €). On the other hand, to get
expansion (i.e. A > 1), we require a very tight relationship between |T'| and |LIST(7,1)|. In the
setting of extractors or codes, we would not care much about a factor of 2 loss in [LIST(T')|, as this
corresponds to 1 bit of entropy loss for extractors or just a slightly larger list size for codes. But
here it corresponds to a factor 2 loss in expansion, which can be quite significant. In particular, we
cannot afford it if we are trying to get A = (1 —¢) - D, as we will be in the next section.

38

6.2.6 Expanders from Parvaresh—Vardy Codes

Consider the bipartite multigraph obtained from the Parvaresh—Vardy codes (Construction 6.19)
via the correspondence of Construction 6.23. That is, we define I' : Fyy X Fy — Fy x Fi?

L(f,y) = [y, fo), 1), -, frm—1()], (6.5)

where f(Y) is a polynomial of degree at most n — 1 over F,, and we define f;(Y) = f (Y)hi
mod E(Y), where E is a fixed irreducible polynomial of degree n over F,. (Note that we are using
n — 1 instead of d to denote degree of f.)

Theorem 6.30. Let I' : Fj x F; — IFZ”H be the neighbor function of the bipartite multigraph
corresponding to the g-ary Parvaresh—Vardy code of degree d, power h, and redundancy m via
Construction 6.23. Then I' is a (K ez, A) expander for K, = h™ and A = ¢ — nhm.

Proof. Let K be any integer less than or equal to K, = h™, and let A = ¢g—nmh. By Lemma 6.29,
it suffices to show that for every set T' C IF;”H of size at most AK — 1, we have |LIST(T")| < K —1.

We begin by doing the proof for K = K,z = h™, and later describe the modifications to
handle smaller values of K. The proof goes along the same lines as the list-decoding algorithm for
the Parvaresh—Vardy codes from Section 6.2.3.

Step 1: Find a low-degree () vanishing on 7. We find a nonzero polynomial
QY,Zy,...,Zm—1) of degree at most dy = A — 1 in its first variable Y and at most h — 1 in
each of the remaining variables such that Q(z) = 0 for all z € T". (Compare this to Q(r,7(y)) =0
for all y € Fy in the list-decoding algorithm, which corresponds to taking 7" = T;.)
This is possible because
A" =AK > |T)|.

Moreover, we may assume that @ is not divisible by E(Y"). If it is, we can divide out all the factors
of E(Y'), which will not affect the conditions Q)(z) = 0 since E has no roots (being irreducible).

Step 2: Argue that each f(Y) € LIST(r) is a “root” of a related univariate polynomial
Q*. First, we argue as in the list-decoding algorithm that if f € LIST(r, 1), we have

QY. fo(Y), -, fnea(Y)) = 0.

This is ensured because
qg>A—1+nmh.

(In the list-decoding algorithm, the left-hand side of this inequality was £¢, since we were bounding
LIST(T;, €)].)
Once we have this, we can reduce both sides modulo E(Y') and deduce
0 = QU fo¥), fo(Y),. ., fnr(Y)) mod E(Y)
= QUL FY). f(Y)*....f(Y)"™!) mod E(Y)
Thus, if we define the univariate polynomial
Q (2)=Q(,Z,2",....Z" ") mod E(Y),

39

then f(Y) is a root of Q* over the field F,[Y]/E(Y).
Observe that Q* is nonzero because () is not divisible by E(Y) and has degree at most A — 1 in
each Z;. Thus,

ILIST(T,1)| < deg(Q*) <h—1+(h—1)-h+(h—1)-h*+---+(h—1)-A" ' =K — 1.

(Compare this to the list-decoding algorithm, where our primary goal was to efficiently enumerate
the elements of LIST(T',¢), as opposed to bound its size.)

Handling smaller values of K. We further restrict Q(Y, Z1,...,Zy) to only have nonzero
coefficients on form YiMonj(Zl,...,Zm) for0 <i<A—-land 0 < j < K-1<hnm"—-1,
where Monj(Zy, ..., Zpm) = 2 Zin* and j = jo 4 jih + -+ 4 jm_1h™ ! is the base-h rep-
resentation of j. Note that this gives us AK > |T'| monomials, so Step 1 is possible. Moreover
M;(Z, Zh,Zh2,...,th71) = 77, so the degree of Q* is at most K — 1, and we get the desired
list-size bound in Step 3. a

We now set parameters to deduce the expander we used in the previous chapter (to get a
condenser).

Theorem 6.31 (Theorem 5.41, restated). For every constant a > 0, every N € N, K < N,
and £ > 0, there is an explicit (K, (1 —)D) expander with N left-vertices, M right-vertices,
left-degree D = O((log N)(log K)/e)'t1/® and M < D? . K+, Moreover, D is a power of 2.

Proof. Let n = log N and k = log Kpax. Let h = [(2nk/e)'/®] and let ¢ be the power of 2 in the
interval (h'*®/2, B1F4].

Set m = [(log Kmax)/(log k)], so that h™~! < Kjjax < h™. Then, by Theorem 6.30, the graph
[:F} x Fy — F"t! defined in (6.5) is an (h™, A) expander for A = g —nhm. Since Kpax < ™, it
is also a (Kjneq, A) expander.

Note that the number of left-vertices in I' is ¢" > N, and the number of right-vertices is

M = qm+1 < q2 . h(1+a)~(m—1) < q2 . K1+a

max *

The degree is
D = ¢ <h'"* = O(nk/e)"/* = O((log N)(log Kmax)/e) /.

To see that the expansion factor A = ¢ — nhm > q — nhk is at least (1 —e)D = (1 — ¢)q, note
that
nhk < (¢/2) - B} < gq,

where the first inequality holds because h® > 2nk/e.

Finally, the construction is explicit because a description of F, for ¢ a power of 2 (i.e. an
irreducible polynomial of degree log g over Fs) as well as an irreducible polynomial E(Y") of degree
n over F, can be found in time poly(n,log¢) = poly(log N, log D). O

6.3 Exercises

40

p that is (9, L) list-decodable, then p <1 — Hy(d,7) + (log, L)/n

Problem 6.2. (Concatenated Codes) For codes Enc; : {1,..., N} — XI* and Ency : ¥; — X352,
their concatenation Enc : {1,..., N} — 3" is defined by

Enc(m) = Ency(Ency(m)1)Ence(Ency(m)s) - - - Ence(Ency (m),,).

This is typically used as a tool for reducing alphabet size, e.g. with Yo = {0,1}.

(1) Prove that if Enc; has minimum distance 6; and Ency has minimum distance d2, then
Enc has minimum distance at least §199.

(2) Prove that if Ency is (1 — £1,£;) list-decodable and Encs is (d2,¢2) list-decodable, then
Enc is ((1 — e143) - 02, ¢12) list-decodable.

(3) By concatenating a Reed—Solomon code and a Hadamard code, show that for every
n € N and € > 0, there is a (fully) explicit code Enc : {0,1}" — {0,1}" with blocklength
n = O(n?/e?) with minimum distance at least 1/2 — e. Furthermore, show that with
blocklength n = poly(n,1/c), we can obtain a code that is (1/2 — ¢, poly(1/e)) list-
decodable in polynomial time. (Hint: the inner code can be decoded by brute force.)

Problem 6.3. (List Decoding implies Unique Decoding for Random Errors)

(1) Suppose that C C {0,1}" is a code with minimum distance at least 1/4 and rate at most
ae? for a fixed constant « > 0 be determined below, and we transmit a codeword ¢ € C
over a channel in which each bit is flipped with probability 1/2 — 2. Show that if « is
sufficiently small, then all but exponentially small probability over the errors, ¢ will be
the unique codeword at distance at most 1/2 — ¢ from the received word 7.

(2) Using Problem 6.2, deduce that for every ¢ > 0 and n € N, there is an explicit code
of blocklength 7 = poly(n,1/¢) that can be uniquely decoded from (1/2 — 2¢) random
errors as above in polynomial time.

Problem 6.4. (List-decoding Reed—Solomon Codes)

(1) Show that there is a polynomial-time algorithm for list-decoding the Reed-Solomon codes
of degree d over F, up to distance 1—/2d/q, improving the 1—2\/% bound from lecture.
(Hint: do not use fixed upper bounds on the individual degrees of the interpolating
polynomial Q(X,Y), but rather allow as many monomials as possible.)

(2) (*) Improve the list-decoding radius further to 1 — /d/q by using the ‘multiple-roots’
trick used in Section 6.2.4.

41

Problem 6.5. (Codes vs. Hashing) Given any code Enc : [N] — [M]?, we can obtain a family of
hash functions H = {h; : [N] — [M]},c[n) defined by h;(z) = Enc(x);, and conversely.

(1) Show that Enc has minimum distance at least ¢ iff H has collision probability at most
1 — 4. That is, for all z # y € [N], we have Pr;[h;(z) = hi(y)] < 1 — 6. (This is a
generalization of the definition of universal hash functions, which correspond to the case
that 6 =1—1/M.)

(2) The Leftover Hash Lemma extends to families of functions with low collision probability;
specifically if a family H with range [M] has collision probability at most (1+¢2)/M, then
Ext(xz,h) = (h, h(z)) is a (k,) extractor for k = m+2log(1/¢)+O(1), where m = log M.
Use this to prove the Johnson Bound for small alphabets: if a code Enc : [N] — [M]"
has minimum distance at least 1 — 1/M — /M, then it is (1 — 1/M — /5,0(M/7))
list-decodable.

Problem 6.6. (Twenty Questions) In the game of 20 questions, an oracle has an arbitrary secret
s € {0,1}" and the aim is to determine the secret by asking the oracle as few yes/no questions
about s as possible. It is easy to see that n questions are necessary and sufficient. Here we consider
a variant where the oracle has two secrets s1,s9 € {0,1}", and can adversarially decide to answer
each question according to either s; or so. That is, for a question f : {0,1}" — {0, 1}, the oracle
may answer with either f(s1) or f(s2). Here it turns out to be impossible to pin down either of the
secrets with certainty, no matter how many questions we ask, but we can hope to compute a small
list L of secrets such that |L N {s1,s2}| # 0. (In fact, |L| can be made as small as 2.) This variant
of twenty questions apparently arose from Internet routing algorithms used by Akamai.

(1) Let Enc : {0,1}™ — {0,1}" be a code such that that every two codewords in Enc agree
in at least a 1/2 — ¢ fraction of positions and that Enc has a polynomial-time (1/4+¢, /)
list-decoding algorithm. Show how to solve the above problem in polynomial time by
asking the n questions {f;} defined by f;(z) = Enc(z);.

