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Abstract

This is the first volume of a 2-part survey on pseudorandomness, the theory of efficiently generating
objects that “look random” despite being constructed using little or no randomness. The survey
places particular emphasis on the intimate connections that have been discovered between a vari-
ety of fundamental “pseudorandom objects” that at first seem very different in nature: expander
graphs, randomness extractors, list-decodable error-correcting codes, samplers, and pseudorandom
generators. The survey also illustrates the significance the theory of pseudorandomness has for the
study of computational complexity, algorithms, cryptography, combinatorics, and communications.
The structure of the presentation is meant to be suitable for teaching in a graduate-level course,
with exercises accompanying each chapter.
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1

Introduction

1.1 Overview of this Survey

Over the past few decades, randomization has become one of the most pervasive paradigms in
computer science. Its widespread uses include:

Algorithm Design: For a number of important algorithmic problems, the most efficient algo-
rithms known are randomized. For example:

• Primality. This was shown to have a randomized polynomial-time algorithm in 1977.
It wasn’t until 2002 that a deterministic polynomial-time algorithm was discovered. (We
will see this algorithm, but not its proof.)
• Approximate Counting. Many approximate counting problems (e.g. counting perfect

matchings in a bipartite graph) have randomized polynomial-time algorithms, but the
fastest known deterministic algorithms take exponential time.
• Undirected S-T Connectivity. This was shown to have a randomized logspace algo-

rithm in 1979. It wasn’t until 2005 that a deterministic logspace algorithm was discovered
— using tools from the theory of pseudorandomness, as we will see.
• Perfect Matching. This was shown to have a randomized polylogarithmic-time parallel

algorithm in the late 1970’s. Deterministically, we only know polynomial-time algorithms.

Cryptography: Randomization is central to cryptography. Indeed, cryptography is concerned
with protecting secrets, and how can something be secret if it is deterministically fixed? For example,
we assume that cryptographic keys are chosen at random (e.g. uniformly from the set of n-bit
strings). In addition to the keys, it is known that often the cryptographic algorithms themselves
(e.g. for encryption) must be randomized to achieve satisfactory notions of security (e.g. that no
partial information about the message is leaked).
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Combinatorial Constructions: Randomness is often used to prove the existence of combina-
torial objects with a desired properties. Specifically, if one can show that a randomly chosen object
has the property with nonzero probability, then it follows that such an object must, in fact, exist.
A famous example due to Erdős is the existence of Ramsey graphs: A randomly chosen n-vertex
graph has no clique or independent set of size 2 log n. We will see several other applications of
this “Probabilistic Method” in this survey, such as with two important objects mentioned below:
expander graphs and error-correcting codes.

Though these applications of randomness are interesting and rich topics of study in their own
right, they are not the focus of this survey. Rather, we ask the following:

Main Question: Can we reduce or even eliminate the use of randomness in these settings?

We have several motivations for doing this.

• Complexity Theory: We are interested in understanding and comparing the power of
various kinds of computational resources. Since randomness is such a widely used resource,
we want to know how it relates to other resources such as time, space, and parallelism. In
particular, we ask: Can every randomized algorithm be derandomized with only a small
loss in efficiency?
• Using Physical Random Sources: It is unclear whether the real world has physical sources

of perfect randomness. We may use sources that seem to have some unpredictability, like
the low order bits of a system clock or thermal noise, but these sources will generally
have biases and, more problematically, correlations. Thus we ask: What can we do with
a source of biased and correlated bits?
• Explicit Constructions: Probabilistic constructions of combinatorial objects often do not

provide us with efficient algorithms for using those objects. Indeed, the randomly chosen
object often has a description that is exponential in the relevant parameters. Thus, we
look for explicit constructions — ones that are deterministic and efficient. In addition
to their applications, improvements in explicit constructions serve as a measure of our
progress in understanding the objects at hand. Indeed, Erdős posed the explicit construc-
tion of near-optimal Ramsey graphs as an open problem, and substantial progress on this
problem was recently made using the theory of pseudorandomness (namely randomness
extractors).
• Unexpected Applications: In addition, the theory of pseudorandomness has turned out to

have many applications to problems that seem to have no connection to derandomization.
These include data structures, distributed computation (e.g. leader election), circuit lower
bounds in complexity theory, reducing interaction in interactive protocols, saving memory
in streaming algorithms, and more. We will see some of these applications in this survey
(especially the exercises).

The paradigm we will use to study the Main Question is that of pseudorandomness: efficiently
generating objects that “look random” using little or no randomness.

Specifically, we will study four “pseudorandom” objects:
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Pseudorandom generators (PRGs): A PRG is an algorithm that takes as input a short,
perfectly random seed and then returns a (much longer) sequence of bits that “looks random.”
That the bits output cannot be perfectly random is clear — the output is determined by the seed
and there are far fewer seeds than possible bit sequences. Nevertheless, it is possible for the output
to “look random” in a very meaningful and general-purpose sense. Specifically, we will require that
no efficient algorithm can distinguish the output from those of a truly random sequence. The study
of pseudorandom generators meeting this strong requirement originated in cryptography, where
they have numerous applications. In this survey, we will emphasize their role in derandomizing
algorithms.

Note that asserting that a function is a PRG is a statement about something that efficient
algorithms can’t do (in this case, distinguish two sequences). But proving that efficient algorithms
cannot compute things is typically out of reach for theoretical computer science; indeed this is why
the P vs. NP question is so hard. Thus, we will settle for conditional statements. An ideal theorem
would be something like: “If P 6= NP, then pseudorandom generators exist.” (The assumptions we
make won’t exactly be P 6= NP, but hypotheses of a similar flavor.)

Randomness Extractors: A randomness extractor takes as input a source of biased and corre-
lated bits, and then produces a sequence of almost-uniform bits as output. Their original motivation
was the simulation of randomized algorithms with sources of biased and correlated bits, but they
have found numerous other applications in theoretical computer science. Ideally, extractors would
be deterministic, but as we will see this proves to be impossible for general sources of biased
and correlated bits. Nevertheless, we will get close—producing extractors that are only “mildly”
probabilistic.

Expander Graphs: Expanders are graphs with two seemingly contradictory properties: they are
sparse (e.g. having degree that is a constant, independent of the number of vertices), but also “well-
connected” in some precise sense. For example, one might say that the graph cannot be bisected
without cutting a large (say, constant) fraction of the edges.

Expander graphs have numerous applications in theoretical computer science. They were origi-
nally studied for their use in designing fault-tolerant networks (e.g. for telephone lines), which are
networks that maintain good connectivity even when links or nodes fail. But they also have less
obvious applications, such as an O(log n)-time algorithm for sorting in parallel.

It is not obvious that expander graphs exist, but in fact it can be shown, via the Probabilistic
Method, that a random graph of degree 3 is a “good” expander with high probability. However,
many applications of expander graphs need explicit constructions, and these proved much harder
to find. We will see some explicit constructions in this survey, but they do not always match the
bounds given by the probabilistic method (in terms of the degree/expansion tradeoff).

Error-Correcting Codes: Error-correcting codes (ECCs) are tools for communicating over
noisy channels. Specifically, they specify a way to encode messages into longer, redundant code-
words so that even if the codeword gets somewhat corrupted along the way, it is still possible for
the receiver to decode the original message. In his landmark paper that introduced the field of cod-
ing theory, Shannon also proved the existence of good error-correcting codes via the probabilistic
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method. That is, a random mapping of n-bit messages to O(n)-bit codewords is a “good” error-
correcting code with high probability. Unfortunately, these probabilistic codes are not feasible to
actually use — a random mapping requires an exponentially long description, and we know of no
way to decode such a mapping efficiently. Again, explicit constructions are needed.

In this survey, we will focus on the problem of list decoding. Specifically, we will consider scenarios
where the number of corruptions is so large that unique decoding is impossible; at best one can
produce a short list that is guaranteed to contain the correct message.

A Unified Theory: Each of the above objects has been the center of a large and beautiful body
of research, but until recently these corpora were largely distinct. An exciting development over
the past decade has been the realization that all four of these objects are almost the same when
interpreted appropriately. Their intimate connections will be a major focus of this survey, tying
together the variety of constructions and applications that we will see.

The surprise and beauty of these connections has to do with the seemingly different nature of
each of these objects. PRGs, by asserting what efficient algorithms cannot do, are objects of com-
plexity theory. Extractors, with their focus on extracting the entropy in a correlated and biased
sequence, are information-theoretic objects. Expander graphs are of course combinatorial objects
(as defined above), though they can also be interpreted algebraically, as we will see. Error-correcting
codes involve a mix of combinatorics, information theory, and algebra. Because of the connections,
we obtain new perspectives on each of the objects, and make substantial advances on our under-
standing of each by translating intuitions and techniques from the study of the others.

1.2 Background Required and Teaching Tips

The presentation assumes a good undergraduate background in the theory of computation, and
general mathematical maturity. Specifically, it is assumed that the reader is familiar with basic
algorithms and discrete mathematics, e.g. as covered in [CLRS], including some exposure to ran-
domized algorithms; and with basic computational complexity including P, NP, and reductions,
e.g. as covered in [Sip2]. Experience with elementary abstract algebra, particularly finite fields, is
helpful; recommended texts are [Art, LN].

Most of the material in both volumes is covered in a one-semester graduate course that the
author teaches at Harvard University, which consists of 24 lectures of 1.5 hours each. Most of the
students in that course take at least one graduate-level course in the theoretical computer science
before this one.

The exercises are an important part of the survey, as they include proofs of some key facts,
introduce some concepts that will be used in later chapters, and illustrate applications of the
material to other topics. Problems that are particularly challenging or require more creativity than
most are marked with a star.

1.3 Notational Conventions

All logarithms are base 2 unless otherwise specified. We denote the set of numbers {1, . . . , n} by
[n]. We write N for the set of nonnegative integers (so we consider 0 to be a natural number). We
write S ⊂ T to mean that S is a subset of T (not necessarily strict), and S ( T for S being a strict
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subset of T .
Throughout, we consider random variables that can take values in arbitrary discrete sets (not

just real-valued random variables). We generally use capital letters, e.g. X, to denote random
variables and lowercase letters, e.g. x, to denote specific values. We write x R←X to indicate that
x is sampled according to X. For a set S, we write x R← S to mean that x is selected uniformly
at random from S. We use the convention that multiple occurrences of a random variable in an
expression refer to the same instantiation, e.g. Pr[X = X] = 1. For an event E, we write X|E to
denote the random variable X conditioned on the event E.

1.4 Chapter Notes and References

General introductions to the theory of pseudorandomness (other than this survey) include [Gol2,
Mil2].

Recommended textbooks focused on randomized algorithms are [MU, MR]. The first randomized
polynomial-time algorithms for Primality were discovered by Miller and Rabin [Mil1, Rab] and
Solovay and Strassen [SS]; a deterministic polynomial-time algorithm was given by Agrawal, Kayal,
and Saxena [AKS1]. The first randomized algorithms for approximate counting were found by
Karp and Luby [KLM]; the algorithm for counting perfect matchings is due to Jerrum, Sinclair,
and Vigoda [JSV], building on [Bro, JS]. The randomized logspace algorithm for Undirected S-T

Connectivity was given by Aleliunas et al. [AKL+]; it was derandomized by Reingold [Rei]. The
randomized parallel algorithm for deciding Perfect Matching is due to Lovász [Lov1]; the search
version is handled in [KUW] (see also [MVV]).

Recommended textbooks on cryptography are [Gol3, Gol4, KL]. The idea that encryption should
be randomized is due to Goldwasser and Micali [GM].

The Probabilistic Method for combinatorial constructions is the subject of the book [AS]. Erdős
used this method to prove the existence of Ramsey graphs in [Erd]. Major recent progress on explicit
constructions of Ramsey graphs was obtained by Barak, Rao, Shaltiel, and Wigderson [BRSW] via
the theory of randomness extractors.

The modern notion of pseudorandom generator was formulated in the works of Blum and Mi-
cali [BM] and Yao [Yao], motivated by cryptographic applications. We will spend most of our time
on a variant of the Blum–Micali–Yao notion, proposed by Nisan and Wigderson [NW], where the
generator is allowed more running time than the algorithms it fools. A detailed treatment of the
Blum–Micali–Yao notion can be found in [Gol3].

Surveys on randomness extractors are [NT, Sha1]. The notion of extractor that we will focus on
is the one due to Nisan and Zuckerman [NZ].

A detailed survey of expander graphs is [HLW]. The probabilistic construction of expander
graphs is due to Pinsker [Pin]. The application of expanders to sorting in parallel is due to Ajtai,
Komlós, and Szemerédi [AKS2].

A classic text on coding theory is [MS]. For a modern, CS-oriented treatment, we recommend
Sudan’s lecture notes [Sud2]. Shannon’s paper that gave birth to the field and gave a probabilis-
tic construction of error-correcting codes is [Sha2]. The notion of list decoding was proposed by
Elias [Eli] and Wozencraft [Woz], and was reinvigorated in the work of Sudan [Sud1]. Recent progress
on list decoding is covered in [Gur].

5



2

The Power of Randomness

2.1 Polynomial Identity Testing

Before we study the derandomization of randomized algorithms, we will need some algorithms to
derandomize. This section introduces one such algorithm. It solves the following computational
problem.

Computational Problem 2.1. Identity Testing: given two multivariate polynomials,
p(x1, . . . , xn) and q(x1, . . . , xn), decide whether p = q.

This definition requires some clarification. Specifically, we need to say what we mean by:

• “polynomials”: A (multivariate) polynomial is an finite expression of the form

p(x1, . . . , xn) =
∑

i1,...,in∈N
ci1,...,inx

i1
1 x

i2
2 · · ·x

in
n .

We need to specify what space the coefficients of the polynomials will come from; they
could be the integers, reals, rationals, etc. In general, we will assume that the coefficients
are chosen from a field (a set with addition and multiplication, where every nonzero
element has a multiplicative inverse) or more generally an (integral) domain (where the
product of two nonzero elements is always nonzero). Examples of fields include Q (the
rationals), R (the reals), Zp (integers modulo p) where p is prime. An integral domain
that is not a field is Z (the integers), but every integral domain is contained in its field of
fractions, which is Q in the case of Z. Zn for composite n is not even an integral domain.
We remark that there does exist a finite field Fq of size q = pk for every prime p and
positive integer k, and in fact this field is unique (up to isomorphism); but Fq is only
equal to Zq in case q is prime (i.e. k = 1). For more background on algebra, see the
references in the chapter notes.
For a polynomial p(x1, . . . , xn) =

∑
i1,...,in

ci1,...,inx
i1
1 x

i2
2 · · ·xinn , we define its degree (a.k.a.

total degree) to be the maximum sum of the exponents i1 + · · · + in over its monomials
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with nonzero coefficients ci1,...,in . Its degree in xj is the maximum of ij over its monomials
with nonzero coefficients.
• “p = q”: What does it mean for two polynomials to be equal? There are two natural

choices: the polynomials are the same as functions (they have the same output for ev-
ery point in the domain), or the polynomials are the same as formal polynomials (the
coefficients for each monomial are the same).
These two definitions are equivalent over the integers (or more generally over infinite
domains), but they are not equivalent over finite fields. For example, consider

p(x) =
∏
α∈F

(x− α).

for a finite field F.1 It is easy to see that p(α) = 0 for all α ∈ F, but p 6= 0 as a formal
polynomial. For us, equality refers to equality as formal polynomials.
• “given”: What does it mean to be given a polynomial? There are several possibilities

here:

(1) As a list of coefficients: this trivializes the problem of Identity Testing, as we
can just compare.

(2) As an “oracle”: a black box that, given any point in the domain, gives the value
of the polynomial.

(3) As an arithmetic formula: a sequence of symbols like (x1+x2)(x3+x7+6x5)x3(x5−
x6) + x2x4(2x3 + 3x5) that describes the polynomial. Observe that while we can
solve Identity Testing by expanding the polynomials and grouping terms,
but the expanded polynomials may have length exponential in the length of the
formula, and thus the algorithm is not efficient.
More general than formulas are circuits. An arithmetic circuit consists of a di-
rected acyclic graph, consisting of input nodes, which have indegree 0 and are
labeled by input variables or constants, and computation nodes, which have in-
degree 2 and are labelled by operations (+ or ×) specifying how to compute a
value given the values at its children; one of the computation nodes is designated
as the output node. Observe that every arithmetic circuit defines a polynomial in
its input variables x1, . . . , xn. Arithmetic formulas are equivalent to arithmetic
circuits where the underlying graph is a tree.

The randomized algorithm we describe will work for both the 2nd and 3rd formulations above (or-
acles and arithmetic circuits/formulas). It will be convenient to work with the following equivalent
version of the problem.

Computational Problem 2.2. Identity Testing (reformulation): Given a polynomial
p(x1, . . . , xn), is p = 0?

That is, we consider the special case of the original problem where q = 0. Any solution for
the general version of course implies one for the special case; conversely, we can solve the general
version by applying the special case to the polynomial p′ = p− q.

1 When expanded and terms are collected, this polynomial p can be shown to simply equal x|F| − x.
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Algorithm 2.3 (Identity Testing).
Input: A multivariate polynomial p(x1, . . . , xn) of degree at most d over a field/domain F.

(1) Let S ⊆ F be any set of size 2d.
(2) Choose α1, . . . , αn

R← S.
(3) Evaluate p(α1, . . . , αn). If the result is 0, accept. Otherwise, reject.

It is clear that if p = 0, the algorithm will always accept. The correctness in case p 6= 0 is based
on the following simple but very useful lemma.

Lemma 2.4 (Schwartz–Zippel Lemma). If p is a nonzero polynomial of degree d over a field
(or integral domain) F and S ⊆ F, then

Pr
α1,...,αn

R←S
[p(α1, . . . , αn) = 0] ≤ d

|S|
.

In the univariate case (n = 1), this amounts to the familiar fact that a polynomial with coeffi-
cients in a field and degree d has at most d roots. The proof for multivariate polynomials proceeds
by induction on n, and we leave it as an exercise (Problem 2.1).

By the Schwartz-Zippel lemma, the algorithm will err with probability at most 1/2 when p 6= 0.
This error probability can be reduced by repeating the algorithm many times (or by increasing
|S|). Note that the error probability is only over the coin tosses of the algorithm, not over the
input polynomial p. This is what we mean when we say randomized algorithm; it should work on
a worst-case input with high probability over the coin tosses of the algorithm. Algorithms whose
correctness (or efficiency) only holds for randomly chosen inputs are called heuristics, and their
study is called average-case analysis.

Note that we need a few things to ensure that our algorithm will work.

• First, we need a bound on the degree of the polynomial. We can get this in different ways
depending on how the polynomial is represented. For example, for arithmetic formulas,
the degree is bounded by the length of the formula. For arithmetic circuits, the degree is
at most exponential in the size (or even depth) of the circuit.
• We also must be able to evaluate p when the variables take arbitrary values in some

set S of size 2d. For starters, this requires that the domain F is of size at least 2d. We
should also have an explicit representation of the domain F enabling us to write down and
manipulate field elements (e.g. the prime p in case F = Zp). Then, if we are given p as an
oracle, we have the ability to evaluate p by definition. If we are given p as an arithmetic
formula or circuit, then we can do a bottom-up, gate-by-gate evaluation. However, over
infinite domains (like Z), there is subtlety — the bit-length of the numbers can grow
exponentially large. Problem 2.4 gives a method for coping with this.
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Since these two conditions are satisfied, we have a polynomial-time randomized algorithm for
Identity Testing for polynomials given as arithmetic formulas over Z (or even circuits, by Prob-
lem 2.4). There are no known subexponential-time deterministic algorithms for this problem, even
for formulas in ΣΠΣ form (i.e. a sum of terms, each of which is the product of linear functions
in the input variables). A deterministic polynomial-time algorithm for ΣΠΣ formulas where the
outermost sum has only a constant number of terms was obtained quite recently (2005).

2.1.1 Application to Perfect Matching

Now we will see an application of Identity Testing to an important graph-theoretic problem.

Definition 2.5. Let G = (V,E), then a matching on G is a set E′ ⊂ E such that no two edges in
E′ have a common endpoint. A perfect matching is a matching such that every vertex is incident
to an edge in the matching.

Computational Problem 2.6. Perfect Matching: given a graph G, decide whether there is
a perfect matching in G.

Unlike Identity Testing, Perfect Matching has deterministic polynomial-time algorithms
— e.g. using alternating paths, or by reduction to Max Flow in the bipartite case. However, both
of these algorithms seem to be inherently sequential in nature. With randomization, we can obtain
an efficient parallel algorithm.

Algorithm 2.7 (Perfect Matching in bipartite graphs).
Input: a bipartite graph G with n vertices on each side.

We construct an n× n matrix A where

Ai,j(x) =

{
xi,j if (i, j) ∈ E
0 otherwise

,

where xi,j is a formal variable.
Consider the multivariate polynomial

det(A(x)) =
∑
σ∈Sn

(−1)sign(σ)
∏
i

Ai,σ(i),

where Sn denotes the set of permutations on [n]. Note that the σ’th term is nonzero if and only if
the σ defines a perfect matching. That is, (i, σ(i)) ∈ E for all 1 ≤ i ≤ n. So det(A(x)) = 0 iff G has
no perfect matching. Moreover its degree is bounded by n, and given values αi,j for the xi,j ’s we
can evaluate det(A(α)) efficiently in parallel (in polylogarithmic time using a polynomial number
of processors) using an efficient parallel algorithm for determinant.

So to test for a perfect matching efficiently in parallel, just run the Identity Testing algorithm
with, say, S = {1, . . . , 2n} ⊂ Z, to test whether det(A(x)) = 0.
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Some remarks:

• The above also provides the most efficient sequential algorithm for Perfect Matching,
using the fact that Determinant has the same time complexity as Matrix Multipli-

cation, which is known to be at most O(n2.38).
• More sophisticated versions of the algorithm apply to non-bipartite graphs, and enable

finding perfect matchings in the same parallel or sequential time complexity (where the
result for sequential time is quite recent).
• Identity Testing has been also used to obtain a randomized algorithm for Primality,

which was derandomized fairly recently (2002) to obtain the celebrated deterministic
polynomial-time algorithm for Primality. See Problem 2.5.

2.2 The Computational Model and Complexity Classes

2.2.1 Models of Randomized Computation

To develop a rigorous theory of randomized algorithms, we need to use a precise model of com-
putation. There are several possible ways to augmenting a standard deterministic computational
model (e.g. Turing machine or RAM model), such as:

(1) The algorithm has access to a “black box” that provides it with (unbiased and indepen-
dent) random bits on request, with each request taking one time step. This is the model
we will use.

(2) The algorithm has access to a black box that, given a number n in binary, returns a
number chosen uniformly at random from {1, . . . , n}. This model is often more convenient
for describing algorithms. Problem 2.2 shows that it is equivalent to Model 1, in the sense
that any problem that can be solved in polynomial time on one model can also be solved
in polynomial time on the other.

(3) The algorithm is provided with an infinite tape (i.e. sequence of memory locations) that is
that is initially filled with random bits. For polynomial-time algorithms, this is equivalent
to the Model 1. However, for space-bounded algorithms, this model seems stronger, as
it provides the algorithm with free storage of its random bits (i.e. not counted towards
its working memory). Model 1 is considered to be the “right” model for space-bounded
algorithms. It can be shown to be equivalent to allowing the algorithm one-way access
to an infinite tape of random bits.

2.2.2 Complexity Classes

We will now define complexity classes that capture the power of efficient randomized algorithms. As
is common in complexity theory, these classes are defined in terms of decision problems, where the
set of inputs where the answer should be “yes” is specified by a language L ⊆ {0, 1}∗. However, the
definitions generalize in natural ways to other types of computational problems, such as computing
functions or solving search problems.

Recall that we say an algorithm A runs in time t : N→ N if A takes at most t(|x|) steps on every
input x, and it runs in polynomial time if it runs time t(n) = O(nc) for a constant c. Polynomial

10



time is a theoretical approximation to feasible computation, with the advantage that it is robust
to reasonable changes in the model of computation and representation of the inputs.

Definition 2.8. P is the class of languages L for which there exists a deterministic polynomial-time
algorithm A such that

• x ∈ L⇒ A(x) accepts.
• x /∈ L⇒ A(x) rejects.

For a randomized algorithm A, we say that A runs in time t : N → N if A takes at most t(|x|)
steps on every input x and every sequence of random coin tosses.

Definition 2.9. RP is the class of languages L for which there exists a probabilistic polynomial-
time algorithm A such that

• x ∈ L⇒ Pr[A(x) accepts] ≥ 1/2.
• x 6∈ L⇒ Pr[A(x) accepts] = 0.

That is, RP algorithms may have false negatives; the algorithm may sometimes say “no” even
if the answer is “yes”, albeit with bounded probability. But the definition does not allow for false
positives. Thus RP captures efficient randomized computation with one-sided error. RP stands
for “random polynomial time”. Note that the error probability of an RP algorithm can be reduced
to 2−p(n) for any polynomial p by running the algorithm p(n) times independently and accepting
the input iff at least one of the trials accepts. By the same reasoning, the 1/2 in the definition
is arbitrary, and any constant α ∈ (0, 1) or even α = 1/poly(n) would yield the same class of
languages.

A central question in this survey is whether randomization enables us to solve more problems
in polynomial time (e.g. decide more languages):

Open Problem 2.10. Does P = RP?

Similarly, we can consider algorithms that may have false positives but no false negatives.

Definition 2.11. co-RP is the class of languages L whose complement L̄ is in RP. Equivalently,
L ∈ co-RP if there exists a probabilistic polynomial-time algorithm A such that

• x ∈ L⇒ Pr[A(x) accepts] = 1.
• x 6∈ L⇒ Pr[A(x) accepts] ≤ 1/2.

That is, in co-RP we may err on no instances, whereas in RP we may err on yes instances.
Using the Identity Testing algorithm we saw earlier, we can deduce that Identity Testing

for arithmetic formulas is in co-RP. In Problem 2.4, this is generalized to arithmetic circuits, and
thus we have:
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Theorem 2.12. The language

ACITZ = {C : C(x1, . . . , xn) an arithmetic circuit over Z s.t. C = 0}

is in co-RP.

It is common to also allow two-sided error in randomized algorithms:

Definition 2.13. BPP is the class of languages L for which there exists a probabilistic polynomial-
time algorithm A such that

• x ∈ L⇒ Pr[A(x) accepts] ≥ 2/3.
• x 6∈ L⇒ Pr[A(x) accepts] ≤ 1/3.

Just as with RP, the error probability of BPP algorithms can be reduced from 1/3 (or even
1/2 − 1/poly(n)) to exponentially small by repetitions, this time taking a majority vote of the
outcomes. Proving this requires some facts from probability theory, which we will review in the
next section.

The cumbersome notation BPP stands for ‘bounded-error probabilistic polynomial-time,” due
to the unfortunate fact that PP (“probabilistic polynomial-time”) refers to the definition where the
inputs in L are accepted with probability greater than 1/2 and inputs not in L are accepted with
probability at most 1/2. Despite its name, PP is not a reasonable model for randomized algorithms,
as it takes exponentially many repetitions to reduce the error probability. BPP is considered the
standard complexity class associated with probabilistic polynomial-time algorithms, and thus the
main question of this survey is:

Open Problem 2.14. Does BPP = P?

So far, we have considered randomized algorithms that can output an incorrect answer if they are
unlucky in their coin tosses; these are called “Monte Carlo” algorithms. It is sometimes preferable
to have “Las Vegas” algorithms, which always output the correct answer, but may run for a longer
time if they are unlucky in their coin tosses. For this, we say that A has expected running time
t : N → N if for every input x, the expectation of the number of steps taken by A(x) is at most
t(|x|), where the expectation is taken over the coin tosses of A.

Definition 2.15. ZPP is the class of languages L for which there exists a probabilistic algorithm
A that always decides L correctly and runs in expected polynomial time.

ZPP stands for “zero-error probabilistic polynomial time”. The following relation between ZPP
and RP is left as an exercise.