(2) Taking Enc to be the code constructed in Problem 1, deduce that 7 = poly(n) questions
suffices.

42

7

Pseudorandom Generators

7.1 Motivation and Definition

Our accomplishments in derandomization from the previous chapters include the following:

® Derandomizing specific algorithms, such as the ones for MAXCUT and UNDIRECTED S-T
CONNECTIVITY;

e Giving explicit (efficient, deterministic) constructions of various pseudorandom objects,
such as expanders, extractors, and list-decodable codes, as well as showing various rela-
tions between them;

® Reducing the randomness needed for certain tasks, such as error reduction of randomized
algorithms and sampling; and

¢ Simulating BPP with any weak random source.

However, all of these still fall short of answering our original motivating question, of whether
every randomized algorithm can be efficiently derandomized. That is, does BPP = P?

As we have seen, one way to resolve this question in the positive is to use the following two-step
process: First show that the number of random bits for any BPP algorithm can be reduced from
poly(n) to O(logn), and then eliminate the randomness entirely by enumeration.

Thus, we would like to have a function G that stretches a seed of O(logn) truly random bits
into poly(n) bits that “look random”. Such a function is called a pseudorandom generator. The
question is how we can formalize the requirement that the output should “look random” in such a
way that (a) the output can be used in place of the truly random bits in any BPP algorithm, and
(b) such a generator exists.

Some candidate definitions for “looks random” include the following:

¢ Information-theoretic or statistical measures: e.g., entropy, statistical difference from uni-
form distribution, pairwise independence. All of these fail one of the two criteria. For
example, it is impossible for a deterministic function to increase entropy from O(logn)

43

to n. And it is easy to construct algorithms that fail when run using random bits that
are only guaranteed to be pairwise independent.

e Kolmogorov complexity, which is defined as follows: a string “looks random” if it is
incompressible (cannot be generated by a Turing machine with a representation of length
less than n). An appealing aspect of this notion is that it makes sense of the randomness
in a fixed string (rather than a distribution). Unfortunately, it is not suitable for our
purposes. Specifically, if the function G is computable (which we certainly want!) then
all of its outputs have Kolmogorov complexity O(logn) (just hardwire the seed into the
TM computing (), and hence are very compressible.

e Computational indistinguishability: this is the measure we will use. Intuitively, we say
that a random variable X “looks random” if no efficient algorithm can distinguish X
from a truly uniform random variable. Another way to look at it is as follows. Recall the
definition of statistical difference:

AX,)Y) = max |Pr(X € T| — PrlY € T]|.

With computational indistinguishability, we simply restrict the max to be taken only
over “efficient” statistical tests T' (1T"s for which membership can be efficiently tested).

7.1.1 Computational Indistinguishability

,€) indistinguishable if for every nonuniform algorithm running in time ¢, we

ues in {0,1}" are (

have

~

|IPr[T(X)=1]-Pr[T(Y) =1]| <¢

The left-hand side above is called also the advantage of T.

Recall that a nonuniform algorithm is an algorithm that may have some nonuniform advice
hardwired in. If the algorithm runs in time ¢ we require that the advice string is of length at
most t. Typically, to make sense of complexity measures like running time, it is necessary to use
asymptotic notions (e.g. because a Turing machine can encode a huge lookup table for inputs of
any bounded size in its transition function). However, for nonuniform algorithms, we can avoid
doing so by using Boolean circuits as our nonuniform model of computation. Similarly to Fact 3.11,
every nonuniform Turing machine algorithm running in time ¢(n) can be simulated by a sequence
of Boolean circuit C,, of size O(t(n)) and conversely every sequence of Boolean circuits of size s(n)
can be simulated by a nonuniform Turing machine running in time O(s(n)). Thus, to make our
notation cleaner, by “nonuniform algorithm running in time t’, we mean “Boolean circuit of size t’
(where the size is measured by the number of AND and OR gates in the circuit). Note also that
we have not specified whether the the distinguisher is deterministic or randomized; this is because
a probabilistic distinguisher achieving advantage greater than ¢ can be turned into a deterministic
distinguisher achieving advantage greater than ¢ by nonuniformly fixing the randomness.

While we won’t do so, it is also of interest to study computational indistinguishability and
pseudorandomness against uniform algorithms.

44

Definition 7.2 (uniform computational indistinguishability). Let X,,Y,, be some se-
quences of random variables on {0,1}" (or {0, 1}P°¥(")). For functions ¢t : N — Nand ¢ : N — [0, 1],
we say that {X,,} and {Y,,} are (t(n),e(n)) indistinguishable for uniform algorithms if for all prob-
abilistic algorithms 7" running in time ¢(n), we have that

[Pr[T(X,,) = 1] - Pr{T(Y;) = 1]| < e(n)

for all sufficiently large n, where the probabilities are taken over X,,, Y;, and the random coin tosses
of T.

We will focus on the nonuniform definition, but will mention results about the uniform definition
as well.

7.1.2 Pseudorandom Generators

(1) £ <n, and
(2) G(Uyp) and Uy, are (t,¢) indistinguishable.

Also, note that we have formulated the definition with respect to nonuniform computational
indistinguishability, but there is a natural uniform analogue of this definition.

People attempted to construct pseudorandom generators long before this definition was formu-
lated. Their generators were tested against a battery of statistical tests (e.g. the number of 1’s and
0’s are approximately the same, the longest run is of length O(logn), etc.), but these fixed set of
tests provided no guarantee that the generators will perform well in an arbitrary application (e.g.
in cryptography or derandomization). Indeed, most classical constructions (e.g. linear congruential
generators, as implemented in the standard C library) are known to fail in some applications.

Intuitively, the above definition guarantees that the pseudorandom bits produced by the gener-
ator are as good as truly random bits for all efficient purposes (where efficient means time at most
t). In particular, we can use such a generator for derandomizing any algorithm of running time less
than t. For the derandomization to be efficient, we will also need the generator to be efficiently
computable.

Definition 7.4. We say a sequence of generators {G,, : {0,1}*(®) — {0,1}"} is computable in
time t(n) if there is a wniform and deterministic algorithm M such that for every n € N and
y € {0,1}™ | we have M(1",z) = G,(z) and M (1™, z) runs in time at most (n).

Note that even when though we define the pseudorandomness property of the generator with
respect to nonuniform algorithms, the efficiency requirement refers to uniform algorithms. As usual,
for readability, we will usually refer to a single generator G = G,, : {0,1}(™) — {0,1}", with it
being implicit that we are discussing a family {G,,}.

45

Theorem 7.5. Suppose that for all n there exists an (n,1/8) pseudorandom generator G :
{0,1}¥) — {0,1}" computable in time ¢(n). Then BPP C |J, DTIME (2™ . (n¢ + t(n°))).

Proof. A BPP algorithm starts with some algorithm A taking an input z of length n and a sequence
of random bits 7, and then accepting or rejecting after at most n¢ steps for some c¢. We can of course
assume that the algorithm uses at most n¢ random bits.

The idea will be to plug in the pseudorandom generator G,,c to produce this sequence of random
bits, then to use the pseudorandomness assumption to show that the algorithm will do just as well
with that sequence, and then to enumerate over all possible seeds to produce a derandomization.

Claim 7.6. For every x of length n, A(x; Gpe(Upgney)) errs with probability smaller than 1/2.

Proof of claim: Suppose that there exists some 2 on which A(x; Gpe(Upgney))
errs with probability at least 1/2. Then T'(-) = A(x,-) is a nonuniform algorithm
running in time n¢ that distinguishes Gye(Uy(e)) from Uye with advantage at least
1/2 —1/3 > 1/8. Notice that we are using = here as nonuniform advice; this is why
we need the PRG to be robust against nonuniform tests. (|

Now, enumerate over all seeds of length ¢(n°) and take a majority vote. There are 2¢(") of them,
and for each we have to run both G and A. |

Notice that we can afford for the generator G, have running time t(n) = poly(n) or even
t(n) = poly(n) - 20¢") without affecting the time of the derandomization by than more than a
polynomial amount. In particular, for this application, it is OK if the generator runs in more time
than the tests it fools (which are time n in this theorem).

The theorem provides a mechanism to produce various different theorems, relating the existence
of PRGs for certain seed lengths with the ability to derandomize. Let’s look at some typical settings
of parameters to see what we might imagine proving with this theorem. Assuming throughout that
t(n) < poly(n)-20¢() PRGs of various seed lengths can be used to simulate BPP in the following
deterministic time classes (see Definition 3.1):

(1) Suppose that for every ¢ you can create a PRG with ¢(n) = n®. Then BPP C
Neso DTIME(2™) 4 SUBEXP. Since we know that SUBEXP is a proper subset
of EXP, this would be a nontrivial improvement on the current inclusion BPP C EXP
(Proposition 3.2).

(2) Suppose we had a PRG with £(n) = polylog(n). Then BPP C | J, DTIME(21e°") &' P

(3) Suppose we had a PRG with ¢(n) = O(logn). Then BPP = P.

Of course, all of these derandomizations are contingent on the question of whether PRGs exist.
As usual, our first answer is yes but the proof is not very helpful—it is nonconstructive and thus
does not provide for an efficiently computable PRG.

46

Proposition 7.7. For all t € N and ¢ > 0, there exists a (¢,e) pseudorandom generator G :
{0,1}* — {0,1}* with seed length O(logt + log(1/e)).

Proof. The proof is by the probabilistic method. Choose G : {0,1}¢ — {0,1}" at random. Now, fix
a time ¢ algorithm, T". The probability (over choice of G) that T" distinguishes G(Uy) from U,, with
advantage ¢ is at most 2_9(21{52), by a Chernoff bound argument. There are 2P°¥(®) nonuniform
algorithms running in time ¢ (i.e. circuits of size t). Thus, union-bounding over all possible T,
and setting ¢ = 1/t, we get that the probability that there exists a T' breaking G is at most

2poly()2—=R(2°e") " hich is less than 1 for £ being O(logt + log(1/e)).]

Note that putting together Proposition 7.7 and Theorem 7.5 gives us another way to prove that
BPP C P/poly (Corollary 3.12). Just let the advice string be the truth table of the PRG for the
proper length, and then one can use that PRG and the proof of Theorem 7.5 to derandomize BPP.
However, if you unfold both this proof and our previous proof (where we do error reduction and
then fix the coin tosses), you will see that both proofs amount to exactly the same “construction”.