Fact 2.16 (Problem 2.3). ZPP = RP ∩ co-RP.

We do not know any other relations between the classes associated with probabilistic polynomial
time.
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Open Problem 2.17. Are any of the inclusions P ⊂ ZPP ⊂ RP ⊂ BPP proper?

One can similarly define randomized complexity classes associated with complexity measures
other than time such as space or parallel computation. For example:

Definition 2.18. RNC is the class of languages L such that exists a probabilistic parallel algo-
rithm A that runs in polylogarithmic time on polynomially many processors, such that

• x ∈ L⇒ Pr[A(x) accepts] ≥ 1/2.
• x 6∈ L⇒ Pr[A(x) accepts] = 0.

A formal model of a parallel algorithm is beyond the scope of this survey, but can be found in
standard texts on algorithms or parallel computation. We have seen:

Theorem 2.19. Perfect Matching in bipartite graphs, i.e. the language PM = {G :
G a bipartite graph with a perfect matching}, is in RNC.

2.2.3 Tail Inequalities and Error Reduction

In the previous section, we claimed that we can reduce the error of a BPP algorithm by taking
independent repetitions and ruling by majority vote. The intuition that this should work is based
on the Law of Large Numbers: if we repeat the algorithm many times, the fraction of correct
answers should approach its expectation, which is greater than 1/2 (and thus majority rule will be
correct). For complexity purposes, we need quantitative forms of this fact, which bound how many
repetitions are needed to achieve a desired probability of correctness.

First, we recall a basic inequality which says that it is unlikely for (a single instantiation of) a
random variable to exceed its expectation by a large factor.

Lemma 2.20 (Markov’s Inequality). If X is a nonnegative random variable, then for any α >
0,

Pr[X ≥ α] ≤ E[X]
α

Markov’s Inequality alone does not give very tight concentration around the expectation; to get
even a 50% probability, we need to look at deviations by a factor of 2. To get tight concentration,
we need to take independent copies of a random variable. There are a variety of different tail
inequalities that apply for this setting; they are collectively referred to as Chernoff Bounds.

Theorem 2.21 (A Chernoff Bound). Let X1, . . . , Xt be independent random variables taking
values in the interval [0, 1], let X = (

∑
iXi)/t, and µ = E[X]. Then

Pr[|X − µ| ≥ ε] ≤ 2 exp(−tε2/2).
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Thus, the probability that the average deviates significantly from the expectation vanishes expo-
nentially with the number of repetitions t. We leave the proof of this Chernoff Bound as an exercise
(Problem 2.7).

Now let’s apply the Chernoff Bound to analyze error-reduction for BPP algorithms.

Proposition 2.22. The following are equivalent:

(1) L ∈ BPP.
(2) For every polynomial p, L has a probabilistic polynomial-time algorithm with two-sided

error at most 2−p(n).
(3) There exists a polynomial q such that L has a probabilistic polynomial-time algorithm

with two-sided error at most 1/2− 1/q(n).

Proof. Clearly, (2)⇒ (1) ⇒ (3). Thus, we prove (3) ⇒ (2).
Given an algorithm A with error probability at most 1/2 − 1/q(n), consider an algorithm A′

that on an input x of length n, runs A for t(n) independent repetitions and rules according to the
majority, where t(n) is a polynomial to be determined later.

We now compute the error probability of A′ on an input x of length n. Let Xi be an indicator
random variable that is 1 iff the i’th execution of A(x) outputs the correct answer, and let X =
(
∑

iXi)/t be the average of these indicators, where t = t(n). Note that A′(x) is correct when
X > 1/2. By the error probability of A and linearity of expectations, we have E[X] ≥ 1/2 + 1/q,
where q = q(n). Thus, applying the Chernoff Bound with ε = 1/q, we have:

Pr[X ≤ 1/2] ≤ 2 · e−t/2q2 < 2−p(n),

for t(n) = 2p(n)q(n)2 and sufficiently large n.

2.3 Sampling and Approximation Problems

2.3.1 Sampling

The power of randomization is well-known to statisticians. If we want to estimate the mean of some
quantity over a large population, we can do so very efficiently by taking the average over a small
random sample.

Formally, here is the computational problem we are interested in solving.

Computational Problem 2.23. Sampling (aka [+ε]-Approx Oracle Average): Given ora-
cle access to a function f : {0, 1}m → [0, 1], estimate µ(f) def= E[f(Um)] to within an additive error
of ε. That is, output an answer in the interval [µ− ε, µ+ ε].

And here is the algorithm:

Algorithm 2.24 ([+ε]-Approx Oracle Average). For an appropriate choice of t, choose
x1, . . . , xt

R←{0, 1}m, query the oracle to obtain f(x1), . . . , f(xt), and output (
∑

i f(xi))/t.
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By the Chernoff Bound (Theorem 2.21), we only need to take t = O(log(1/δ)/ε2) samples to
have additive error at most ε with probability at least 1 − δ. Note that for constant ε and δ, the
sample size is independent of the size of the population (2m), and we have running time poly(m)
even for ε = 1/poly(m) and δ = 2−poly(m).

For this problem, we can prove that no deterministic algorithm can be nearly as efficient.

Proposition 2.25. Any deterministic algorithm solving [+(1/4)]-Approx Oracle Average

must make at least 2m/2 queries to its oracle.

Proof. Suppose we have a deterministic algorithm A that makes fewer than 2m/2 queries. Let Q be
the set of queries made by A when all of its queries are answered by 0. Now define two functions

f0(x) = 0 ∀x

f1(x) =

{
0 x ∈ Q
1 x /∈ Q

Then A gives the same answer on both f0 and f1 (since all the oracle queries return 0 in both
cases), but µ(f0) = 0 and µ(f1) > 1/2, so the answer must have error greater than 1/4 for at least
one of the functions.

Thus, randomization provides an exponential savings for approximating the average of a function
on a large domain. However, this does not show that BPP 6= P. There are two reasons for this:

(1) [+ε]-Approx Oracle Average is not a decision problem, and indeed it is not clear
how to define languages that capture the complexity of approximation problems. However,
below we will see how a slightly more general notion of decision problem does allow us
to capture approximation problems such as this one.

(2) More fundamentally, it does not involve the standard model of input as used in the
definitions of P and BPP. Rather than the input being a string that is explicitly given
to the algorithm (where we measure complexity in terms of the length of the string),
the input is an exponential-sized oracle to which the algorithm is given random access.
Even though this is not the classical notion of input, it is an interesting one that has
received a lot of attention in recent years, because it allows for algorithms whose running
time is sublinear (or even polylogarithmic) in the actual size of the input (e.g. 2m in the
example here). As in the example here, typically such algorithms require randomization
and provide approximate answers.

2.3.2 Promise Problems

Now we will try to find a variant of the [+ε]-Approx Oracle Average problem that is closer to
the P vs. BPP question. First, to obtain the standard notion of input, we consider functions that
are presented in a concise form, as Boolean circuits C : {0, 1}m → {0, 1} (analogous to the algebraic
circuits defined in Section 2.1, but now the inputs take on Boolean values and the computation
gates are ∧, ∨, and ¬).

Next, we need a more general notion of decision problem than languages:
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Definition 2.26. A promise problem Π consists of a pair (ΠY ,ΠN ) of disjoint sets of strings, where
ΠY is the set of yes instances and ΠN is the set of no instances. The corresponding computational
problem is: given a string that is “promised” to be in ΠY ∪ΠN , decide which is the case.

All of the complexity classes we have seen have natural promise-problem analogues, which we
denote by prP, prRP, prBPP, etc. For example:

Definition 2.27. prBPP is the class of promise problems Π for which there exists a probabilistic
polynomial-time algorithm A such that

• x ∈ ΠY ⇒ Pr[A(x) accepts] ≥ 2/3.
• x ∈ ΠN ⇒ Pr[A(x) accepts] ≤ 1/3.

Since every language L corresponds to the promise problem (L,L), any result proven for every
promise problem in some promise-class also holds for every language in the corresponding language
class. In particular, if every prBPP algorithm can be derandomized, so can every BPP algorithm:

Proposition 2.28. prBPP = prP⇒ BPP = P.

Now we can consider the following problem.

Computational Problem 2.29. [+ε]-Approx Circuit Average is the promise problem CAε,
defined as:

CAε
Y = {(C, p) : µ(C) > p+ ε}

CAε
N = {(C, p) : µ(C) ≤ p}

Here ε can be a constant or a function of the input length n = |(C, p)|.

It turns out that this problem completely captures the power of probabilistic polynomial-time
algorithms.

Theorem 2.30. For every function ε such that 1/poly(n) ≤ ε(n) ≤ 1 − 1/2n
o(1)

, [+ε]-Approx

Circuit Average is prBPP-complete. That is, it is in prBPP and every promise problem in
prBPP reduces to it.

Proof. [Sketch]
Inclusion in prBPP: Follows from Algorithm 2.24 and the fact that boolean circuits can be evalu-
ated in polynomial time.

Hardness for prBPP: Given any promise problem Π ∈ prBPP, we have a probabilistic
polynomial-time algorithm A that decides Π with 2-sided error at most 2−n on inputs of length n.
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We can view the output of A(x; r) as a function of its input x and its coin tosses r. Note that if x
is of length n, then we may assume that r is of length at most poly(n) without loss of generality
(because an algorithm that runs in time at most t can toss at most t coins). For any n, there is
a poly(n)-sized circuit C(x; r) that simulates the computation of A for inputs x of length n and
coin tosses r of length poly(n), and moreover C can be constructed in time poly(n). (See any
text on complexity theory for a proof.) Let Cx(r) be the circuit C with x hardwired in. Then the
map x 7→ (Cx, 1/2n) is a polynomial-time reduction from Π to [+ε]-Approx Circuit Average.
Indeed, if x ∈ ΠN , then A accepts with probability at most 1/2n, so µ(Cx) ≤ 1/2n. And if x ∈ ΠY ,
then µ(Cx) ≥ 1− 1/2n > 1/2n + ε(n′), where n′ = |(Cx, 1/2n)| = poly(n) and we take n sufficiently
large.

Consequently, derandomizing this one algorithm is equivalent to derandomizing all of prBPP:

Corollary 2.31. [+ε]-Approx Circuit Average is in prP if and only if prBPP = prP.

Note that the proof of Proposition 2.25 does not extend to [+ε]-Approx Circuit Average.
Indeed, it’s not even clear how to define the notion of “query” for an algorithm that is given a
circuit C explicitly; it can do arbitrary computations that involve the internal structure of the
circuit. Moreover, even if we restrict attention to algorithms that only use the input circuit C as
if it were an oracle (other than computing the input length |(C, p)| to know how long it can run),
there is no guarantee that the function f1 constructed in the proof of Proposition 2.25 has a small
circuit.

2.3.3 Approximate Counting to within Relative Error

Note that [+ε]-Approx Circuit Average can be viewed as the problem of approximately count-
ing the number of satisfying assignments of a circuit C : {0, 1}m → {0, 1} to within additive error
ε · 2m, and a solution to this problem may give useless information for circuits that don’t have
very many satisfying assignments (e.g. circuits with fewer than 2m/2 satisfying assignments). Thus
people typically study approximate counting to within relative error. For example, given a circuit
C, output a number that is within a (1 + ε) factor of its number of satisfying assignments, #C. Or
the following essentially equivalent decision problem:

Computational Problem 2.32. [×(1 + ε)]-Approx #CSAT is the following promise problem:

CSATε
Y = {(C,N) : #C > (1 + ε) ·N}

CSATε
N = {(C,N) : #C ≤ N}

Unfortunately, this problem is NP-hard for general circuits (consider N = 0), so we do not expect
a prBPP algorithm. However, there is a very pretty randomized algorithm if we restrict to DNF
formulas.

Computational Problem 2.33. [×(1 + ε)]-Approx #DNF is the restriction of [×(1 + ε)]-
Approx #CSAT to C to formulas in disjunctive normal form (DNF) (i.e. an OR of clauses,
where each clause is an AND of variables or their negations).
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Theorem 2.34. For every function ε(n) ≥ 1/poly(n), [×(1 + ε)]-Approx #DNF is in prBPP.

Proof. It suffices to give a probabilistic polynomial-time algorithm that estimates the number of
satisfying assignments to within a 1± ε factor. Let ϕ(x1, . . . , xm) be the input DNF formula.

A first approach would be to apply random sampling as we have used above: Pick t random
assignments uniformly from {0, 1}m and evaluate ϕ on each. If k of the assignments satisfy ϕ,
output (k/t) · 2m. However, if #ϕ is small (e.g. 2m/2), random sampling will be unlikely to hit any
satisfying assignments, and our estimate will be 0

The idea to get around this difficulty is to embed the set of satisfying assignments, A, in a
smaller set B so that sampling can be useful. Specifically, we will define sets A′ ⊆ B satisfying the
following properties:

(1) |A′| = |A|
(2) |A′| ≥ |B|/poly(n), where n = |ϕ|.
(3) We can decide membership in A′ in polynomial time.
(4) |B| computable in polynomial time.
(5) We can sample uniformly at random from B in polynomial time.

Letting ` be the number of clauses, we define A′ and B as follows:

B =
{

(i, α) ∈ [`]× {0, 1}m : α satisfies the ith clause
}

A′ =
{

(i, α) ∈ B : α does not satisfy any clauses before the ith clause
}

Now we verify the desired properties:

(1) Clearly |A| = |A′| since A′ only contains pairs (i, α) such that the first satisfying clause
in α is the ith one.

(2) Also, the size of A′ and B can differ by at most a factor of ` by construction since for A′

we only look at the first satisfying clause and there can only be m− 1 more elements in
B per assignment α.

(3) It is easy to decide membership in A′ in linear time.
(4) |B| =

∑`
i=1 2m−mi , where mi is the number of literals in clause i.

(5) We can randomly sample from B as follows. First pick a clause with probability propor-
tional to the number of satisfying assignments it has (2m−mi). Then, fixing those variables
in the clause (e.g. if xj is in the clause, set xj = 1, and if ¬xj is in the clause, set xj = 0),
assign the rest of the variables uniformly at random.

Putting this together, we deduce the following algorithm:

Algorithm 2.35 ([×(1 + ε)]-Approx #DNF).
Input: a DNF formula ϕ(x1, . . . , xm) with ` clauses
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(1) Generate a random sample of t points in B = {(i, α) ∈ [`] × {0, 1}m :
α satisfies the ith clause}, for an appropriate choice of t = O(1/(ε/`)2) to be determined
below.

(2) Let µ̂ be the fraction of sample points that land in A′ = {(i, α) ∈ B :
α does not satisfy any clauses before the ith clause}.

(3) Output µ̂ · |B|.

By the Chernoff bound, we have µ̂ ∈ [|A′|/|B|±ε/`] with high probability (where we write [α±β]
to denote the interval [α−β, α+β]). Thus, with high probability the output of the algorithm satisfies:

µ̂ · |B| ∈ [|A′| ± ε|B|/`] ⊆ [|A| ± ε|A|].

There is no deterministic polynomial-time algorithm known for this problem:

Open Problem 2.36. Give a deterministic polynomial-time algorithm for approximately counting
the number of satisfying assignments to a DNF formula.

However, when we study pseudorandom generators in Chapter 7, we will see a quasipolynomial-
time derandomization of the above algorithm (i.e. one in time 2polylog(n)).

2.3.4 MaxCut

We give an example of another algorithm problem for which random sampling is a useful tool.

Definition 2.37. For a graph G = (V,E) and S, T ⊆ V , define cut(S, T ) = {{u, v} ∈ E : u ∈
S, v ∈ T}, and cut(S) = cut(S, V \ S).

Computational Problem 2.38. MaxCut (search version): Given G, find the largest cut in G,
i.e. the set S maximizing |cut(S)|.

Solving this problem optimally is NP-hard (in contrast to MinCut, which is known to be in
P). However, there is a simple randomized algorithm that finds a cut of expected size at least |E|/2
(which is of course at least 1/2 the optimal, and hence this is referred to as a “1/2-approximation
algorithm”):

Algorithm 2.39 (MaxCut approximation).
Input: a graph G = (V,E)

Output a random subset S ⊆ V . That is, place each vertex v in S independently with
probability 1/2.
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To analyze this algorithm, consider any edge e = (u, v). Then the probability that e crosses the
cut is 1/2. By linearity of expectations, we have:

E[|cut(S)|] =
∑
e∈E

Pr[e is cut] = |E|/2.

This also serves as a proof, via the probabilistic method, that every graph (without self-loops) has
a cut of size at least |E|/2.

In Chapter 3, we will see how to derandomize this algorithm. We note that there is a much more
sophisticated randomized algorithm that finds a cut whose expected size is within a factor of .878
of the largest cut in the graph (and this algorithm can also be derandomized).

2.4 Random Walks and S-T Connectivity

2.4.1 Graph Connectivity

One of the most basic problems in computer science is that of deciding connectivity in graphs, i.e.

Computational Problem 2.40. S-T Connectivity: Given a directed graph G and two vertices
s and t, is there a path from s to t in G?

This problem can of course be solved in linear time using breadth-first or depth-first search.
However, these algorithms also require linear space. It turns out that S-T Connectivity can in
fact be solved using much less workspace. (When measuring the space complexity of algorithms,
we do not count the space for the (read-only) input and (write-only) output.)

Theorem 2.41. There is an algorithm deciding S-T Connectivity using space O(log2 n) (and
time O(n)logn).

Proof. The following recursive algorithm IsPath(G, u, v, k) decides whether there is a path of
length at most k from u to v.

Algorithm 2.42 (Recursive S-T Connectivity).
IsPath(G, u, v, k):

(1) If k = 0, accept if u = v.
(2) If k = 1, accept if u = v or (u, v) is an edge in G.
(3) Otherwise, loop through all vertices w in G and accept if both IsPath(G, u,w, dk/2e) and

IsPath(G,w, v, bk/2c) accept for some w.

We can solve S-T Connectivity by running IsPath(G, s, t, n), where n is the number of vertices
in the graph. The algorithm has log n levels of recursion and uses log n space per level of recursion
(to store the vertex w), for a total space bound of log2 n. Similarly, the algorithm uses linear time
per level of recursion, for a total time bound of O(n)logn.

It is not known how to improve the space bound in Theorem 2.41 or to get the running time
down to polynomial while maintaining space no(1). For undirected graphs, however, we can do much
better using a randomized algorithm. Specifically, we can place the problem in the following class:
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Definition 2.43. A language L is in RL if there exists a randomized algorithm A that always
halts, uses space at most O(log n) on inputs of length n, and satisfies:

• x ∈ L⇒ Pr[A(x) accepts] ≥ 1/2.
• x 6∈ L⇒ Pr[A(x) accepts] = 0.

Recall that our model of a randomized space-bounded machine is one that has access to a
coin-tossing box (rather than an infinite tape of random bits), and thus must explicitly store in its
workspace any random bits it needs to remember. The requirement that A always halts ensures
that its running time is at most 2O(logn) = poly(n), because otherwise there would be a loop in its
configuration space. Similarly to RL, we can define L (deterministic logspace), co-RL (one-sided
error with errors only on no instances), and BPL (two-sided error).

Now we can state the theorem for undirected graphs.

Computational Problem 2.44. Undirected S-T Connectivity: Given an undirected graph
G and two vertices s and t, is there a path from s to t in G?

Theorem 2.45. Undirected S-T Connectivity is in RL.

Proof. [Sketch] The algorithm simply does a polynomial-length random walk starting at s.

Algorithm 2.46 (Undirected S-T Connectivity via Random Walks).

Input: (G, s, t), where G = (V,E) has n vertices

(1) Let v = s.
(2) Repeat up to n4 times:

(a) If v = t, halt and accept.

(b) Else let v R←{w : (v, w) ∈ E}.
(3) Reject (if we haven’t visited t yet).

Notice that this algorithm only requires space O(log n), to maintain the current vertex v as well
as a counter for the number of steps taken. Clearly, it never accepts when there isn’t a path from s

to t. In the next section, we will prove that if G is a d-regular graph, then a random walk of length
Õ(d2n3) from s will hit t with high probability. Note that this suffices for Theorem 2.45, because
make an arbitrary undirected graph 3-regular while preserving s-t connectivity by replacing each
vertex v with a cycle of length deg(v). In fact, the algorithm actually works as described above for
general undirected graphs and even directed graphs in which each connected component is Eulerian
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(indeg(v) = outdeg(v) for every vertex), but we will not prove it here. But it does not work for
arbitrary directed graphs. Indeed, it is not difficult to construct directed graphs in which there is
a path from s to t but a random walk from s takes exponential time to hit t (Problem 2.9).

This algorithm, dating from the 1970’s, was derandomized only in 2005. We will cover this result
in Section 4.4. However, the general question of derandomizing space-bounded algorithms remains
open.

Open Problem 2.47. Does RL = L? Does BPL = L?

2.4.2 Random Walks on Graphs

For generality that will be useful later, many of the definitions in this section will be given for
directed multigraphs (which we will refer to as digraphs for short). By multigraph, we mean that
we allow G to have parallel edges and self-loops. We call such a digraph d-regular if every vertex
has indegree d and outdegree d. To analyze the random-walk algorithm of the previous section, it
suffices to prove a bound on the hitting time of random walks.

Definition 2.48. For a digraph G = (V,E), we define its hitting time as

hit(G) = max
i,j∈V

min
t
{Pr[a random walk of length t started at i visits j] ≥ 1/2}.

We note that hit(G) is often defined as the maximum over vertices i and j of the expected time for
a random walk from i to visit j. The two definitions are the same up to a factor of 2, and the above
is more convenient for our purposes.

We will prove:

Theorem 2.49. For every connected and d-regular undirected graph G on n vertices, we have
hit(G) = O(d2n3 log n).

There are combinatorial methods for proving the above theorem, but we will prove it using a
linear-algebraic approach, as the same methods will be very useful in our study of expander graphs.
For an n-vertex digraph G, we define its random-walk transition matrix, or random-walk matrix for
short, to be the n× n matrix M where Mi,j is the probability of going from vertex i to vertex j in
one step. That is, Mi,j is the number of edges from i to j divided by the outdegree of i. In case G
is d-regular, M is simply the adjacency matrix of G divided by d. Notice that for every probability
distribution π ∈ Rn on the vertices of G (written as a row vector), the vector πM is the probability
distribution obtained by selecting a vertex i according to π and then taking one step of the random
walk to end at a vertex j. This is because (πM)j =

∑
i πiMi,j .

In our application, we start at a probability distribution π concentrated at vertex s, and are
interested in the distribution πMk we get after taking k steps on the graph. Specifically, we’d like to
show that it places nonnegligible mass on vertex t for k = poly(n). We will do this by showing that
it in fact converges to the uniform distribution u = (1/n, 1/n, . . . , 1/n) ∈ Rn within a polynomial
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number of steps. Note that uM = u by the regularity of G, so convergence to u is possible (and
will be guaranteed given some additional conditions on G).

We will measure the rate of convergence in `2 norm. For vectors x, y ∈ Rn, we will use the
standard inner product 〈x, y〉 =

∑
i xiyi, and `2 norm ‖x‖ =

√
〈x, x〉. We write x ⊥ y to mean

that x and y are orthogonal, i.e. 〈x, y〉 = 0. We want to determine how large k needs to be so that
‖πMk − u‖ is “small”. This is referred to as the mixing time of the random walk. Mixing time can
be defined with respect to various distance measures and the `2 norm is not the most natural one,
but it has the advantage that we will be able to show that the distance decreases noticeably in
every step. This is captured by the following quantity.

Definition 2.50. For a regular digraph G with random-walk matrix M , we define

λ(G) def= max
π

‖πM − u‖
‖π − u‖

= max
x⊥u

‖xM‖
‖x‖

,

where the first maximization is over all probability distributions π ∈ [0, 1]n and the second is over
all vectors x ∈ Rn such that x ⊥ u. We write γ(G) def= 1− λ(G).

To see that the first definition of λ(G) is smaller than or equal to the second, note that for
any probability distribution π, the vector x = (π − u) is orthogonal to uniform (i.e. the sum of
its entries is zero). For the converse, observe that given any vector x ⊥ u, the vector π = u + αx

is a probability distribution for a sufficiently small α. It can be shown that λ(G) ∈ [0, 1]. (For
undirected regular graphs, this follows from Problem 2.11.)

The following lemma is immediate from the definition of M .

Lemma 2.51. Let G be a regular digraph with random-walk matrix M . For every initial proba-
bility distribution π on the vertices of G and every k ∈ N, we have

‖πMk − u‖ ≤ λ(G)k · ‖π − u‖ ≤ λ(G)k.

Thus a smaller value of λ(G) (equivalently, a larger value of γ(G)) means that the random
walk mixes more quickly. Specifically, for k = ln(n/ε)/γ(G), it follows that every entry of πMk has
probability mass at least 1/n − (1 − γ(G))k ≥ (1 − ε)/n. So the mixing time of the random walk
on G is at most O((log n)/γ(G)), and this holds with respect to any reasonable distance measure.
Note that O(1/γ(G)) steps does not suffice, because a distribution with `2 distance ε from uniform
could just assign equal probability mass to 1/ε2 vertices (and thus be very far from uniform in any
intuitive sense).

Corollary 2.52. hit(G) = O(n log n/γ(G)).

Proof. As argued above, a walk of length k = O(log n/γ(G)) has a probability of at least 1/2n of
ending at j. Thus, if we do O(n) such walks, we will hit j with probability at least 1/2.

Thus we are left with the task of showing that γ(G) ≥ 1/poly(n). This is done in Problem 2.11,
using a connection with eigenvalues described in the next section.
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2.4.3 Eigenvalues

Recall that v ∈ Rn is an eigenvector of n×n matrix M if vM = λv for some λ ∈ R, which is called
the corresponding eigenvalue. A useful feature of symmetric matrices is that they can be described
entirely in terms of their eigenvectors and eigenvalues.

Theorem 2.53 (Spectral Thm for Symmetric Matrices). If M is a symmetric n × n

real matrix with distinct eigenvalues µ1, . . . , µk, then the subspaces Wi = {x :
x is an eigenvector of eigenvalue µi} are orthogonal (i.e. x ∈ Wi, y ∈ Wj ⇒ x ⊥ y if i 6= j)
and span Rn (i.e. Rn = W1 + · · · + Wk). We refer to the dimension of Wi as the multiplicity of
eigenvalue µi. In particular, Rn has a basis consisting of orthogonal eigenvectors v1, . . . , vn hav-
ing respective eigenvalues λ1, . . . , λn, where the number of times µi occurs among the λj ’s exactly
equals the multiplicity of µi.

Notice that if G is a undirected regular graph, then its random-walk matrix M is symmetric.
We know that uM = u, so the uniform distribution is an eigenvector of eigenvalue 1. Let v2, . . . , vn
and λ2, . . . , λn be the remaining eigenvectors and eigenvalues, respectively. Given any probability
distribution π, we can write it as π = u+ c2v2 + · · ·+ cnvn. Then the probability distribution after
k steps on the random walk is

πMk = u+ λk2c2v2 + · · ·+ λkncnvn.

In Problem 2.11, it is shown that all of the λi’s have absolute value at most 1. Notice that if they
all have have magnitude strictly smaller than 1, then πMk indeed converges to u. Thus it is not
surprising that our measure of mixing rate, λ(G), equals the absolute value of the second largest
eigenvalue.

Lemma 2.54. Let G be an undirected graph with random-walk matrix M . Let 1 = λ1 ≥ |λ2| ≥
|λ3| ≥ · · · ≥ |λn| be the eigenvalues of M . Then λ(G) = |λ2|.

Proof. Let u = v1, v2, . . . , vn be the basis of orthogonal eigenvectors corresponding to the λi’s.
Given any vector x ⊥ u, we can write x = c2v2 + · · ·+ cnvn. Then:

‖xM‖2 = ‖λ2c2v2 + · · ·+ λncnvn‖2

= λ2
2c

2
2‖v2‖2 + · · ·+ λ2

nc
2
n‖vn‖2

≤ |λ2|2 · (c2
2‖v2‖2 + · · ·+ c2

n‖vn‖2)

= |λ2|2 · ‖x‖2

Equality is achieved with x = v2.