7.2 Cryptographic PRGs

The theory of computational pseudorandomness developed in this chapter emerged from cryptogra-
phy, where researchers sought a definition that would ensure that using pseudorandom bits instead
of truly random bits (e.g. when encrypting a message) would retain security against all computa-
tionally feasible attacks. In this setting, the generator G is used by the honest parties and thus
should be very efficient to compute. On the other hand, the distinguisher T' corresponds to an
attack carried about by an adversary, and we want to protect against adversaries that invest a lot
of computational resources into trying to break the system. Thus, one is led to require that the
pseudorandom generators be secure even against adversaries with greater running time. The most
common setting of parameters in the theoretical literature is that the generator should run in a
fixed polynomial time, but the adversary can run in an arbitrary polynomial time.

Definition 7.8. A generator G, : {0, 1} — {0,1}" is a cryptographic pseudorandom generator
if

® (5, is computable in polynomial time. That is, there is a constant ¢ such that G, is
computable in time nc.

* G, isan (n*M, 1/n*(M) PRG. That is, for every constant d, G, is an (n%,1/n%) pseudo-
random generator for all sufficiently large n.

Due to time constraints and the fact that such generators are covered in other texts (see the
Chapter Notes and References), we will not do an in-depth study of cryptographic generators, but
just survey what is known about them.

The first question to ask is whether such generators exist at all. It is not hard to show that
cryptographic pseudorandom generators cannot exist unless P # NP, indeed unless NP Z P /poly.
Thus, we do not expect to establish the existence of such generators unconditionally, and instead

47

need to make some complexity assumption. While it would be wonderful to show that NP ¢
P/poly implies that existence of cryptographic pseudorandom generators, that too seems out of
reach. However, we can base them on the very plausible assumption that there are functions that
are easy to evaluate but hard to invert.

Definition 7.9. f, : {0,1}" — {0,1}" is a one-way function if:

(1) There is a constant ¢ such that f is computable in time n°.

(2) For every constant d and every nonuniform algorithm A running in time n¢:

PrA(f(Un)) € f1(f(Un))] < %

for all sufficiently large n.

Assuming the existence of one-way functions seems stronger than the assumption NP Z BPP.
For example, it is an average-case complexity assumption, as it requires that f is hard to invert
when evaluated on random inputs. Nevertheless, there are a number of candidate functions believed
to be one-way. The simplest is integer multiplication: f,(x,y) = z -y, where z and y are n/2-bit
numbers. Inverting this function is equivalent to the integer factorization problem, for which no
efficient algorithm is known.

A classic and celebrated result in the foundations of cryptography is that cryptographic pseu-
dorandom generators can be constructed from any one-way function:

Theorem 7.10. The following are equivalent:

(1) One-way functions exist.

(2) Cryptographic pseudorandom generators exist with seed length ¢(n) =n — 1.

(3) For every constant € > 0, there exist cryptographic pseudorandom generators with seed
length ¢(n) = nc.

Corollary 7.11. If one-way functions exist, then BPP C SUBEXP.

What about getting a better derandomization? The proof of the above theorem is more gen-
eral quantitatively. It takes any one-way function f, : {0,1}* — {0,1}* and a parameter m, and
constructs a generator G, : {0,1}P°Y() — {0,1}™. The proof that G,, is pseudorandom is proven
by a reduction as follows. Given any algorithm 7" that runs in time ¢ and distinguishes G, from
uniform with advantage e, we construct an algorithm 7” running in time # = ¢ - (m/e)°() inverting
fe (say with probability 1/2).

Thus if f; is hard to invert by algorithms running in time s(¢), we can set t = m = 1/e = s(£)'/¢
for a constant c¢. That is, viewing the seed length ¢’ of G,, as a function of m, we have ¢'(m) =
poly (s~ (m)).

Thus:

48

e If s5(¢) can be taken to be an arbitrarily large polynomial (as the definition of one-way
function above), we get seed length ¢/(m) = m® and BPP C SUBEXP (as discussed
above).

o Ifs({) = 2t (as is plausible for the factoring one-way function), then we get seed length
¢(m) = poly(logm) and BPP C P.

But we cannot get seed length ¢/(m) = O(logm), as needed for concluding BPP = P, from
this result. Even for the maximum possible hardness s(¢) = 2%), we get ¢/(m) = poly(logm).
In fact, Problem 7?7 shows that it is impossible to have a cryptographic PRG with seed length
O(logm) meeting Definition 7?7, where we require that G,, be pseudorandom against all poly(m)-
time algorithms. However, for derandomization we only need G,, to be pseudorandom against a
fixed poly-time algorithm, e.g. running in time ¢ = m, and we would get such generators with seed
length O(log m) if the above construction could be improved to yield seed length ¢/ = O(¢) instead
of ¢/ = poly(¥).

Open Problem 7.12. Given a one-way function f : {0,1}* — {0,1}¢ that is hard to invert by
algorithms running in time s = 2% is it possible to construct a poly(m)-time computable (m, 1/8)
pseudorandom generator G : {0,1}' — {0,1}" with seed length ¢ = O(f) and output length
m = 29(0)?

It is known how to do this from any one-way permutation f : {0,1}* — {0,1}*. In fact, the
construction of pseudorandom generators from one-way permutations has a particularly simple
description:

Gm(x,r) = (<1‘, T>7 <f(x)7 T>7 <f(f(a:)),r>, R <f(m71)(x)’ T>)7

where |r| = |z| = £ and (-, -) denotes inner product modulo 2. One intuition for this construction is
the following. Consider the sequence (f(™~1(U,,), f"=2(U,),..., f(Uy,),U,). By the fact that f is
hard to invert (but easy to evaluate) it can be argued that the i 4+ 1’st component of this sequence
is infeasible to predict from the first ¢ components except with negligible probability. Thus, it is
the computational analogue of a block source. The pseudorandom generator then is obtained by a
computational analogue of block-source extraction, using the strong extractor Ext(x,r) = (z,7).
The fact that the extraction works in the computational setting, however, is much more delicate and
complex to prove than in the setting of extractors, and relies on a “local list-decoding algorithm”
for the corresponding (Hadamard) code. (We will discuss local list decoding in Section ?7.)

Pseudorandom Functions. It turns out that a cryptographic pseudorandom generator can be
used to build an even more powerful object — a family of pseudorandom functions. This is a family
of functions {fs : {0,1}* — {0, 1}}eeqo,13e such that (a) given the seed s, the function fs can be
evaluated in polynomial time, but (b) without the seed, it is infeasible to distinguish an oracle for
fs from an oracle to a truly random function. Thus in some sense, the ¢-bit truly random seed s is
stretched to 2¢ pseudorandom bits (namely the truth table of f,)!

Pseudorandom functions have applications in several domains:

e Cryptography

49

When two parties share a seed s to a PRF, they effectively share a random function f :
{0,1}* — {0,1} (by definition, the function they share is indistinguishable from random
by any poly-time 3rd party). Thus, in order for one party to send an encrypted message
m to the other, they can simply choose a random r <~ {0,1}¢, and send (r, fs(r) © m).
With knowledge of s, decryption is easy; simply calculate fs(r) and XOR it to the second
part of the received message. However, the value fs(r) @m would look essentially random
to anyone without knowledge of s.

This is just one example; pseudorandom functions have vast applicability in cryptography.
Learning Theory

Here, PRFs are used mainly to prove negative results. The basic paradigm in computa-
tional learning theory is that we are given a list of examples of a function’s behavior,
(21, f(z2)), (2, f(x2)), ..., (xk, f(xk))), and we would like to predict what the function’s
value will be on a new data point xxy1 coming from the same distribution. Information-
theoretically, it should be possible to predict after a small number of samples assuming
that the function has a small description (e.g. is computable by a poly-sized circuit).
However, essentially by definition, it should be computationally hard to predict the out-
put of PRFs. Thus, PRF's provide examples of functions that are efficiently computable
yet hard to learn (even with membership queries).

Hardness of Proving Circuit Lower Bounds.

One main approach to proving P # NP is to show that some f € NP doesn’t have
polynomial size circuits (equivalently, NP ¢ P /poly). This approach has had very lim-
ited success- the only superpolynomial lower bounds that have been achieved have been
using very restricted classes of circuits (monotone circuits, constant depth circuits, etc).
For general circuits, the best lower bound that has been achieved for a problem in NP
is roughly 4.5n.

Pseudorandom functions have been used to help explain why existing lower-bound tech-
niques have so far not yielded superpolynomial circuit lower bounds. Specifically, it has
been shown that any sufficiently “constructive” proof of superpolynomial circuit lower
bounds (one that would allow us to certify that a randomly chosen function has no small
circuits) could be used to distinguish a pseudorandom function from truly random in
subexponential time and thus invert any one-way function in subexponential time.

7.3 Hybrid Arguments

In this section, we introduce a very useful proof method for working with computational indis-
tinguishability, known as the hybrid argument. We use it to establish two important facts — that
computational indistinguishability is preserved under taking multiple samples, and that pseudoran-

domness is equivalent to next-bit unpredictability.

7.3.1 Indistinguishability of Multiple Samples

The following proposition illustrates that computational indistinguishability behaves like statisti-
cal difference when taking many independent repetitions; the distance € multiplies by the number
of copies. Proving it will introduce useful techniques for reasoning about computational indistin-
guishability, and will also illustrate how working with such computational notions can be more

50

subtle than working with statistical notions.

Proposition 7.13. If X and Y are (t,¢) indistinguishable, then for every k, X* and Y* are (¢, ke)
indistinguishable (where X* represents k independent copies of X).

Proof. We will prove the contrapositive: if there is an efficient algorithm 7 distinguishing X* and
Y* with advantage greater than ke, then there is an efficient algorithm 7” distinguishing X and Y’
with advantage greater than €. The algorithm 7" will naturally use the algorithm 7" as a subroutine.
Thus this is a reduction in the same spirit as reductions used elsewhere in complexity theory (NP-
completeness). The difference in this proof from the corresponding result about statistical difference
is that we need to preserve efficiency when going from 7T to T".

Suppose that there exists a nonuniform algorithm 7" such that

Pr[T(X*) = 1] = Pr[T(Y*) = 1]| > ke (7.1)

We can drop the absolute value in the above expression without loss of generality. (Otherwise
we can replace T with its negation; recall that negations are free in our measure of circuit size.)

Now we will use a “hybrid argument.” Consider the hybrid distributions H; = X*~'Y? for
i=0,...,k Note that Hy = X* and H;, = Y*.