Thus, bounding λ(G) amounts to bounding the eigenvalues of G. Due to this connection, γ(G) =
1− λ(G) is often referred to as the spectral gap, as it is the gap between the largest eigenvalue and
the second largest.

In Problem 2.11, it is shown that:
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Theorem 2.55. If G is a connected, nonbipartite, and regular undirected graph, then γ(G) =
Ω(1/(dn)2).

Combining Theorem 2.55 with Corollary 2.52, we deduce Theorem 2.49. (The nonbipartite
assumption in Theorem 2.55 can be achieved by adding a self-loop to each vertex, which only
increases the hitting time.) We note that the bounds presented here are not tight.

2.4.4 Markov Chain Monte Carlo

Random walks are a very widely used tool in the design of randomized algorithms. In particular,
they are the heart of the “Markov Chain Monte Carlo” method, which is widely used in statistical
physics and for solving approximate counting problems. In these applications, the goal is to generate
a random sample from an exponentially large space, such as an (almost) uniformly random perfect
matching for a given bipartite graph G. (It turns out that this is equivalent to approximately
counting the number of perfect matchings in G.) The approach is to do a random walk on an
appropriate (regular) graph Ĝ defined on the space (e.g. by doing random local changes on the
current perfect matching). Even though Ĝ is typically of size exponential in the input size n = |G|,
in many cases it can be proven to have mixing time poly(n) = polylog(|Ĝ|), a property referred
to as rapid mixing. These Markov Chain Monte Carlo methods provide some of the best examples
of problems where randomization yields algorithms that are exponentially faster than all known
deterministic algorithms.

2.5 Exercises

Problem 2.1 (Schwartz–Zippel lemma). Prove Lemma 2.4: If p(x1, . . . , xn) is a nonzero poly-
nomial of degree d over a a field (or integral domain) F and S ⊆ F, then

Pr
α1,...,αn

R←S
[p(α1, . . . , αn) = 0] ≤ d

|S|
.

You may use the fact that every nonzero univariate polynomial of degree d over F has at most d
roots.

Problem 2.2 (Robustness of the model). Suppose we modify our model of randomized com-
putation to allow the algorithm to obtain a random element of {1, . . . ,m} for any number m whose
binary representation it has already computed (as opposed to just allowing it access to random
bits). Show that this would not change the classes BPP and RP.

Problem 2.3 (Zero error vs. 1-sided error). Prove that ZPP = RP ∩ co-RP.
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Problem 2.4 (Identity Testing for integer circuits). In this problem, you will show how to
do Identity Testing for arithmetic circuits over the integers. The Prime Number Theorem says
that the number of primes less than T is (1± o(1)) · T/ lnT , where the o(1) tends to 0 as T →∞.
You may use this fact in the problem below.

(1) Show that if N is a nonzero integer and M
R←{1, . . . , log2N}, then

Pr[N 6≡ 0 (mod M)] = Ω(1/loglogN).

(2) Use the above to prove Theorem 2.12: Identity Testing for arithmetic circuits over Z
is in co-RP.

Problem 2.5 (Identity Testing via Modular Reduction). In this problem, you will analyze
an alternative to the algorithm seen in class, which directly handles polynomials of degree larger
than the field size. It is based on the same idea as Problem 2.4, using the fact that polynomials
over a field have many of the same algebraic properties as the integers.

The following definitions and facts may be useful: A polynomial p(x) over a field F is called
irreducible if it has no nontrivial factors (i.e. factors other than constants from F or constant
multiples of p). Analogously to prime factorization of integers, every polynomial over F can be
factored into irreducible polynomials and this factorization is unique (up to reordering and constant
multiples). It is known that the number of irreducible polynomials of degree at most d over a field
F is at least |F|d+1/2d. (This is similar to the Prime Number Theorem for integers mentioned in
Problem 2.4, but is easier to prove.) For polynomials p(x) and q(x), p(x) mod q(x) is the remainder
when p is divided by q. (More background on polynomials over finite fields can be found in the
references listed in Section 2.6.)

In this problem, we consider a version of the Identity Testing problem where a polynomial
p(x1, . . . , xn) over finite field F is presented as a formula built up from elements of F and the variables
x1, . . . , xn using addition, multiplication, and exponentiation with exponents given in binary. We
also assume that we are given a representation of F enabling addition, multiplication, and division
in F to be done quickly.

(1) Let p(x) be a univariate polynomial of degree ≤ D over a field F. Prove that there is a
constant c such that if p(x) is nonzero (as a formal polynomial) and q(x) is a randomly
selected polynomial of degree at most d = c logD, then the probability that p(x) mod q(x)
is nonzero is at least 1/c logD. Deduce a randomized, polynomial-time identity test for
univariate polynomials presented in the above form.

(2) Obtain an identity test for multivariate polynomials by reduction to the univariate case.
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Problem 2.6. (Primality)

(1) Show that for every positive integer n, the polynomial identity (x+ 1)n ≡ xn + 1(mod n)
holds iff n is prime.

(2) Obtain a co-RP algorithm for the language Primality= {n : n prime} using Part 1
together with the previous problem. (In your analysis, remember that the integers modulo
n are a field only when n is prime.)

Problem 2.7 (A Chernoff Bound). Let X1, . . . , Xt be independent [0, 1]-valued random vari-
ables, and X =

∑t
i=1Xi.

(1) Show that for every r ∈ [0, 1/2], E[erX ] ≤ erE[X]+r2t. (Hint: 1 + x ≤ ex ≤ 1 + x+ x2 for
all x ∈ [0, 1/2].)

(2) Deduce the following Chernoff Bound: Pr [X ≥ E[X] + εt] ≤ e−ε
2t/4. Where did you use

the independence of the Xi’s?

Problem 2.8 (Necessity of Randomness for Identity Testing*). In this problem, we con-
sider the “oracle version” of the identity testing problem, where an arbitrary polynomial p : Fm → F
of degree d is given as an oracle (ie black box) and the problem is to test whether p = 0. Show
that any deterministic algorithm that solves this problem when m = d = n must make at least 2n

queries to the oracle (in contrast to the randomized identity testing algorithm from class, which
makes only one query provided that |F| ≥ 2n).

Is this a proof that P 6= RP? Explain.

Problem 2.9 (Random Walks on Directed Graphs). Show that for every n, there exists a
digraph G with n vertices, outdegree 2, and hit(G) = 2Ω(n).

Problem 2.10 (Regular Digraphs and Eigenvalues). Let G be a regular digraph with
random-walk matrix M .

(1) Show that λ(G) is the square root of the absolute value of the second-largest eigenvalue
of the symmetric matrix MMT .

(2) Describe the graph for which MMT is the random-walk matrix.
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Problem 2.11 (Spectral Graph Theory). Let M be the random-walk matrix for a d-regular
undirected graph G = (V,E) on n vertices. We allow G to have self-loops and multiple edges. Recall
that the uniform distribution (or all-ones vector) is an eigenvector of M of eigenvalue λ1 = 1. Prove
the following statements. (Hint: for intuition, it may help to think about what the statements mean
for the behavior of the random walk on G.)

(1) All eigenvalues of M have absolute value at most 1.
(2) G is disconnected ⇐⇒ 1 is an eigenvalue of multiplicity at least 2.
(3) Suppose G is connected. Then G is bipartite ⇐⇒ −1 is an eigenvalue of M .
(4) G connected ⇒ all eigenvalues of M other than λ1 are ≤ 1 − 1/poly(n, d). To do this,

it may help to first show that the second largest eigenvalue of M (not necessarily in
absolute value) equals

max
x
〈Mx, x〉 = 1− 1

d
·min

x

∑
(i, j) ∈ E

(xi − xj)2,

where the maximum/minimum is taken over all vectors x of length 1 such that
∑

i xi = 0,
and 〈x, y〉 =

∑
i xiyi is the standard inner product. For intuition, consider restricting the

above maximum/minimum to x ∈ {+α,−β}n for α, β > 0.
(5) G connected and nonbipartite ⇒ all eigenvalues of M (other than 1) have absolute value

at most 1− 1/poly(n, d) and thus λ(G) ≤ 1− 1/poly(n, d).
(6*) Extra credit: Establish the (tight) bound 1 − Ω(1/d · D · n) in Part 4, where D is the

diameter of the graph, and show that a simple graph satisfies D ≤ O(n/d). (The 1 −
Ω(1/d ·D · n) bound also holds for Part 5, but you do not need to prove it here.)

2.6 Chapter Notes and References

Recommended textbooks on randomized algorithms are Motwani–Raghavan [MR] and
Mitzenmacher–Upfal [MU]. The algorithmic power of randomization became apparent in the
1970’s with a number of striking examples, notably the Miller–Rabin [Mil1, Rab] and Solovay–
Strassen [SS] algorithms for Primality. The randomized algorithm for Identity Testing was
independently discovered by DeMillo and Lipton [DL], Schwartz [Sch], and Zippel [Zip]. A deter-
ministic polynomial-time Identity Testing algorithm for formulas in ΣΠΣ form with a constant
number of terms was given by Kayal and Saxena [KS], improving a previous quasipolynomial-time
algorithm of Dvir and Shpilka [DS]. Problem 2.8 is from [LV].

Recommended textbooks on abstract algebra and finite fields are [Art, LN].
The randomized algorithm for Perfect Matching is due to Lovász, who also showed how

to extend the algorithm to non-bipartite graphs. An efficient parallel randomized algorithm for
finding a perfect matching was given by Karp, Upfal, and Wigderson [KUW] (see also [MVV]).
A randomized algorithm for finding a perfect matching in the same sequential time complexity as
Lovász’s algorithm was given recently by Mucha and Sankowski [MS] (see also [Har]).

For more on parallel algorithms, we refer to the textbook by Leighton [Lei]. The Identity

Testing and Primality algorithms of Problems 2.5 and 2.6 are due to Agrawal and Biswas [AB].
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Agrawal, Kayal, and Saxena [AKS1] derandomized the Primality algorithm to prove that Pri-

mality is in P.
The randomized complexity classes RP, BPP, ZPP, and PP were formally defined by

Gill [Gil1], who conjectured that BPP 6= P (in fact ZPP 6= P). Chernoff Bounds are named
after H. Chernoff [Che2]; the version in Theorem 2.21 is due to Hoeffding [Hoe] and is sometimes
referred to as Hoeffding’s Inequality. For some other Chernoff Bounds, see [MR]. Problem 2.3 is
due to Rabin (cf. [Gil1]).

The computational perspective on sampling, as introduced in Section 2.3.1, is surveyed in
[Gol1, Gol2]. Sampling is perhaps the simplest example of a computational problem where ran-
domization enables algorithms with running time sublinear in the size of the input. Such sublinear-
time algorithms are now known for a wide variety of interesting computational problems; see the
surveys [Ron, Rub].

Promise problems were introduced by Even, Selman, and Yacobi [ESY]. For survey of their role
in complexity theory, see Goldreich [Gol5].

The randomized algorithm for [×(1 + ε)]-Approx #DNF is due to Karp and Luby [KLM]. A
1/2-approximation algorithm for MaxCut was first given in [SG]; that algorithm can be viewed
as a natural derandomization of Algorithm 2.39. (See Algorithm 3.17.) The .878-approximation
algorithm was given by Goemans and Williamson [GW].

The O(log2 n)-space algorithm for S-T Connectivity is due to Savitch [Sav]. Using the fact
that S-T Connectivity (for directed graphs) is complete for nondeterministic logspace (NL), this
result is equivalent to the fact that NL ⊆ L2, where Lc is the class of languages that can be decided
deterministic space O(log2 n). The latter formulation (and its generalization NSPACE(s(n)) ⊆
DSPACE(s(n)2)) is known as Savitch’s Theorem. The randomized algorithm for Undirected

S-T Connectivity was given by Aleliunas, Karp, Lipton, Lovász, and Rackoff [AKL+], and was
recently derandomized by Reingold [Rei] (see Section 4.4). For more background on random walks,
mixing time, and the Markov Chain Monte Carlo Method, we refer the reader to [MU, Ran].

The bound on hitting time given in Theorem 2.49 is not tight; for example, it can be improved
to Θ(n2) for regular graphs that are simple (have no self-loops or parallel edges) [KLNS].

Even though we will focus primarily on undirected graphs (for example, in our study of expanders
in Chapter 4), much of what we do generalizes to regular digraphs, or more generally to digraphs
where every vertex has the same indegree as outdegree (i.e. where each connected component is
Eulerian). See e.g. [Mih, Fil, RTV]. Problem 2.10 is from [Fil].

The Spectral Theorem (Thm. 2.53) can be found in any standard textbook on linear algebra.
Problem 2.11, Part 5 is from [Lov2]. Spectral Graph Theory is a rich subject, with many applications
beyond the scope of this text; see the survey by Spielman [Spi] and references therein.

One significant omission from this chapter is the usefulness of randomness for verifying proofs.
Recall that NP is the class of languages having membership proofs that can be verified in P.
Thus it is natural to consider proof verification that is probabilistic, leading to the class MA, as
well as a larger class AM, where the proof itself can depend on the randomness chosen by the
verifier. (These are both subclasses of the class IP of languages having interactive proof systems.)
There are languages, such as Graph Nonisomorphism, that are in AM but are not known to
be in NP [GMW]. “Derandomizing” these proof systems (e.g. proving AM = NP) would show
that Graph Nonisomorphism is in NP, i.e. that there are short proofs that two graphs are
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nonisomorphic. For more about interactive proofs, see [Vad, Gol6, AB].
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3

Basic Derandomization Techniques

In the previous chapter, we saw some striking examples of the power of randomness for the design
of efficient algorithms:

• Identity Testing in co-RP.
• [×(1 + ε)]-Approx #DNF in prBPP.
• Perfect Matching in RNC.
• Undirected S-T Connectivity in RL.
• Approximating MaxCut in probabilistic polynomial time.

This is of course only a small sample; there are entire texts on randomized algorithms. (See the
notes and references for Chapter 2.)