Then Inequality (7.1) is equivalent to

meaning that there exists some i such that Pr[T'(H;_1) = 1] = Pr[T'(H;) = 1] > €. The latter simply
says that
Pr[T(X* Xy = 1] - Pr[T(XF YY) = 1] > e

By averaging, there exists some x1, ... 2g—; and yg—;+2, ... yi such that
Pr[T(z1,. .. xp—iy X, Yp—it2s---y) = 1] = Pr[T(z1, ... Tk—i, Y, Yk—ito, - .- Yp) = 1] > €.

Then, define T'(z) = T(x1,. .. Tk—i, 2, Yk—i+2, - - - » Yr)- Note that 7" is a nonuniform algorithm
with advice ¢, 1, ..., 24, Yb—i+2, - . . yx hardwired in. Hardwiring these things actually costs noth-
ing in terms of circuit size (because constant inputs can be propagated through the circuit, only
eliminating gates). Thus 7" is a time ¢ algorithm such that

Pr[T'(X) = 1] - Pr[T'(Y) = 1] > e,

contradicting the indistinguishability of X and Y. i

While the parameters in the above result seem to behave nicely, with (¢,¢) going to (t, ke), it
is actually more costly than the corresponding result for statistical difference. First, the amount of
nonuniform advice used by T” is larger than that used by T. This is hidden by the fact that we
are using the same measure ¢ (namely circuit size) to bound both the time and the advice length.
Second, the result is meaningless for large values of k (e.g. k = t), because a time ¢ algorithm
cannot read more than ¢ bits of the input distribution X* and Y'*.

51

We note that there is an analogue of the above result for computational indistinguishability
against uniform algorithms (Definition 7.2), but it is more delicate, because we cannot simply hard-
wire i, £1,...,Tk_i, Yk—it2, - - -, Yr as advice. Indeed, the proposition as stated is known to be false.
We need to add the additional condition that the distributions X and Y are efficiently samplable.
Then 7’ can choose i < [k] at random, and randomly sample z1, ..., z;_; X, Yk—it2y - s Yk Ly,

7.3.2 Next-Bit Unpredictability

In analyzing the pseudorandom generators that we construct, it will be useful to work with a
reformulation of the pseudorandomness property, which says that, given a prefix of the output, it
should be hard to predict the next bit.

For notational convenience, we deviate from our usual conventions use X to refer to an r.v. on
{0,1}"™ which is part of an ensemble, and we use X; for some i € [n] = {1,...,n} to denote the ith
bit of X. We have:

Definition 7.14. Let X be a random variable distributed on {0,1}". For t € N and ¢ € [0, 1], we
say that X is (¢,¢) next-bit unpredictable if for every nonuniform probabilistic algorithm P running
in time ¢(n) and every i € [n], we have:

1
Pr[P(XiXs-- Xi1) = Xi] < 5+,

where the probability is taken over X and the coin tosses of P.

Note that the uniform distribution X = U, is (¢,0) next-bit unpredictable for every ¢. Intuitively,
if X is pseudorandom, it must be next-bit unpredictable, as this is just one specific test one can
perform on X. In fact the converse also holds, and this is the direction we will use.

Proposition 7.15. Let X be a random variable distributed on {0,1}". If X is a (¢,¢) pseudoran-
dom, then X is (t —O(1), e) next-bit unpredictable. Conversely, if X is (¢, €) next-bit unpredictable,
then it is (¢,n - €) pseudorandom.

Proof. Here U denotes an r.v. uniformly distributed on {0,1}" and U; denotes the ’th bit of U.

pseudorandom =- next-bit unpredictable. The proof is by reduction. Suppose for contradic-
tion that X is not (¢t —O(n), e) next-bit unpredictable, so we have a predictor P : {0, 1}~ — {0, 1}
that succeeds with probability at least 1/24¢. We construct an algorithm 7" : {0,1}" — {0, 1} that
distinguishes X from U, as follows:

1 if P(xl.Z'Q s xi_l) = Xy

T(x1xe - 2p) = {

0 otherwise.

next-bit unpredictable = pseudorandom. Also by reduction. Suppose X is not pseudoran-
dom, so we have a nonuniform algorithm 7" running in time ¢ s.t.
Pr[T(X)=1] - Pr[T(U) =1] > ¢,

52

where we have dropped the absolute values without loss of generality as in the proof of Proposi-
tion 7.13.

We now use a hybrid argument. Define H; = X; 0 Xg0---0 X;0U;41 0U;yg0---0U,. Then
H, = X and Hy = U. We have:

Zn: (Pr[T(H;) = 1] — Pr[T(H;—1) = 1]) > ¢,
i=1

since the sum telescopes. Thus, there must exist an ¢ such that
PI‘[T(HZ‘) = 1} — Pr[T(HZ‘_l) = 1] > E/n.

This says that T is more likely to output 1 when we put X; in the ¢’th bit than when we put a
random bit U;. We can view U; as being X; with probability 1/2 and being X; with probability
1/2. The only advantage 7" has must be coming from the latter case, because in the former case,
the two distributions are identical. Formally,

PI‘[T(Xl c 'XileiUiJrl s Un) == 1] + 1-— PI“[T(Xl ce XiflyiUz#l cee Un) == 1]
2
— 2. (Pe[T(H;) = 1] — Pr[T(H;_1) = 1]) > ;6

This motivates the following next-bit predictor:

P($11‘2 tee 33‘2;1)1

(1) Choose random bits u;, . .., u, < {0, 1}.
(2) Compute b =T(x1 - Tj—qu; - Up).
(3) If b =1, output u;, otherwise output w;.

The intuition is that T is more likely to output 1 when u; = x; than when u; = T;. Formally, we
have:

Pr[P(X1 B 'Xi—l) = Xl]

1

= 3 (Pr[T(X1 -+ XioaUiUsyr - - Uy) = 1U; = X3 + Pr[T(Xy - - Xy 1UUig1 - - - Uy) = 0|U; # X))
1 —

= 5 . (PI‘{T(Xl . 'XileiUiJrl ce Un) = 1] +1-— PT[T(Xl te XileiUiqu te Un) = 1])

L«
2 n

Note that as described P runs in time ¢ + O(n). Using circuit size as our measure of nonuniform
time, we can reduce its running time to t as follows. First, we may nonuniformly fix the coin tosses
Ui, - . ., Up of P while preserving its advantage. Then all P does is run 7" on x7 - - - ;1 concatenated
with some fixed bits and and either output what T does or its negation (depending on the fixed
value of ;). Fixing some input bits and negation can be done without increasing circuit size. Thus
we contradict the next-bit unpredictability of X. i

We note that an analogue of this result holds for uniform distinguishers and predictors, provided
that we change the definition of next-bit predictor to involve a random choice of i <- [n] instead

53

of a fixed value of i, and change the time bounds in the conclusions to be t — O(n) rather than
t —O(1) and t (we can’t do tricks like in the final paragraph of the proof). In contrast to the
multiple-sample indistinguishability result of Proposition 7.13, this result does not need X to be
efficiently samplable for the uniform version.

7.4 Pseudorandom Generators from Average-Case Hardness

In Section 7.2, we surveyed cryptographic pseudorandom generators, which numerous applications
within and outside cryptography, including to derandomizing BPP. However, for derandomization,
we can use generators with weaker properties. Specifically, we only need G : {0, l}e(") — {0,1}"
such that:

(1) G fools (nonuniform) distinguishers running in time n (as opposed to all poly(n)-time
distinguishers).

(2) G is computable in time poly(n, 2). In particular, the PRG may take more time than the
distinguishers it is trying to fool.

Such a generator implies that every BPP algorithm can be derandomized in time poly(n, 2((").

The benefit of studying such generators is that we can hope to construct them under weaker
assumptions than used for cryptographic generators. In particular, a generator with the properties
above no longer implies P # NP, much less the existence of one-way functions. (Testing whether
a string is an output of the generator is still an NP search problem, but even if we guess the
seed properly, testing may take more time than the distinguishers are allowed.) However, as shown
in Problem 77, such generators still imply nonuniform circuit lower bounds for exponential time,
something that is still beyond the state of the art in complexity theory. Our goal in the next couple
of sections is to construct generators as above from assumptions that are as weak as possible. In
this section, we will construct them from boolean functions computable in exponential time that
are hard on average for nonuniform algorithms, and in the next section we will relax this to only
require worst-case hardness.

7.4.1 Average-Case Hardness

A function is hard on average if it is hard to compute correctly on randomly chosen inputs. Formally:

Definition 7.16. For t € N and 6 € [0, 1], we say that a Boolean function f : {0,1}* — {0,1} is
(t,9) average-case hard if for all nonuniform probabilistic algorithm A running in time ¢,

Pr{A(X) = f(X)] <1—6.

Note that saying that f is (¢,0) hard for some § > 0 (possibly exponentially small) amounts to
saying that f is worst-case hard (at least for deterministic algorithms; defining worst-case hardness
for probabilistic algorithms is a bit more delicate). Thus, average-case hardness corresponds to § that
are noticeably larger than zero, e.g. 1/t'! or constant. Indeed, in this section we will a = 1/2 — ¢ for
e = 1/t. That is, no efficient algorithm can compute f much better than random guessing. A typical
setting of parameters we use is ¢t = t(£) somewhere in range from ¢“(!) (slightly superpolynomial)

54

to t(£) = 2°¢ for a constant a > 0. (Note that every function is computable by a nonuniform

algorithm running in time roughly 2¢, so we cannot take #(£) to be any larger.) We will also require

f is computable in (uniform) time 20 50 that our pseudorandom generator will be computable in

time exponential in its seed length. The existence of such an average-case hard function is quite a

strong assumption, but in Section ?? we will see how to relax it to a worst-case hardness assumption.
Now we show how to obtain a pseudorandom generator from average-case hardness.

Proposition 7.17. If f : {0,1}* — {0,1} is (t,1/2 — ¢) average-case hard, then G(z) = z o f(z) is
a (t,e) pseudorandom generator.

Proof. This follows from the equivalence of pseudorandomness and next-bit unpredictability. Con-
sidering uniformly random seed X, we certainly can’t predict the first ¢ bits with any advantage
whatsoever, so the only hope is to predict f(z) from z, but f is (% — g)-hard. A black-box appli-
cation of Theorem 7?7 would lose a factor of £+ 1 in the advantage €, but we do not need to pay it
here because the first ¢ bits are perfectly uniform. (Following the proof of Theorem ??, we would
have Pr[T'(H;) = 1] — Pr[T'(H;—1) =1 =0fori=1,...,¢.)]

Note that this generator includes its seed in its output. This is impossible for cryptographic pseu-
dorandom generators, but is feasible (as shown above) when the generator can have more resources
than the distinguishers it is trying to fool.

Of course, this generator is quite weak, stretching by only one bit. We would like to get many
bits out. Here are two attempts:

e Define G(z1---xp) = 1+ 2 f(z1) -+« f(ag). This is a (¢, ke) pseudorandom generator
because we have k independent samples of a pseudorandom distribution so nonuniform
computational indistinguishability is preserved. Note that already here we are relying
on nonuniform indistinguishability, because the distribution (Uy, f(Ur)) is not samplable
(in time that is feasible for the distinguishers). Unfortunately, however, this construction
does not improve the ratio between output length and seed length, which remains very
close to 1.

e Use composition. For example, try to get two bits out using the same seed length by
defining G'(x) = G(G(z)1 --- G(x)¢)G(x)¢. This works for cryptographic pseudorandom
generators, but not for the generators we are considering here. Indeed, for the generator
G(z) = xf(x) of Proposition 7.17, we would get G'(x) = xf(x)f(z)--- f(x), which is
clearly not pseudorandom.

7.4.2 The Nisan—Wigderson Generator

Our goal now is to show the following:

Theorem 7.18. For t : N — N, suppose that there is a function f € E = DTIME(2°()) ! such
that for every input length ¢ € N, f is (1/2 —1/t(¢))-hard for nonuniform time #(¢). Then for every

1 E should be contrasted with the larger class EXP = DTIME(2Poly(9)

55

m € N, there is an (m, 1/m) pseudorandom generator G : {0,1}¢(™ — {0,1}™ with seed length
¢'(m) = O(t~(poly(m))?/ logm) that is computable in time 20 (™),

Note that this is similar to the seed length #'(m) = poly(s~!(poly(m))) mentioned in Section 7.2
for constructing cryptographic pseudorandom generators from one-way functions, but the assump-
tion is incomparable (and will be weakened further in the next section). In fact, it is known how
to achieve a seed length £(m) = O(t~!(poly(m))), which matches what is known for construct-
ing pseudorandom generators from one-way permutations as well as the converse implication of
Problem ?7. We will not cover this improvement here, but note that for the important case of
hardness t(£) = 2°)| we still achieve seed length £(m) = O(O(logm)?/logm) = O(logm) and
thus P = BPP. More generally, we have:

Corollary 7.19. Suppose that E has a (£(¢),1/2—1/t({)) average-case hard function f : {0,1}* —
{0,1}.

(1) If t(£) = 2O then BPP = P.

(2) If ¢(0) = 2", then BPP C P.

(3) If t(¢) = ¢V, then BPP C SUBEXP.

The idea is to apply f on slightly dependent inputs, i.e. x; and x; share very few bits. The sets
of seed bits used for each output bit will be given by a design:

Definition 7.20. Sy, -+, Sy, C [d] is an (¢, a)-design if

(1) Vi, |Sif = ¢
(2) VZ#],|SlﬂS]| <a

We want lots of sets having small intersections over a small universe. We will use the designs
established by Problem 3.2:

Lemma 7.21. For every constant 7 > 0 and every ¢,m € N, there exists an (¢, a)-design
S1,++,Sm C [d] with d = O (ﬁ) and a = - logm. Such a design can be constructed deter-

a
ministically in time poly(m, d).

Construction 7.22 (Nisan—Wigderson Generator). Given an (¢,a)-design Si,---,Sy, C [d]
and a function f : {0,1}* — {0,1}, define the Nisan—Wigderson generator G : {0,1}¢ — {0,1}™ as

G(x) = f(x[s,)f (x]sy) -~ f(2]s,,)

where if is a string in {0,1}¢ and S C [d], |S| = ¢, z|s is the string of length ¢ obtained from =
by selecting the bits indexed by S.

2Problem 3.2 was for the special case v = 1, but the same proof yields the lemma for all ~.

56

Theorem 7.23. Let G : {0,1}¢ — {0,1}™ be the Nisan-Wigderson generator based on an (¢, a)
design and a function f : {0,1}* — {0,1}. If f is (1/2 — ¢/m)-hard for nonuniform time ¢, then G
is a (t,¢) pseudorandom generator, for t' =t —m - a -2

Theorem 7.18 follows from Theorem 7.23 by setting ¢ = 1/m and a = logm, and observing
that if for £ = t=1(m?), then ¢’ = t({) — O(m - a - 2%) > m, so we have an (m,1/m) pseudorandom
generator. The seed length is ¢/(m) = d = O({?/logm) = O(t~!(poly(m))?/logm).

Proof. Suppose G is not an (¢,) pseudorandom generator. By Theorem ?7?, there is a nonuniform
time t’ next-bit predictor P such that
1 €
Pr[P(f(X|51)f(X|52) T f(X‘Sifl)) = f(X|Sz)] > 9 + m’ (72)
for some ¢ € [m]. From P, we construct A that computes f with probability greater than 1/2+¢/m.
Let Y = X|g,. By averaging, we can fix all bits of X|g = 2 such that the prediction probability
is at least 1/2 4+ ¢/m (over Y and the coin tosses of the predictor P). Define f;(y) = f(zls,) for
je{l,---,i—1}. (That is, fj(y) forms x by placing y in the positions in S; and z in the others,
and then applies f to z|g,). Then

PrP(AL(Y) - fia (V) = FV)] > 5+ =

Note that f;(y) depends only on |S; N Sj| < a bits of y. Thus, we can compute each f; with
a look-up table, which we can include in the advice to our nonuniform algorithm. Indeed, every
function on a bits can be computed by a boolean circuit of size at most a - 2%. (In fact, size at most
O(2%/a) suffices.)

Then, defining A(y) = P(fi(y)--- fi—1(y)), we deduce that A(y) can be computed with error
probability smaller than 1/2 —&/m in nonuniform time less than ¢’ +m-a-2% = t. This contradicts
the hardness of f. Thus, we conclude G is an (m,) pseudorandom generator. m|

We make the following additional remarks:

(1) This is a very general construction that works for any average-case hard function f. We
only used f € E to deduce G is computable in E.

(2) The reduction works for any nonuniform class of algorithms C where functions of loga-
rithmically many bits can be computed efficiently.

Indeed, we will now use the same construction to obtain an unconditional pseudorandom gen-
erator following constant-depth circuits.

7.4.3 Derandomizing Constant-depth circuits

x;, their negations —x;, and the constants 0 and 1, as well as computation gates, which can compute
the AND or OR of an unbounded number of other gates (rather than just 2, as in usual Boolean
circuits).® The size of such a circuit is the number of computation gates, and the depth is the

3 Note that it is unnecessary to allow internal NOT gates, as these can always be pushed to the inputs via DeMorgan’s Laws at
no increase in size or depth.

57

maximum of length of a path from an input gate to the output gate.

ACPO is the class of functions f : {0,1}* — {0, 1} for which there exist constants ¢ and d and
a uniformly constructible sequence of unbounded fan-in circuits (C),)nen such that for all n, C),
has size at most n¢ and depth at most d, and for all x € {0,1}", Cy,(z) = f(z). BPAC? defined
analogously, except that C,, may have extra inputs, which are interpreted as random bits, and we
we require Pr,.[Cy(z,r) = f(z)] > 2/3.

ACD? is one of the richest circuit classes for which we have superpolynomial lower bounds:

Theorem 7.25. For all constant d € N and every ¢ € N, the function Par, : {0,1}¢ — {0,1}

defined by PARy(z1,...,2¢) = @le x; is (tq(0),1/2 — 1/t4(L))-average-case hard for nonuniform

unbounded fan-in circuits of depth d and size t4(¢) = 2

In addition to having an average-case hard function against AC?, we also need that AC? can
compute arbitrary functions on a logarithmic number of bits.

Lemma 7.26. Every function g : {0,1}* — {0,1} can be computed by a depth 2 circuit of size 2°.

Using the two facts with the Nisan—-Wigderson pseudorandom generator construction, we obtain
the following pseudorandom generator for constant-depth circuits.

Theorem 7.27. For every constant d and every m, there exists a poly(m)-time computable
(m, 1/m)-pseudorandom generator Gy, : {0, 1}]ogo(d)m — {0,1}™ fooling nonuniform unbounded
fan-in circuits of depth d (and size m).

Proof. This is proven similarly to Theorems 7.18 and 7.23, except that we take f = PARy rather
than a hard function in E, and we observe that the reduction can be implemented in a way that
increases the depth by only an additive constant. Specifically, to obtain a pseudorandom generator
fooling circuits of depth d, we use the hardness of PAR; against unbounded fan-in circuits of depth
d' = d+2 and size poly(m). Then the seed length of G O(£2/a) < O(¢2) = O(log? m)? = log® D m.

We now follow the steps of the proof of Theorem 7.18 to go from an adversary T of depth d
breaking the pseudorandomness of G to a circuit A of depth d’ calculating the parity function PARy.

If T has depth d, then it can be verified that the next-bit predictor P constructed in the proof
of Proposition 7.15 also has depth d. (Recall that negations and constants can be propagated to
the inputs so they do not contribute to the depth.) Next, in the proof of Theorem 7.23, we obtain
A from P by A(y) = P(fi(y)f2(y)--- fi—1(y)) for some i € {1,...,m} and where each f; depends
on at most a bits of y. Now we observe that A can be computed by a small constant-depth circuit
(if P can). Specifically, applying Lemma ?? to each f;, the size of A is at most O(m - 2%) = O(m?)
plus the size of P and the depth of A is at most d + 2. This contradicts the hardness of PAR,. O

Corollary 7.28. BPACY C P.

58

With more work, this can be strengthened to actually put BPAC? in X(/JO. (The difficulty
is that we use majority voting in the derandomization, but small constant-depth circuits cannot
compute majority. However, they can compute an “approximate” majority, and this suffices.)

The above pseudorandom generator can also be used to give a quasipolynomial-time derandom-
ization of the randomized algorithm we saw for approximately counting the number of satisfying
assignments to a DNF formula (Theorem 2.34); see Problem ?7.

Improving the running time of either of these derandomizations to polynomial is an intriguing
open problem.

Open Problem 7.29. Show that BPAC? = AC° or even BPAC? C P.

Open Problem 7.30 (Open Problem 2.36, restated). Give a deterministic polynomial-time
algorithm for approximately counting the number of satisfying assignments to a DNF formula.