In the rest of this survey, we will turn towards derandomization — trying to remove the random-
ness from these algorithms. We will achieve this for some of the specific algorithms we studied, and
also attack the larger question of whether all efficient randomized algorithms can be derandomized,
e.g. does BPP = P? RL = L? RNC = NC?

In this chapter, we will introduce a variety of “basic” derandomization techniques. These will
each be deficient in that they are either infeasible (e.g. cannot be carried in polynomial time) or
specialized (e.g. apply only in very specific circumstances). But it will be useful to have these
as tools before we proceed to study more sophisticated tools for derandomization (namely, the
“pseudorandom objects” of Chapters 4+).

3.1 Enumeration

We are interested in quantifying how much savings randomization provides. One way of doing this
is to find the smallest possible upper bound on the deterministic time complexity of languages in
BPP. For example, we would like to know which of the following complexity classes contain BPP:
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Definition 3.1 (Deterministic Time Classes). 1

DTIME(t(n)) = {L : L can be decided deterministically in time O(t(n))}
P = ∪cDTIME(nc) (“polynomial time”)
P̃ = ∪cDTIME(2(logn)c

) (“quasipolynomial time”)
SUBEXP = ∩εDTIME(2n

ε
) (“subexponential time”)

EXP = ∪cDTIME(2n
c
) (“exponential time”)

The “Time Hierarchy Theorem” of complexity theory implies that all of these classes are dis-
tinct, i.e. P ( P̃ ( SUBEXP ( EXP. More generally, it says that DTIME(o(t(n)/ log t(n))) (
DTIME(t(n)) for any efficiently computable time bound t. (What is difficult in complexity the-
ory is separating classes that involve different computational resources, like deterministic time vs.
nondeterministic time.)

Enumeration is a derandomization technique that enables us to deterministically simulate any
randomized algorithm with an exponential slowdown.

Proposition 3.2. BPP ⊆ EXP.

Proof. If L is in BPP, then there is a probabilistic polynomial-time algorithm A for L running
in time t(n) for some polynomial t. As an upper bound, A uses at most t(n) random bits. Thus
we can view A as a deterministic algorithm on two inputs — its regular input x ∈ {0, 1}n and its
coin tosses r ∈ {0, 1}t(n). (This view of a randomized algorithm is useful throughout the study of
pseudorandomness.) We’ll write A(x; r) for A’s output. Then:

Pr[A(x; r) accepts] =
1

2t(n)

∑
r∈{0,1}t(n)

A(x; r)

We can compute the right-hand side of the above expression in deterministic time 2t(n) · t(n).

We see that the enumeration method is general in that it applies to all BPP algorithms, but
it is infeasible (taking exponential time). However, if the algorithm uses only a small number of
random bits, it becomes feasible:

Proposition 3.3. If L has a probabilistic polynomial-time algorithm that runs in time t(n) and
uses r(n) random bits, then L ∈ DTIME(t(n) · 2r(n)). In particular, if t(n) = poly(n) and r(n) =
O(log n), then L ∈ P.

Thus an approach to proving BPP = P is to show that the number of random bits used by any
BPP algorithm can be reduced to O(log n). We will explore this approach in Chapter 7. However,
to date, Proposition 3.2 remains the best unconditional upper-bound we have on the deterministic
time-complexity of BPP.

1 Often DTIME(·) is written as TIME(·), but we include the D to emphasize the it refers to deterministic rather than

randomized algorithms.
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Open Problem 3.4. Is BPP “closer” to P or EXP? Is BPP ⊆ P̃? Is BPP ⊆ SUBEXP?

3.2 Nonconstructive/Nonuniform Derandomization

Next we look at a derandomization technique that can be implemented efficiently but requires some
nonconstructive “advice” that depends on the input length.

Proposition 3.5. If A(x; r) is a randomized algorithm for a language L that has error probability
smaller than 2−n on inputs x of length n, then for every n, there exists a fixed sequence of coin
tosses rn such that A(x; rn) is correct for all x ∈ {0, 1}n.

Proof. We use the Probabilistic Method. Consider Rn chosen uniformly at random from {0, 1}r(n),
where r(n) is the number of coin tosses used by A on inputs of length n. Then

Pr[∃x ∈ {0, 1}n s.t. A(x;Rn) incorrect on x] ≤
∑
x

Pr[A(x;Rn) incorrect on x]

< 2n · 2−n = 1

Thus, there exists a fixed value Rn = rn that yields a correct answer for all x ∈ {0, 1}n.

The advantage of this method over enumeration is that once we have the fixed string rn, comput-
ing A(x; rn) can be done in polynomial time. However, the proof that rn exists is nonconstructive;
it is not clear how to find it in less than exponential time.

Note that we know that we can reduce the error probability of any BPP (or RP, RL, RNC,
etc.) algorithm to smaller than 2−n by repetitions, so this proposition is always applicable. However,
we begin by looking at some interesting special cases.

Example 3.6 (Perfect Matching). We apply the proposition to Algorithm 2.7. Let G = (V,E)
be a bipartite graph with m vertices on each side, and let AG(x1,1, . . . , xm,m) be the matrix that
has entries AGi,j = xi,j if (i, j) ∈ E, and AGi,j = 0 if (i, j) 6∈ E. Recall that the polynomial det(AG(x))
is nonzero if and only if G has a perfect matching. Let Sm = {0, 1, 2, . . . ,m2m

2}. We argued that,
by the Schwartz–Zippel Lemma, if we choose α R←Sm

2

m at random and evaluate det(AG(α)), we can
determine whether det(AG(x)) is zero with error probability at most m/|S| which is smaller than
2−m

2
. Since a bipartite graph with m vertices per side is specified by a string of length n = m2, by

Proposition 3.5 we know that for every m, there exists an αm ∈ Sm
2

m such that det(AG(α)) 6= 0 if
and only if G has a perfect matching, for every bipartite graph G with m vertices on each side.

Open Problem 3.7. Can we find such an αm ∈ {0, . . . ,m2m
2}m2

explicitly, i.e., deterministically
and efficiently? An NC algorithm (i.e. parallel time polylog(m) with poly(m) processors) would
put Perfect Matching in deterministic NC, but even a subexponential-time algorithm would
be interesting.
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Example 3.8 (Universal Traversal Sequences). Let G be a connected d-regular undirected
multigraph on n vertices. From Theorem 2.49, we know that a random walk of poly(n, d) steps
from any start vertex will visit any other vertex with high probability. By increasing the length of
the walk by a polynomial factor, we can ensure that every vertex is visited with probability greater
than 1 − 2−nd logn. By the same reasoning as in the previous example, we conclude that for every
pair (n, d), there exists a universal traversal sequence w ∈ {1, 2, . . . , d}poly(n,d) such that for every
n-vertex, d-regular, connected G and every vertex s in G, if we start from s and follow w then we
will visit the entire graph.

Open Problem 3.9. Can we construct such a universal traversal sequence explicitly (e.g. in poly-
nomial time or even logarithmic space)?

There has been substantial progress towards resolving this question in the positive; see Sec-
tion 4.4.

We now cast the nonconstructive derandomizations provided by Proposition 3.5 in the language
of “nonuniform” complexity classes.

Definition 3.10. Let C be a class of languages, and a : N → N be a function. Then C/a is the
class of languages defined as follows: L ∈ C/a if there exists L′ ∈ C, and α1, α2, . . . ∈ {0, 1}∗ with
|αn| ≤ a(n), such that x ∈ L⇔ (x, α|x|) ∈ L′. The α’s are called the advice strings.

P/poly is the class
⋃
c P/nc, i.e. polynomial time with polynomial advice.

A basic result in complexity theory is that P/poly is exactly the class of languages that can be
decided by polynomial-sized Boolean circuits:

Fact 3.11. L ∈ P/poly iff there is a sequence of Boolean circuits {Cn}n∈N and a polynomial p
such that for all n

(1) Cn : {0, 1}n → {0, 1} decides L ∩ {0, 1}n
(2) |Cn| ≤ p(n).

We refer to P/poly as a “nonuniform” model of computation because it allows for different,
unrelated “programs” for each input length (e.g. the circuits Cn, or the advice αn), in contrast
to classes like P, BPP, and NP, that require a single “program” of constant size specifying how
the computation should behave for inputs of arbitrary length. Although P/poly contains some
undecidable problems,2 people generally believe that NP 6⊆ P/poly, and indeed trying to prove
lower bounds on circuit size is one of the main approaches to proving P 6= NP, since circuits seem
much more concrete and combinatorial than Turing machines. (However this has turned out to be
quite difficult; the best circuit lower bound known for computing an explicit function is roughly
5n.)

Proposition 3.5 directly implies:

2 Consider the unary version of halting problem, the advice string αn is simply a bit that tells us whether the n’th Turing

machine halts or not.
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Corollary 3.12. BPP ⊆ P/poly.

A more general meta-theorem is that “nonuniformity is more powerful than randomness.”

3.3 Nondeterminism

Although physically unrealistic, nondeterminism has proved be a very useful resource in the study
of computational complexity (e.g. leading to the class NP). Thus it is natural how it compares
in power to randomness. Intuitively, with nondeterminism we should be able to guess a “good”
sequence of coin tosses for a randomized algorithm and then do the computation deterministically.
This intuition does apply directly for randomized algorithms with 1-sided error:

Proposition 3.13. RP ⊆ NP.

Proof. Let L ∈ RP and A be a randomized algorithm that decides it. A poly-time verifiable witness
that x ∈ L is any sequence of coin tosses r such that A(x; r) = accept.

However, for 2-sided error (BPP), containment in NP is not clear. Even if we guess a ‘good’
random string (one that leads to a correct answer), it is not clear how we can verify it in polynomial
time. Indeed, it is consistent with current knowledge that BPP = NEXP! Nevertheless, there is a
sense in which we can show that BPP is no more powerful than NP:

Theorem 3.14. If P = NP, then P = BPP.

Proof. For any language L ∈ BPP, we will show how to express membership in L using two
quantifiers. That is, for some polynomial-time predicate P ,

x ∈ L ⇐⇒ ∃y∀z P (x, y, z) (3.1)

Assuming P = NP, we can replace ∀z P (x, y, z) by a polynomial-time predicate Q(x, y), because
the language {(x, y) : ∀z P (x, y, z)} is in co-NP = P. Then L = {x : ∃y Q(x, y)} ∈ NP = P.

To obtain the two-quantifier expression (3.1), consider a randomized algorithm A for L, and
assume, w.l.o.g., that its error probability is smaller than 2−n and that it uses m = poly(n) coin
tosses. Let Zx ⊂ {0, 1}m be the set of coin tosses r for which A(x; r) = 0. We will show that if
x is in L, there exist m points in {0, 1}m such that no “shift” (or “translation”) of Zx covers all
the points. (Notice that this is a ∃∀ statement.) Intuitively, this should be possible because Zx is
an exponentially small fraction of {0, 1}m. On the other hand if x /∈ L, then for any m points in
{0, 1}m, we will show that there is a “shift” of Zx that covers all the points. Intuitively, this should
be possible because Zx covers all but an exponentially small fraction of {0, 1}m.

Formally, by a “shift of Zx” we mean a set of the form Zx ⊕ s = {r ⊕ s : r ∈ Zx} for some
s ∈ {0, 1}m; note that |Zx ⊕ s| = |Zx|. We will show

x ∈ L ⇒ ∃r1, r2, . . . , rm ∈ {0, 1}m∀s ∈ {0, 1}m ¬
m∧
i=1

(ri ∈ Zx ⊕ s)

⇔ ∃r1, r2, . . . , rm ∈ {0, 1}m ∀s ∈ {0, 1}m ¬
m∧
i=1

(A(x; ri ⊕ s) = 0) ;
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x /∈ L ⇒ ∀r1, r2, . . . , rm ∈ {0, 1}m ∃s ∈ {0, 1}m
m∧
i=1

(ri ∈ Zx ⊕ s)

⇔ ∀r1, r2, . . . , rm ∈ {0, 1}m ∃s ∈ {0, 1}m
m∧
i=1

(A(x; ri ⊕ s) = 0) .

We prove both parts by the Probabilistic Method.

x ∈ L: Choose R1, R2, . . . , Rm
R←{0, 1}m. Then, for every fixed s, Zx and hence Zx ⊕ s contains

less than a 2−n fraction of points in {0, 1}m, so:

∀i Pr[Ri ∈ Zx ⊕ s] < 2−n

⇒ Pr

[∧
i

(Ri ∈ Zx ⊕ s)

]
< 2−nm.

⇒ Pr

[
∃s
∧
i

(Ri ∈ Zx ⊕ s)

]
< 2m · 2−nm < 1.

Thus there exist r1, . . . , rm such that ∀s¬
∧
i(ri ∈ Zx ⊕ s), as desired.

x /∈ L: Let r1, r2, . . . , rm be arbitrary, and choose S R← {0, 1}m at random. Now Zx and hence
Zx ⊕ ri contains more than a 1− 2−n fraction of points, so:

∀i Pr[ri /∈ Zx ⊕ S] = Pr[S /∈ Zx ⊕ ri] < 2−n

⇒ Pr

[∨
i

(ri /∈ Zx ⊕ S)

]
< m · 2−n < 1.

Thus, for every r1, . . . , rm, there exists s such that
∧
i(ri ∈ Zx ⊕ s), as desired.

Readers familiar with complexity theory will recognize the above proof as showing that BPP
is contained in the 2nd level of the polynomial-time hierarchy (PH). In general, the k’th level of
the PH contains all languages that satisfy a k-quantifier expression analogous to (3.1).

3.4 The Method of Conditional Expectations

In the previous sections, we saw several derandomization techniques (enumeration, nonuniformity,
nondeterminism) that are general in the sense that they apply to all of BPP, but are infeasible
in the sense that they cannot be implemented by efficient deterministic algorithms. In this section
and the next one, we will see two derandomization techniques that sometimes can be implemented
efficiently, but do not apply to all randomized algorithms.

3.4.1 The general approach

Consider a randomized algorithm that uses m random bits. We can view all its sequences of coin
tosses as corresponding to a binary tree of depth m. We know that most paths (from the root to
the leaf) are “good,” i.e., give a correct answer. A natural idea is to try and find such a path by
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walking down from the root and making “good” choices at each step. Equivalently, we try to find
a good sequence of coin tosses “bit-by-bit”.