7.5 Worst-Case/Average-Case Reductions and Locally Decodable Codes

In the previous section, we saw how to construct pseudorandom generators from boolean functions
that are very hard on average, where every nonuniform algorithm running in time ¢ must err with
probability greater than 1/2 — 1/t on a random input. Now we want to relax the assumption to
refer to worst-case hardness, as captured by the following definition.

Definition 7.31. A function f : {0,1}¢ — {0, 1} is worst-case hard for (nonuniform) time t if, for
all (nonuniform) probabilistic algorithms A running in time ¢, there exists x € {0,1}* such that
Pr[A(x) # f(x)] > 1/3, where the probability is over the coin tosses of A.

Note that, for deterministic algorithms A, the definition simply says 3= A(z) # f(x). In the
nonuniform case, restricting to deterministic algorithms is without loss of generality because we can
always derandomize the algorithm using (additional) nonuniformity. Specifically, following the proof
that BPP C P/poly, it can be shown that if f is worst-case hard for nonuniform deterministic
algorithms running in time ¢, then it is worst-case hard for nonuniform probabilistic algorithms
running in time ¢’ for ¢’ = Q(t/¢).

A natural goal is to be able to construct an average-case hard function from a worst-case hard
function. More formally, given a function f : {0,1}* — {0,1} vs. time ¢ = ¢(¢), construct a function
f:{0,139® — {0,1} such that f is average-case hard vs. time ¢’ = t*(1). Moreover, we would like
f to be in E if f is in E. (Whether we can obtain a similar result for NP is a major open problem,
and indeed there are negative results ruling out natural approaches to doing so.)

Our approach to doing this will be via error-correcting codes. Specifically, we will show that if
f is the encoding of f in an appropriate kind of error-correcting code, then worst-case hardness of
f implies average-case hardness of f .

Specifically, we view f as a message of length L = 2¢ and apply an error-correcting code
Enc : {0,1}% — %L to obtain f = Enc(f), which we view as a function f : {0,1}f — ¥, where
/= log L. Pictorially:

message f : {0,1}* — {0,1}| — — |codeword f : {0, 1}8 — X

59

(Ultimately, we would like ¥ = {0, 1}, but along the way we will discuss larger alphabets.)

Now we argue the average-case hardness of f as follows. Suppose, for contradiction, that f is not
§ average-case hard. By definition, there exists an efficient algorithm A with Pr[A(z) = f(x)] > 1—4.
We may assume that A is deterministic by fixing its coins. Then A may be viewed as a received
word in ¥¥, and our condition on A becomes A(A, f) < d. So if Dec is a §-decoding algorithm for
Enc, then Dec(A) = f. By assumption A is efficient, so if Dec is efficient, then f may be efficiently
computed everywhere. This would contradict our worst-case hardness assumption, assuming that
Dec(A) gives a time ¢(£) algorithm for f. However, the standard notion of decoding requires reading
all 2¢ values of the received word A and writing all 2¢ values of the message Dec(A), and thus
Time(Dec(A)) > 2°. Everything is easy for nonuniform time 2¢, and even in the uniform case we

are mostly interested in (£) < 2¢. To solve this problem we introduce the notion of local decoding.

Definition 7.32. A local §-decoding algorithm for some Enc : {0,1}1 — >l s a probabilistic
oracle algorithm Dec with the following property. Let f : {0, 1} — {0,1} be any message with
associated codeword f = Enc(f), and let g : {0,1}Y — % be such that A(g, f) < 6. Then for all
x € {0,1}* we have Pr[Dec?(x) = f(z)] > 2/3, where the probability is taken over the coins flips of
Dec.

In other words, given oracle access to g, we want to efficiently compute any desired bit of f with
high probability. So both the input (namely, g) and the output (namely, f) are treated implicitly;
the decoding algorithm does not need to read/write either in its entirety. Pictorially:

This makes it possible to have sublinear-time (or even polylogarithmic-time) decoding. Also, we
note that the bound of 2/3 in the definition can be amplified in the usual way. Having formalized
a notion of local decoding, we can now make our earlier intuition precise.

Proposition 7.33. Let Enc be an error-correcting code with local §-decoding algorithm Dec that
runs in time at most tpec, and let f be worst-case hard for nonuniform time ¢. Then f = Enc(f) is
(t',8) average-case hard, where ¢’ = t/tpec.

Proof. We do everything as explained before except with Dec? in place of Dec(A), and now the
running time is at most Time(Dec) - Time(A), since Dec can make at most Time(Dec) calls to A. O

We note that the reduction in this proof does not use nonuniformity in an essential way. We used
nonuniformity to fix the coin tosses of A, making it deterministic. To obtain a version for uniform
hardness, the coin tosses of A can be chosen randomly instead, which with high probability will
not increase A’s error by more than a constant factor, which we can compensate for by replacing
the (t',0) average-case hard in the conclusion with, say, (¢, /3) average-case hard.

In light of the above proposition, our task is now to find an error-correcting code with a local
decoding algorithm. Specifically, we would like the follows parameters.

(1) We want ¢ = O(¢), or equivalently L = poly(L).

60

(2) We would like Enc to be computable in time 2°9() = poly(L). This is because we want
f €E to imply f € E.

(3) We would like ¥ = {0,1} so that f is a boolean function, and have § = 1/2 — ¢ so that
f has sufficient average-case hardness for the pseudorandom generator construction of
Theorem 7.23.

(4) Since f will be average-case hard against time ' = t/tpec, we would want the running
time of Dec to be tpee = poly(f,1/¢) so that we can take ¢ = #*() and still have

t = %M /poly(¢).

Of course, achieving § = 1/2 — ¢ is not possible with our current notion of local unique decoding
(which is only harder than the standard notion of unique decoding), and thus in the next section
we will focus on getting d to be just a fixed constant. In Section 7?7, we will introduce a notion of
local list decoding, which will enable decoding from distance § = 1/2 — e.

In our constructions, it will be more natural to focus on the task of decoding codeword symbols
rather than message symbols:

Definition 7.34 (locally correctible codes*). A local 6-correcting algorithms for a code C C »L
is a probabilistic oracle algorithm Dec with the following property. Let f € C be any codeword, and
let g : {0,1}Y — X be such that A(g, f) < 8. Then for all z € [L] we have Pr[Dec?(z) = f(z)] > 2/3,
where the probability is taken over the coins flips of Dec.

This implies the standard definition of locally decodable codes under the (mild) constraint that
the message symbols are explicitly included in the codeword.

Definition 7.35 (systematic encodings). An encoding algorithm Enc : {0,1}* — C for a code
C C 2L is systematic if there is a polynomial-time computable function I : [L] — [L] such that for
all f € {0,1}X, f = Enc(f), and all z € [L], we have f(I(z)) = f(z), where we interpret 0 and 1 as
elements of ¥ in some canonical way.

Lemma 7.36. If Enc: {0,1}* — C is systematic and C has a local §-correcting algorithm running
in time ¢, then Enc has a local d-decoding algorithm (in the standard sense) running in time
t + poly(log L).

Proof. If Dec; is the local corrector for C and I the mapping in the definition of systematic encoding,
then Dec)(z) = Dec{(I(x)) is a local decoder for Enc. O

7.5.1 Local Decoding Algorithms

Hadamard Code. Recall the Hadamard code of message length m, which consists of the truth
tables of all Zy-linear functions ¢ : {0,1}™ — {0,1}.

61

Proposition 7.37. The Hadamard code C C {0,1}?" of message length m has a local (1/4 — ¢)-
correcting algorithm running in time poly(m,1/¢).

Proof. We are given oracle access to g : {0,1}" — {0, 1} that is at distance less than 1/4 — ¢ from
some (unknown) linear function ¢, and we want to compute c¢(x) at an arbitrary point = € {0, 1}™.
The idea is random self-reducibility: we can reduce computing ¢ at an arbitrary point to computing
¢ at uniformly random points, where ¢ is likely to give the correct answer. Specifically, c¢(z) =
c(x ®r) @ c(r) for every r, and both z @7 and r are uniformly distributed if we choose r < {0, 1}™.
The probability that g differs from c at either of these points is less than 2- (1/4 —¢) = 1/2 — 2¢.
Thus g(z @ r) @ g(r) gives the correct answer with probability noticeably larger than 1/2. We can
amplify this success probability by repetition. Specifically, we obtain the following local corrector:

Algorithm 7.38 (Local Corrector for Hadamard Code).
Input: an oracle g : {0,1}"™ — {0,1}, x € {0,1}", and a parameter € > 0

(1) Choose 71,...,7r; <= {0,1}™, for t = O(1/£?).
(2) Query g(r;) for each i =1,...,t.
(3) Output maj;<;<{g(rj) @ g(r; © x)}.

If A(g,c) < 1/4 — g, then this algorithm will output ¢(x) with probability at least 2/3. O

This local decoding algorithm is optimal in terms of its decoding distance and running time,
but the problem is that the Hadamard code has exponentially small rate.

Reed—Muller Code. Recall that the g-ary Reed—Muller code of degree d and dimension m
consists of all multivariate polynomials p : Fi* — F, of total degree at most d. (Construction 6.14.)
This code has minimum distance § = 1 — d/q. Reed—Muller Codes are a common generalization of
both Hadamard and Reed—Solomon codes, and thus we can hope that for an appropriate setting
of parameters, we will be able to get the best of both kinds of codes. That is, we want to combine
the efficient local decoding of the Hadamard code with the good rate of Reed-Solomon codes.

Theorem 7.39. The g-ary Reed-Muller Code of degree d and dimension m has a local 1/12-
correcting algorithm running in time poly(m, ¢) provided d < ¢/9 and ¢ > 36.

Note the running time of the decoder is roughly the m’th root of the block length L = qm.
When m = 1, our decoder can query the entire string and we simply obtain a global decoding
algorithm for Reed-Solomon Codes (which we already know how to achieve from Theorem 6.17).
But for large enough m, the decoder can only access a small fraction of the received word. In fact,
one can improve the running time to poly(m,d,logq), but the weaker result is sufficient for our
purposes.

62

The key idea behind the decoder is to do restrictions to random lines in F™. The restriction of
a Reed—Muller codeword to such a line is a Reed—Solomon codeword, and we can afford to run our
global Reed—Solomon decoding algorithm on the line.

Formally, for x,y € F"", we define the line through x in direction y as the function ¢, , : F — F™
given by £, ,(t) = +ty. If g : F™ — [is any function and ¢ : F — F™ is a line, then we use g|, to
denote the restriction of g to ¢, which is simply the composition go ¢ : F — F. Note that if p is any
polynomial of total degree at most d, then p|, is a (univariate) polynomial of degree at most d.

So we are given an oracle g of distance less than § from some degree d polynomial p : F"* — F,
and we want to compute p(x) for some x € F™. We begin by choosing a random line ¢ through
x. Every point of F™ \ {x} lies on exactly one line through x, so the points on ¢ (except x) are
distributed uniformly at random over the whole domain, and thus g and p are likely to agree on
these points. Thus we can hope to use the points on this line to reconstruct the value of p(x). If
J is sufficiently small compared to the degree (e.g. § = 1/3(d + 1)), we can simply interpolate the
value of p(z) from d + 1 random points on the line. This gives rise to the following algorithm.

Algorithm 7.40 (Local Corrector for Reed—Muller Code I).
Input: An oracle g: F" — F, an input z € F™, and a degree parameter d

(1) Choose y <~ F™. Let £ = £, : F — F™ be the line through z in direction y.

(2) Query g to obtain Sy = gle(ao) = g(£(ao)), .-, Ba = gle(aa) = g(€(aa)) where ay, ..., aq €
F\ {0} are any fixed points

(3) Interpolate to find a unique univariate polynomial g of degree at most d s.t. Vi, q(c;) = f3;

(4) Output ¢(0)

Claim 7.41. If g has distance less than 6 = 1/3(d + 1) from some polynomial p of degree at most
d, then Algorithm 7.40 will output p(z) with probability greater than 2/3.

Proof of claim: Observe that for all o; € F\ {0}, £;4(;) is uniform over the
y € F™. This implies that for each 1,
1
Pgl"[g\e(ai) # ple(ag)] <6 = 3d+ 1)
By a union bound,

Pr(3i, gle(ai) # ple(ai)] < (d+1)-6 =

1

3
Thus, with probability greater than 2/3, we have Vi,q(a;) = pl¢(a;) and hence
q(0) = p(x). The running time of the algorithm is poly(m, q). O

We now show how to improve the decoder to handle a larger fraction of errors, up to distance
d = 1/12. We alter steps 2 and 3 in the above algorithm. In step 2, instead of querying only d + 1
points, we query over all points in £. In step 3, instead of interpolation, we use a global decoding
algorithm for Reed—Solomon codes to decode the univariate polynomial p|,. Formally, the algorithm
proceeds as follows.

63

Algorithm 7.42 (Local Corrector for Reed—Muller Codes II).
Input: An oracle g: F™ — T, an input € F™, and a degree parameter d, where ¢ = |F| > 36 and
d < q/9.

(1) Choose y <~ F™. Let £ = £, : F — F™ be the line through z in direction y.

(2) Query g at all points on ¢ to obtain g|¢: F — TF.

(3) Run the 1/3-decoder for the g-ary Reed—Solomon codes of degree d on gy to obtain the
(unique) polynomial g at distance less than 1/3 from g|, (if one exists).?

(4) Output ¢(0).

Claim 7.43. If g has distance less than § = 1/12 from some polynomial p of degree at most d, and
the parameters satisfy ¢ = |F| > 36, d < ¢/9, then Algorithm 7.42 will output p(z) with probability
greater than 2/3.

Proof of claim: The expected distance (between g|; and p|,) is small:

1 1 1

1
A <4< b=
%[(gle,ple)] < . Hi<gEt 5=y

where the term % is due to the fact that the point x is not random. Therefore, by

Markov’s Inequality,
Pr{A(gle,ple) > 1/3) < 1/3

Thus, with probability at least 2/3, we have that p|y is the unique polynomial of
degree at most d at distance less than 1/3 from g|, and thus ¢ must equal p[,. O

7.5.2 Low-Degree Extensions

Recall that to obtain locally decodable codes from locally correctible codes (as constructed above),
we need to exhibit systematic encoding (Definition 7.35.) Thus, given f: {0, 1}¢ — {0,1}, we want
to encode it as a Reed-Muller codeword f: {0,1}¢ — ¥ s.t.:

e The encoding time is 29

e /=0

® The code is systematic in the sense of Definition 7.35. Informally, this means that f
should be a “restriction” of f .

Note that the usual encoding for Reed—Muller codes, where the message gives the coefficients of
the polynomial, is not systematic. Instead the message should correspond to evaluations of the

5A 1/3-decoder for Reed—Solomon codes follows from the (1 — 2,/d/q) list-decoding algorithm of Theorem 6.17. Since 1/3 <
1 —2,/d/q, the list-decoder will produce a list containing all univariate polynomials at distance less than 1/3, and since 1/3
is smaller than half the minimum distance (1 — d/q), there will be only one good decoding.

64

polynomial at certain points. Once we settle on the set of evaluation points, the task becomes
one of interpolating the values at these points (given by the message) to a low-degree polynomial
defined everywhere. does not suffice, since this encoding is not systematic.

The simplest approach is to use the boolean hypercube as the set of evaluation points.

Lemma 7.44 (multilinear extension). For every f: {0,1}* — {0,1} and every finite field F,
there exists a (unique) polynomial f: F* — F s.t. fi10,1y¢ = [of degree at most 1 in each variable.
(and hence total degree at most ¢).

Proof. We prove the existence of the polynomial f. Define

F@, oz = Y fl@)ba()

ae{0,1}¢

o (1) (1)
i o=1 i ;=0

Note that for z € {0,1}*, §o(x) = 1 only when a = z, therefore JE|{0,1}‘5 = f. We omit the proof of
uniqueness. The bound on the individual degrees is by inspection. a

for

Thinking of f as an encoding of f, let’s inspect the properties of this encoding.

e Since the total degree of the multilinear extension can be as large as ¢, we need g > 9¢
for the local corrector of Theorem 7.39 to apply.

® The encoding time is 2000 ag computing a single point of f requires summing over 20(0)
elements.

® The code is systematic, since f is an extension of f.

e However, the input length is { = flogq = O(¢log¥), which is slightly larger than our
target of £ = O(0).

To solve the problem of the input length 7 in the multi-linear encoding, we reduce the dimension
of the polynomial f by changing the embedding of the domain of f: Instead of interpreting {0, 1} C
F* as an embedding of the domain of f in F’, we map {0,1}¢ to H™ for some subset H C F, and as
such embed it in F™.

More precisely, we fix a subset H C F of size [H| = [,/q] . Choose m = [{/log [H|], and fix
some efficient one-to-one mapping from {0, 1}€ into H'™. With this mapping, view f as a polynomial
f:H™ —T.

Analogously to before, we have the following.

Lemma 7.45 (low-degree extension). For every finite field F, H C F, m € N, and function
f:H™ — T, there exists a (unique) f: F™ — F of degree at most |H| — 1 in each variable (and
hence total degree at most m - (|H| — 1)) s.t. f|lgm = f.

Using |H| = [,/q], the total degree of fis at most d = ¢,/q. So we can apply the local corrector
of Theorem 7.39, as long as ¢ > 81/2 (so that d < ¢/9). Inspecting the properties of f as an encoding
of f, we have:

65

e The input length is ¢ = m - logq = [£/log [H|] - log g = O(¢), as desired.
e The code is systematic as long as our mapping from {0, 1}* to H™ is efficient.
7.5.3 Putting It Together

Combining Theorem 7.39 with Lemmas 7.45, and 7.36, we obtain the following locally decodable
code:

Proposition 7.46. For every L € N, there is an explicit code Enc : {0, 1}L — E’i, with blocklength

L = poly(L) and alphabet size || = poly(log L), that has a local (1/12)-decoder running in time
poly(log L).

Using Proposition 7.33, we obtain the following conversion from worst-case hardness to average-
case hardness:

Proposition 7.47. If there exists f: {0,1}* — {0,1} in E that is worst-case hard against (non-
uniform) time ¢(¢), then there exists f: {0,1}9) — {0,1}00°8%) in E that is (#'(¢),1/12) average-
case hard for t'(¢) = t(¢) /poly(?).

This differs from our original goal in two ways: f is not Boolean, and we only get hardness
1/12 (instead of 1/2 —). The former concern can be remedied by concatenating the code with a
Hadamard code, similarly to Problem 6.2. Note that the Hadamard code is for message space [q],
so it can be 1/4-decoded by brute-force in time poly(q) (which is the amount of time already taken
by our decoder).® Using this, we obtain:

Theorem 7.48. For every L € N, there is an explicit code Enc : {0, 1} — {0, 1}12 with blocklength

A

L = poly(L) that has a local (1/48)-decoder running in time poly(log L).

Theorem 7.49. If there exists f: {0,1}* — {0,1} in E that is worst-case hard against (non-
uniform) time #(£), then there exists f: {0,1}°®¥) — {0,1} in E that is 1/48 average-case hard
against (non-uniform) time ¢(¢)/poly(¥).

An improved decoding distance can be obtained using Problem ?77.

We note that the local decoder of Theorem 7.48 not only runs in time poly(log L), but also makes
poly(log L) queries. For some applications (such as Private Information Retrieval, see Problem 77),
it is important to have the number ¢ of queries be as small as possible, ideally a constant. Using
Reed—Muller codes of constant degree, it is possible to obtain constant-query locally decodable
codes, but the blocklength will be L = exp(Ll/(q_l)). In a recent breakthrough, it was shown
how to obtain constant-query locally decodable codes with blocklength L= exp(LO(l)). Obtaining
polynomial blocklength remains open.

6Some readers may recognize this concatenation step as the same as applying the “Goldreich-Levin hardcore predicate” to f .
However, for the parameters we are using (where the message space is small and we are doing unique decoding), we do not
need the sophisticated Goldreich—Levin algorithm (which can be interpreted as a “local list-decoding algorithm,” a notion we
will define next time).

66

Open Problem 7.50. Are there binary codes that are locally decodable with a constant number
of queries (from constant distance ¢ > 0) and blocklength polynomial in the message length?

7.5.4 Other Connections

As shown in Problem 7?7, locally decodable codes are closely related to protocols for private in-
formation retrieval. Another connection, and actually the setting in which these local decoding
algorithms were first discovered, is to program self-correctors. Suppose you have a program for
computing a function, such as the DETERMINANT, which happens to be a codeword in a locally
decodable code (e.g. the determinant is a low-degree multivariate polynomial). Then, even if this
program has some bugs and gives the wrong answer on some small fraction of inputs, you can use
the local decoding algorithm to obtain the correct answer on all inputs with high probability.

7.6 Local List Decoding
7.6.1 Hardness Amplification

In the previous section, we saw how to use locally decodable codes to convert a worst-case hard
function into one with constant average-case hardness (Theorem 7.49). Now our goal is to boost
this constant hardness to 1/2 — ¢.