To make this precise, fix a randomized algorithm A and an input x, and let m be the number of
random bits used by A on input x. For 1 ≤ i ≤ m and r1, r2, . . . , ri ∈ {0, 1}, define P (r1, r2, . . . , ri) to
be the fraction of continuations that are good sequences of coin tosses. More precisely, if R1, . . . , Rm
are uniform and independent random bits, then

P (r1, r2, . . . , ri)
def= Pr

R1,R2,...,Rm

[A(x;R1, R2, . . . , Rm) is correct |R1 = r1, R2 = r2, . . . , Ri = ri]

= E
Ri+1

[P (r1, r2, . . . , ri, Ri+1)].

(See Figure 3.4.1.) By averaging, there exists an ri+1 ∈ {0, 1} such that P (r1, r2, . . . , ri, ri+1) ≥

P(0,1)=7/8

0
 1


0
 1
 0
 1


o
 o
 x
 o
 o
 o
 o
o


Fig. 3.1 An example of P (r1, r2), where “o” at the leaf denotes a good path.

P (r1, r2, . . . , ri). So at node (r1, r2, . . . , ri), we simply pick ri+1 that maximizes P (r1, r2, . . . , ri, ri+1).
At the end we have r1, r2, . . . , rm, and

P (r1, r2, . . . , rm) ≥ P (r1, r2, . . . , rm−1) ≥ · · · ≥ P (r1) ≥ P (Λ) ≥ 2/3

where P (Λ) denotes the fraction of good paths from the root. Then P (r1, r2, . . . , rm) = 1, since it
is either 1 or 0.

Note that to implement this method, we need to compute P (r1, r2, . . . , ri) deterministically, and
this may be infeasible. However, there are nontrivial algorithms where this method does work, often
for search problems rather than decision problems, and where we measure not a boolean outcome
(eg whether A is correct as above) but some other measure of quality of the output. Below we see
one such example, where it turns out to yield a natural “greedy algorithm”.

3.4.2 Derandomized MaxCut Approximation

Recall the MaxCut problem:
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Computational Problem 3.15 (Computational Problem 2.38, rephrased). MaxCut:
Given a graph G = (V,E), find a partition S, T of V (i.e. S ∪ T = V , S ∩ T = ∅) maximizing the
size of the set cut(S, T ) = {{u, v} ∈ E : u ∈ S, v ∈ T}.

We saw a simple randomized algorithm that finds a cut of (expected) size at least |E|/2, which
we now phrase in a way suitable for derandomization.

Algorithm 3.16 (randomized MaxCut, rephrased).
Input: a graph G = ([n], E)

Flip n coins r1, r2, . . . , rn, put vertex i in S if ri = 1 and in T if ri = 0. Output (S, T ).

To derandomize this algorithm using the Method of Conditional Expectations, define the con-
ditional expectation

e(r1, r2, . . . , ri)
def= E

R1,R2,...,Rn

[
|cut(S, T )|

∣∣∣R1 = r1, R2 = r2, . . . , Ri = ri

]
to be the expected cut size when the random choices for the first i coins are fixed to r1, r2, . . . , ri.

We know that when no random bits are fixed, e[Λ] ≥ |E|/2 (because each edge is cut with
probability 1/2), and all we need to calculate is e(r1, r2, . . . , ri) for 1 ≤ i ≤ n. For this particular
algorithm it turns out that the quantity is not hard to compute. Let Si

def= {j : j ≤ i, rj = 1} (resp.

Ti
def= {j : j ≤ i, rj = 0}) be the set of vertices in S (resp. T ) after we determine r1, . . . , ri, and

Ui
def= {i+ 1, i+ 2, . . . , n} be the “undecided” vertices that have not been put into S or T . Then

e(r1, r2, . . . , ri) = |cut(Si, Ti)|+ 1/2 (|cut(Ui, [n])|) . (3.2)

Note that cut(Ui, [n]) is the set of unordered edges that have at least one endpoint in Ui. Now we
can deterministically select a value for ri+1, by computing and comparing e(r1, r2, . . . , ri, 0) and
e(r1, r2, . . . , ri, 1).

In fact, the decision on ri+1 can be made even simpler than computing (3.2) in its entirety, by
observing that the set cut(Ui+1, [n]) is independent of the choice of ri+1. Therefore, to maximize
e(r1, r2 . . . , ri, ri+1), it is enough to choose ri+1 that maximizes the |cut(S, T )| term. This term
increases by either |cut({i+ 1}, Ti)| or |cut({i+ 1}, Si)| depending on whether we place vertex i+ 1
in S or T , respectively. To summarize, we have

e(r1, . . . , ri, 0)− e(r1, . . . , ri, 1) = |cut({i+ 1}, Ti)| − |cut({i+ 1}, Si)|.

This gives rise to the following deterministic algorithm, which is guaranteed to always find a cut of
size at least |E|/2:

Algorithm 3.17 (deterministic MaxCut approximation).
Input: A graph G = ([n], E)

On input G = ([n], E),
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(1) Set S = ∅, T = ∅
(2) For i = 0, . . . , n− 1:

(a) If |cut({i+ 1}, S)| > |cut({i+ 1}, T )|, set T ← T ∪ {i+ 1},
(b) Else set S ← S ∪ {i+ 1}.

Note that this is the natural “greedy” algorithm for this problem. In other cases, the Method
of Conditional Expectations yields algorithms that, while still arguably ‘greedy’, would have been
much less easy to find directly. Thus, designing a randomized algorithm and then trying to deran-
domize it can be a useful paradigm for the design of deterministic algorithms even if the random-
ization does not provide gains in efficiency.

3.5 Pairwise Independence

3.5.1 An Example

As our first motivating example, we give another way of derandomizing the MaxCut approximation
algorithm discussed above. Recall the analysis of the randomized algorithm:

E[|cut(S)|] =
∑

(i,j)∈E

Pr[Ri 6= Rj ] = |E|/2,

where R1, . . . , Rn are the random bits of the algorithm. The key observation is that this analysis
applies for any distribution on (R1, . . . , Rn) satisfying Pr[Ri 6= Rj ] = 1/2 for each i 6= j. Thus,
they do not need to be completely independent random variables; it suffices for them to be pairwise
independent. That is, each Ri is an unbiased random bit, and for each i 6= j, Ri is independent
from Rj .

This leads to the question: Can we generate N pairwise independent bits using less than N

truly random bits? The answer turns out to be yes, as illustrated by the following construction.

Construction 3.18 (pairwise independent bits). Let B1, . . . , Bk be k independent unbiased
random bits. For each nonempty S ⊆ [k], let RS be the random variable ⊕i∈SBi.

Proposition 3.19. The 2k−1 random variables RS in Construction 3.18 are pairwise independent
unbiased random bits.

Proof. It is evident that each RS is unbiased. For pairwise independence, consider any two nonempty
sets S 6= T ⊆ [k]. Then:

RS = RS∩T ⊕RS\T
RT = RS∩T ⊕RT\S .

Note that RS∩T , RS\T and RT\S are independent as they depend on disjoint subsets of the Bi’s,
and at least two of these subsets are nonempty. This implies that (RS , RT ) takes each value in
{0, 1}2 with probability 1/4.
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Note that this gives us a way to generate N pairwise independent bits from dlog(N + 1)e
independent random bits. Thus, we can reduce the randomness required by the MaxCut algorithm
to logarithmic, and then we can obtain a deterministic algorithm by enumeration.

Algorithm 3.20 (deterministic MaxCut algorithm II). For all sequences of bits
b1, b2, . . . , bdlog(n+1)e, run the randomized MaxCut algorithm using coin tosses (rS = ⊕i∈Sbi)S 6=∅
and choose the largest cut thus obtained.

Since there are at most 2(n+1) sequences of bi’s, the derandomized algorithm still runs in poly(n)
time. It is slower than the greedy algorithm obtained by the Method of Conditional Expectations,
but it has the advantage of using only O(log n) workspace and being parallelizable.

3.5.2 Pairwise Independent Hash Functions

Some applications require pairwise independent random variables that take values from a larger
range, e.g. we want N = 2n pairwise independent random variables, each of which is uniformly
distributed in {0, 1}m = [M ]. The näıve approach is to repeat the above algorithm for the individual
bits m times. This uses (logM)(logN) bits to start with, which is no longer logarithmic in N if M
is nonconstant. Below we will see that we can do much better. But first some definitions.

A sequences of N random variables each taking a value in [M ] can be viewed as a distribution on
sequences in [M ]N . Another interpretation of such a sequence is as a mapping f : [N ]→ [M ]. The
latter interpretation turns out to be more useful when discussing the computational complexity of
the constructions.

Definition 3.21 (Pairwise Independent Hash Functions). A family (i.e. multiset) of func-
tions H = {h : [N ] → [M ]} is pairwise independent if the following two conditions hold when
H

R←H is a function chosen uniformly at random from H:

(1) ∀x ∈ [N ], the random variable H(x) is uniformly distributed in [M ].
(2) ∀x1 6= x2 ∈ [N ], the random variables H(x1) and H(x2) are independent.

Equivalently, we can combine the two conditions and require that

∀x1 6= x2 ∈ [N ], ∀y1, y2 ∈ [M ], Pr
H

R←H
[H(x1) = y1 ∧H(x2) = y2] =

1
M2

.

Note that the probability above is over the random choice of a function from the family H. This is
why we talk about a family of functions rather than a single function. The description in terms of
functions makes it natural to impose a strong efficiency requirement:

Definition 3.22. A family of functions H = {h : [N ]→ [M ]} is explicit if given the description of
h and x ∈ [N ], the value h(x) can be computed in time poly(logN, logM).

Pairwise independent hash functions are sometimes referred to as strongly 2-universal hash
functions, to contrast with the weaker notion of 2-universal hash functions, which requires only
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that Pr[H(x1) = H(x2)] ≤ 1/M for all x1 6= x2. (Note that this property is all we needed for the
deterministic MaxCut algorithm, and it allows for a small savings in that we can also include
S = ∅ in Construction 3.18.)

Below we present another construction of a pairwise independent family.

Construction 3.23 (pairwise independent hash functions from linear maps). Let F be a
finite field. Define the family of functions H = { ha,b : F→ F}a,b∈F where ha,b(x) = ax+ b.

Proposition 3.24. The family of functions H in Construction 3.23 is pairwise independent.

Proof. Notice that the graph of the function ha,b(x) is the line with slope a and y-intercept b. Given
x1 6= x2 and y1, y2, there is exactly one such line containing the points (x1, y1) and (x2, y2) (namely,
the line with slope a = (y1 − y2)/(x1 − x2) and y-intercept b = y1 − ax1). Thus, the probability
over a, b that ha,b(x1) = y1 and ha,b(x2) = y2 equals the reciprocal of the number of lines, namely
1/|F|2.

This construction uses 2 log |F| random bits, since we have to choose a and b at random from
F to get a function ha,b

R←H. Compare this to |F| log |F| bits required to choose a truly random
function, and (log |F|)2 bits for repeating the construction of Proposition 3.19 for each output bit.

Note that evaluating the functions of Construction 3.23 requires a description of the field F that
enables us to perform addition and multiplication of field elements. Recall that there is a (unique)
finite field GF(pt) of size pt for every prime p and t ∈ N. It is known how to deterministically
construct a description of such a field (i.e. an irreducible polynomial of degree t over GF(p) = Zp)
in time poly(p, t). This satisfies our definition of explicitness when the prime p (the characteristic
of the field) is small, in particular when p = 2. Thus, we have an explicit construction of pairwise
independent hash functions Hn,n = {h : {0, 1}n → {0, 1}n} for every n.

What if we want a family Hn,m of pairwise independent hash functions where the input length
n and output length m are not equal? For n < m, we can take hash functions h from Hm,m and
restrict their domain to {0, 1}m by defining h′(x) = h(x ◦ 0m−n). In the case that m < n, we can
take h from Hn,n and throw away n−m bits of the output. That is, define h′(x) = h(x)|m, where
h(x)|m denotes the first m bits of h(x).

In both cases, we use 2 max{n,m} random bits. This is the best possible when m ≥ n. When
m < n, it can be reduced to m+n random bits (which turns out to be optimal) by using (ax)|m+ b

where b ∈ {0, 1}m instead of (ax+ b)|m. Summarizing:

Theorem 3.25. For every n,m ∈ N, there is an explicit family of pairwise independent func-
tions Hn,m = {h : {0, 1}n → {0, 1}m} where a random function from Hn,m can be selected using
max{m,n}+m random bits.

3.5.3 Hash Tables

The original motivating application for pairwise independent functions was for hash tables. Suppose
we want to store a set S ⊆ [N ] of values and answer queries of the form “Is x ∈ S?” efficiently (or,
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more generally, acquire some piece of data associated with key x in case x ∈ S). A simple solution
is to have a table T such that T [x] = 1 if and only if x ∈ S. But this requires N bits of storage,
which is inefficient if |S| � N .

A better solution is to use hashing. Assume that we have a hash function from h : [N ]→ [M ] for
some M to be determined later. Let the table T be of size M . For each x ∈ [N ], we let T [h(x)] = x

if x ∈ S. So to test whether a given y ∈ S, we compute h(y) and check if T [h(y)] = y. In order for
this construction to be well-defined, we need h to be one-to-one on the set S. Suppose we choose
a random function H from [N ] to [M ]. Then, for any set S, the probability that there are any
collisions is

Pr[∃ x 6= y s.t. H(x) = H(y)] ≤
∑

x 6=y∈S
Pr[H(x) = H(y)] =

(
|S|
2

)
· 1
M

< ε

for M = |S|2/ε. Notice that the above analysis does not require H to be a completely random
function; it suffices that H be pairwise independent (or even 2-universal). Thus using Theorem 3.25,
we can generate and store H using O(logN) random bits. The storage required for the table T
is O(M logN) = O(|S|2 logN). The space complexity can be improved to O(|S| logN), which is
nearly optimal for small S, by taking M = O(|S|) and using additional hash functions to separate
the (few) collisions that will occur.