There are some generic techniques for doing this, known as Direct Product Theorems or the
XOR Lemma (for Boolean functions). In those methods we use independent copies of the function
at hand. For example, in the XOR lemma, we let f’ consist of k& independent copies of f ,

f/(xl’ ""xk) = (f(ﬂjl),) f(xk))

Intuitively, if £ is 1/12 average-case hard, then f” should (1—(11/12)¥)-average case hard. Similarly,
if we take the XOR of k£ independent copies of a Boolean function, the hardness should approach
1/2 exponentially fast. These statements are (basically) true, though proving them turns out to be
more delicate than one might expect.

The main disadvantage of this approach (for our purposes) is that the input length is k¢ while
we aim for input length of O(¢). To overcome this problem, it is possible to use derandomization,
namely, evaluate f on dependent inputs instead of independent ones.

Thus, we will take a different approach, namely to generalize our notion and algorithms for
locally decodable codes to locally list-decodable codes. Nevertheless, the study of hardness am-
plification is still of great interest, because it (or variants) can be employed in settings where
doing a global encoding of the function is infeasible (e.g. for amplifying the average-case hardness
of functions in complexity classes lower than E, such as NP, and for amplifying the security of
cryptographic primitives). We remark that results on hardness amplification can be interpreted in
a coding-theoretic language as well, as converting locally decodable codes with a small decoding
distance into locally list-decodable codes with a large decoding distance.

7.6.2 Definition

We would like to formulate a notion of local list-decoding to enable us to have binary codes that
are locally decodable from distances close to 1/2. This is slightly trickier to define, since for any

67

function g, there may be several codewords fl, fg, vy fs that are close to ¢g. So what should our
decoding algorithm do? One option would be for the decoding algorithm, on input z, to output a
set of values Dec?(z) C X that is guaranteed to contain fi(x), fQESU), ...fs(x) with high probability.
However, this is not very useful, e.g the list could always be Dec?(x) = X. However, rather than
outputting each of these values, we want to be able to specify to our decoder which ﬁ(w) to output.
We do this with a two-phase decoding algorithm. The probabilistic algorithms that accomplish
these phases will be referred to as Decy; and Decs:

(1) Decy, using g as an oracle, returns a list of advice strings a, ag, ..., a2, which can be
thought of as “labels” for each of the codewords close to g.
(2) Decs (again, using oracle access to g), takes input x and a;, and outputs f;(x).

The picture for Decg is much like our old decoder, but it takes an extra input a; corresponding
to one of the outputs of Decy:
More formally:

Definition 7.51. A local § list-decoding algorithm for a code Enc is a pair of probabilistic oracle
algorithms (Decy, Decy) such that for all received words g and all codewords f = Enc(f) with
A(f,g) < 4, the following holds. With probability at least 1/2 over (ay, ..., as) < Decf, there exists
an i € [s] such that

Vz,Pr[Dec)(z,a;) = f(x)] > 2/3.

To help clarify this definition, we make the following remarks. First, we don’t require that for
all j, Dec)(z, a;) are codewords, or even that they’re close to s; in other words some of the a;’s may
be junk. Second, we don’t explicitly require a bound on the list size s, but certainly it cannot be
larger than the running time of Dec;.

As we did for locally (unique-)decodable codes, we can define a local § list-correcting algorithm,
where Dec? should recover arbitrary symbols of the codeword f rather than the message f. Anal-
ogously to Lemma 7.36, this implies the above definition if the code is systematic.

Proposition 7.33 shows how locally decodable codes converts functions that are hard in the
worst case to ones that are hard on average. The same is true for local list-decoding;:

Proposition 7.52. Let Enc be an error-correcting code with local J-list-decoding algorithm
(Decy, Decg) where Decs runs in time at most tpec, and let f be worst-case hard for non-uniform
time t. Then f = Enc(f) is (¢, 0) average-case hard, where t' = t/tpec.

Proof. Suppose for contradiction that f is not (¢, 0)-hard. Then some algorithm A running in time
t' computes f with error probability smaller than §. But if Enc has a local ¢ list-decoding algorithm,
then (with A playing the role of g) that means there exists a; (one of the possible outputs of Decs!),
such that Decs (-, a;) computes f(-) everywhere. Hardwiring a; as advice, Decs (-, a;) is a nonuniform
algorithm running in time at most time(A) - time(Decg) < t.]

68

Note that, in contrast to Proposition 7.33, here we are using nonuniformity more crucially, in
order to select the right function from the list of possible decodings.

7.6.3 Local List-Decoding Reed—Muller Codes

Note that the distance at which list-decoding can be done approaches 1 as gq/d — oo. It matches
the bound for list-decoding Reed—Solomon codes (Theorem ?7) up to the constant c. However, as
m increases, the running time of the decoder (poly(q,m)) becomes much smaller than the block
length (¢™ - logq), at the price of a reduced rate ((m;:d) /q"™).

Proof. Suppose we are given an oracle g : F* — F that is (1 —) close to some unkown polynomial
p: F™ — F, and that we are given an x € F™. Our goal is is describe two algorithms, Dec; and
Decg, where Decy is able to compute p(z) using a piece of Decy’s output (i.e. advice).

The advice that we will give to Decs is the value of p on a single point. Dec; can easily generate
a (reasonably small) list that contains one such point by choosing a random y € F™, and outputting
all pairs (y, z), for z € F. More formally:

Algorithm 7.54 (Reed—Muller Local List-Decoder Decy).
Input: An oracle g: F" — F, an input z € F™, and a degree parameter d

(1) Choose y & F™
(2) Output {(y,2) : z € F}

Now, the task of Decs is to calculate p(z), given the value of p on some point y. Deca does this
by looking at g restricted to the line through x and y, and using the RS list-decoding algorithm to
find the univariate polynomials q1, qo, ..., ¢; that are close to g. If exactly one of these polynomials ¢;
agrees with p on the test point y, then we can be reasonably confident that ¢;(z) = p(x). Specifically:

Algorithm 7.55 (Reed—Muller Local List-Corrector Decsy).
Input: An oracle g: F™ — F, an input = € F™, advice (y,z) € F™ x F, and a degree parameter d

(1) Let £ =4,y : F — F™ be the line through x and y (so that ¢(0) = z and 4(1) = y).
(2) Run the (1 —¢/2)-list-decoder for Reed—Solomon Codes (Theorem 6.17) on gl to get all
univariate polys ¢;...q; that agree with gy in greater than an €/2 fraction of points.

(3) If there exists a unique ¢ such that ¢;(1) = z, output ¢;(0). Otherwise, fail.

69

Now that we have fully specified the algorithms, it remains to analyze them and show that they
work with the desired probabilities. Observe that it suffices to compute p on at > 11/12 of the
points z, because then we can apply the unique local decoding algorithm from last time. Therefore,
to finish the proof of the theorem we must prove the following lemma

Claim 7.56. Suppose that g : F™ — F has agreement greater than ¢ with a polynomial p (i.e. g
has distance less than 1 — ¢ from p) of degree at most d. For at least 1/2 of the points y € F™ the
following holds for greater than an 11/12 fraction of lines ¢ going through y:

(1) agr(gle, ple) > e/2.
(2) There does not exist any univariate polynomial g of degree at most d other than p|; such

that agr(gle, q) > €/2 and q(y) = p(y).

Proof of claim: It suffices to show that Items 1 and 2 hold with probability 0.99
over random ¥, £; then we can apply Markov’s inequality to finish the job.

Item 1 holds by pairwise independence. If the line ¢ is chosen randomly, then
the ¢ points on ¢ are pairwise independent samples of F™. Note that the expected
agreement between g|, and p|, is simply the agreement between g|, and pl|y, which is
greater than e by hypothesis. So by the Pairwise-Independent Tail Inequality (Prop.
3.27), Prlagr(gle, ple) < e/2] < (1/q-(£/2)?), which can be made < 0.01 for a large
enough choice of the constant ¢ in € = ¢y/d/q.

To prove Item 2, we imagine first choosing the line ¢ uniformly at random from
all lines in F™, and then choosing y uniformly at random from the points on £
(reparametrizing ¢ so that ¢(1) = y). Once we choose ¢, we can let ¢i,...q; be all
polynomials of degree at most d, other than p|s, that have agreement greater than
£/2 with g|s. (Note that this list is independent of the parametrization of ¢, i.e. if
V'(t) = L(at 4+ b) for a # 0 then p|y and ¢}(t) = gi(at 4+ b) have agreement equal to
agr(ple, gi).) By the list-decodability of Reed—Solomon Codes (Proposition 6.13), we
have t = O(y/q/d).

Now, since two distinct polynomials can agree in at most d points, when we
choose a random point y < ¢, the probability that ¢; and p agree at y is at most
d/q. After reparameterization of ¢ so that ¢(1) = y, this gives

y q

Pr[3i : qi(l):p(l)]<t';l:O< d).

This can also be made < 0.01 for large enough choice of the constant ¢ (since we
may assume q/d > 2, else ¢ = 1 and the result is trivial). O

7.6.4 Putting it Together

To obtain a locally list-decodable (rather than list-correctible) code, we again use the low-degree
extension (Lemma 7.45) to obtain a systematic encoding. As before, to encode messages of length

70

¢ = log L, we apply Lemma 7.45 with |H| = [,/q] and m = [{/log |H], for total degree d < ,/q - £.
To decode from a 1 — ¢ fraction of errors using Theorem 7.53, we need c¢y/d/q < e, which follows if
q > 20?2/, This yields the following locally list-decodable codes:

Theorem 7.57. For every L € N and £ > 0, there is an explicit code Enc : {0,1} — Eﬁ, with
blocklength L = poly(L,1/¢) and alphabet size |X| = poly(log L, 1/¢), that has a local (1 — ¢)-list-
decoder running in time poly(log L, 1/¢).

Concatenating the code with a Hadamard code, similarly to Problem 6.2, we obtain:

Theorem 7.58. For every L € N and ¢ > 0, there is an explicit code Enc : {0, 1} — {0, 1}’i with
blocklength L = poly(L,1/¢) that has a local (1/2—¢)-list-decoder running in time poly(log L, 1/¢).

Using Proposition 7.52, we get the following hardness amplification result:

Theorem 7.59. If there exists f: {0,1}* — {0,1} in E that is worst-case hard against non-
uniform time #(¢), then there exists f: {0,1}°) — {0,1} in E that is (1/2 — 1/t/(¢)) average-case
hard against (non-uniform) time #'(¢) for ¢'(¢) = t(£)*™") /poly ().

71