Often, when people analyze applications of hashing in computer science, they model the hash
function as a truly random function. However, the domain of the hash function is often exponentially
large, and thus it is infeasible to even write down a truly random hash function. Thus, it would be
preferable to show that some explicit family of hash function works for the application with similar
performance. In many cases (such as the one above), it can be shown that pairwise independence
(or k-wise independence, as discussed below) suffices.

3.5.4 Randomness-Efficient Error Reduction and Sampling

Suppose we have a BPP algorithm for a language L that has a constant error probability. We want
to reduce the error to 2−k. We have already seen that this can be done using O(k) independent
repetitions (by a Chernoff Bound). If the algorithm originally used m random bits, then we need
O(km) random bits after error reduction. Here we will see how to reduce the number of random
bits required for error reduction by doing only pairwise independent repetitions.

To analyze this, we will need an analogue of the Chernoff Bound that applies to averages of
pairwise independent random variables. This will follow from Chebyshev’s Inequality, which bounds
the deviations of a random variable X from its mean µ in terms its variance Var[X] = E[(X−µ)2] =
E[X2]− µ2.

Lemma 3.26 (Chebyshev’s Inequality). If X is a random variable with expectation µ, then

Pr[|X − µ| ≥ ε] ≤ Var[X]
ε2

Proof. Applying Markov’s Inequality (Lemma 2.20) to the random variable Y = (X−µ)2, we have:

Pr[|X − µ| ≥ ε] = Pr
[
(X − µ)2 ≥ ε2

]
≤ E

[
(X − µ)2

]
ε2

=
Var[X]
ε2

.
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We now use this to show that sums of pairwise independent random variables are concentrated
around their expectation.

Proposition 3.27 (Pairwise-Independent Tail Inequality). Let X1, . . . , Xt be pairwise inde-
pendent random variables taking values in the interval [0, 1], let X = (

∑
iXi)/t, and µ = E[X].

Then
Pr[|X − µ| ≥ ε] ≤ 1

tε2
.

Proof. Let µi = E[Xi]. Then

Var[X] = E
[
(X − µ)2

]
=

1
t2
· E

(∑
i

(Xi − µi)

)2


=
1
t2
·
∑
i,j

E [(Xi − µi)(Xj − µj)]

=
1
t2
·
∑
i

E
[
(Xi − µi)2

]
(by pairwise independence)

=
1
t2
·
∑
i

Var [Xi]

≤ 1
t

Now apply Chebyshev’s Inequality.

While this requires less independence than the Chernoff Bound, notice that the error probability
decreases only linearly rather than exponentially with the number t of samples.

Error Reduction. Proposition 3.27 tells us that if we use t = O(2k) pairwise independent
repetitions, we can reduce the error probability of a BPP algorithm from 1/3 to 2−k. If the original
BPP algorithm uses m random bits, then we can do this by choosing h : {0, 1}k+O(1) → {0, 1}m
at random from a pairwise independent family, and running the algorithm using coin tosses h(x)
for all x ∈ {0, 1}k+O(1) This requires m+ max{m, k +O(1)} = O(m+ k) random bits.

Number of Repetitions Number of Random Bits
Independent Repetitions O(k) O(km)
Pairwise Independent Repetitions O(2k) O(m+ k)

Note that we have saved substantially on the number of random bits, but paid a lot in the
number of repetitions needed. To maintain a polynomial-time algorithm, we can only afford
k = O(log n). This setting implies that if we have a BPP algorithm with a constant error that
uses m random bits, we have another BPP algorithm that uses O(m+ log n) = O(m) random bits
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and has an error of 1/poly(n). That is, we can go from constant to inverse-polynomial error only
paying a constant factor in randomness. (In fact, it turns out there is a way to achieve this with
no penalty in randomness; see Problem 4.7.)

Sampling. Recall the Sampling problem: Given an oracle to a function f : {0, 1}m → [0, 1], we
want to approximate µ(f) to within an additive error of ε.

In Section 2.3.1, we saw that we can solve this problem with probability 1− δ by outputting the
average of f on a random sample of t = O(log(1/δ)/ε2) points in {0, 1}m, where the correctness
follows from the Chernoff Bound. To reduce the number of truly random bits used, we can use a
pairwise independent sample instead. Specifically, taking t = 1/(ε2δ) pairwise independent points,
we get an error probability of at most δ. To generate t pairwise independent samples of m bits
each, we need O(m+ log t) = O(m+ log(1/ε) + log(1/δ)) truly random bits.

Number of Samples Number of Random Bits
Truly Random Sample O((1/ε2) · log(1/δ)) O(m · (1/ε2) · log(1/δ))
Pairwise Independent Repetitions O(1/(ε2δ)) O(m+ log(1/ε) + log(1/δ))

3.5.5 k-wise Independence

Our definition and construction of pairwise independent functions generalize naturally to k-wise
independence for any k.

Definition 3.28 (k-wise independent hash functions). For k ∈ N, a family of functions H =
{h : [N ]→ [M ]} is k-wise independent if for all distinct x1, x2, . . . , xk ∈ [N ], the random variables
H(x1), . . . ,H(xk) are independent and uniformly distributed in [M ] when H

R←H.

Construction 3.29 (k-wise independence from polynomials). Let F be a finite field. Define
the family of functions H = {ha0,a1,...,ak

: F→ F} where each ha0,a1,...,ak−1
(x) = a0 + a1x+ a2x

2 +
· · ·+ ak−1x

k−1 for a, b ∈ F.

Proposition 3.30. The family H given in Construction 3.29 is k-wise independent.

Proof. Similarly to the proof of Proposition 3.24, it suffices to prove that for all distinct x1, . . . , xk ∈
F and all y1, . . . , yk ∈ F, there is exactly one polynomial h of degree at most k−1 such that h(xi) = yi
for all i. To show that such a polynomial exists, we can use the Lagrange Interpolation Formula:

h(x) =
k∑
i=1

yi ·
∏
j 6=i

x− xj
xi − xj

.

To show uniqueness, suppose we have two polynomials h and g of degree at most k − 1 such that
h(xi) = g(xi) for i = 1, . . . , k. Then h−g has at least k roots, and thus must be the zero polynomial.
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Corollary 3.31. For every n,m, k ∈ N, there is a family of k-wise independent functions H = {h :
{0, 1}n → {0, 1}m} such that choosing a random function from H takes k ·max{n,m} random bits,
and evaluating a function from H takes time poly(n,m, k).

k-wise independent hash functions have applications similar to those that pairwise independent
hash functions have. The increased independence is crucial in derandomizing some algorithms. k-
wise independent random variables also satisfy a tail bound similar to Proposition 3.27, with the
key improvement being that the error probability vanishes linearly in tk/2 rather than t.

3.6 Exercises

Problem 3.1. (Derandomizing RP versus BPP) Show that prRP = prP implies that prBPP =
prP, and thus also that BPP = P. (Hint: Look at the proof that NP = P⇒ BPP = P.)

Problem 3.2. (Designs) Designs (also known as packings) are collections of sets that are nearly
disjoint. In Chapter 7, we will see how they are useful in the construction of pseudorandom gener-
ators. Formally, a collection of sets S1, S2, . . . , Sm ⊆ [d] is called an (`, a)-design if

• For all i, |Si| = `.
• For all i 6= j, |Si ∩ Sj | < a.

For given `, we’d like m to be large, a to be small, and d to be small. That is, we’d like to pack
many sets into a small universe with small intersections.

(1) Prove that if m <
(
d
a

)
/
(
`
a

)2
, then there exists an (`, a)-design S1, . . . , Sm ⊆ [d].

Hint: Use the Probabilistic Method. Specifically, show that if the sets are chosen randomly,
then for every S1, . . . , Si−1,

E
Si

[#{j < i : |Si ∩ Sj | ≥ a}] < 1.

(2) Conclude that for every ε > 0, there is a constant cε such that for all `, there is a
design with a ≤ ε`, m ≥ 2ε`, and d ≤ cε`. That is, in a universe of size O(`), we can
fit exponentially many sets of size ` whose intersections are an arbitrarily small constant
fraction of `.

(3) Using the Method of Conditional Expectations, show how to construct designs as in
Parts 1 and 2 deterministically in time poly(m, d).

Problem 3.3. (Frequency Moments of Data Streams) Given one pass through a huge ‘stream’ of
data items (a1, a2, . . . , ak), where each ai ∈ {0, 1}n, we want to compute statistics on the distribution
of items occurring in the stream while using small space (not enough to store all the items or
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maintain a histogram). In this problem, you will see how to compute the 2nd frequency moment
f2 =

∑
am

2
a, where ma = #{i : ai = a}.

The algorithm works as follows: Before receiving any items, it chooses t random 4-wise indepen-
dent hash functions H1, . . . ,Ht : {0, 1}n → {+1,−1}, and sets counters X1 = X2 = · · · = Xt = 0.
Upon receiving the i’th item ai, it adds Hj(ai) to counter Xj . At the end of the stream, it outputs
Y = (X2

1 + · · ·+X2
t )/t.

Notice that the algorithm only needs space O(t · n) to store the hash functions Hj and space
O(t · log k) to maintain the counters Xj (compared to space k · n to store the entire stream, and
space 2n · log k to maintain a histogram).

(1) Show that for every data stream (a1, . . . , ak) and each j, we have E[X2
j ] = f2, where the

expectation is over the choice of the hash function Hj .
(2) Show that Var[X2

j ] ≤ 2f2
2 .

(3) Conclude that for a sufficiently large constant t (independent of n and k), the output Y
is within 1% of f2 with probability at least .99.

Problem 3.4. (Pairwise Independent Families)

(1) (matrix-vector family) For an n × m {0, 1}-matrix A and b ∈ {0, 1}n, define a func-
tion hA,b : {0, 1}m → {0, 1}n by hA,b(x) = (Ax + b) mod 2. (The “mod 2” is applied
componentwise.) Show that Hm,n = {hA,b} is a pairwise independent family. Compare
the number of random bits needed to generate a random function in Hm,n to Construc-
tion 3.23.

(2) (Toeplitz matrices) A is a Toeplitz matrix if it is constant on diagonals, i.e. Ai+1,j+1 = Ai,j
for all i, j. Show that even if we restrict the family Hm,n in Part 1 to only include hA,b
for Toeplitz matrices A, we still get a pairwise independent family. How many random
bits are needed now?

3.7 Chapter Notes and References

The Time Hierarchy Theorem was proven by Hartmanis and Stearns [HS]; proofs can be found in
any standard text on complexity theory, e.g. [Sip2, Gol6, AB]. Adleman [Adl] showed that every
language in RP has polynomial-sized circuits (cf., Corollary 3.12), and Pippenger [Pip] showed
the equivalence between having polynomial-sized circuits and P/poly (Fact 3.11). The general
definition of complexity classes with advice (Definition 3.10) is due to Karp and Lipton [KL], who
explored the relationship between nonuniform lower bounds and uniform lower bounds. A 5n−o(n)
circuit-size lower bound for an explicit function (in P) was given by Iwama et al. [LR, IM].

The existence of universal traversal sequences (Example 3.8) was proven by Aleliunas et
al. [AKL+], who suggested finding an explicit construction (Open Problem 3.9) as an approach
to derandomizing the logspace algorithm for Undirected S-T Connectivity. For the state of
the art on these problems, see Section 4.4.
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Theorem 3.14 is due to Sipser [Sip1], who proved that BPP is the 4th level of the polynomial-
time hierarchy; this was improved to the 2nd level by Gács. Our proof of Theorem 3.14 is due to
Lautemann [Lau]. Problem 3.1 is due to Buhrman and Fortnow [BF]. For more on nondeterministic
computation and nonuniform complexity, see textbooks on computational complexity, such as [Sip2,
Gol6, AB].

The Method of Conditional Probabilities was formalized and popularized as an algorithmic tool
in the work of Spencer [Spe] and Raghavan [Rag]. Its use in Algorithm 3.17 for approximating
MaxCut is implicit in Luby [Lub2]. For more on this method, see the textbooks [MR, AS].

A more detailed treatment of pairwise independence (along with a variety of other topics in
pseudorandomness and derandomization) can be found in the survey by Luby and Wigderson [LW].
The use of pairwise independence in computer science originates with the seminal papers of Carter
and Wegman [CW, WC], which introduced the notions of universal and strongly universal families
of hash functions. The pairwise independent and k-wise independent sample spaces of Construc-
tions 3.18, 3.23, and 3.29 date back to the work of Lancaster [Lan] and Joffe [Jof1, Jof2] in the
probability literature, and were rediscovered several times in the computer science literature. . The
constructions of pairwise independent hash functions from Problem 3.4 are due to Carter and Weg-
man [CW]. The application to hash tables from Section 3.5.3 is due to Carter and Wegman [CW],
and the method mentioned for improving the space complexity to O(|S| logN) is due to Fredman,
Komlós, and Szemerédi [FKS]. The problem of randomness-efficient error reduction (sometimes
called “deterministic amplification”) was first studied by Karp, Pippenger, and Sipser [KPS], and
the method using pairwise independence given in Section 3.5.4 was proposed by Chor and Gol-
dreich [CG1]. The use of pairwise independence for derandomizing algorithms was pioneered by
Luby [Lub1]; Algorithm 3.20 for MaxCut is implicit in [Lub2]. Tail bounds for k-wise independent
random variables can be found in the papers [CG1, BR, SSS].

Problem 3.2 on designs is from [EFF], with the derandomization of Part 3 being from [NW, LW].
Problem 3.3 on the frequency moments of data streams is due to Alon, Matias, and Szegedy [AMS].
For more on data stream algorithms, we refer to the survey by Muthukrishnan [Mut].
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4

Expander Graphs

Now that we have seen a variety of basic derandomization techniques, we will move on to study
the first major “pseudorandom object” in this survey, expander graphs. These are graphs that are
“sparse” yet very “well-connected.”

4.1 Measures of Expansion

We will typically interpret the properties of expander graphs in an asymptotic sense. That is, there
will be an infinite family of graphs Gi, with a growing number of vertices Ni. By “sparse,” we mean
that the degree Di of Gi should be very slowly growing as a function of Ni. The “well-connectedness”
property has a variety of different interpretations, which we will discuss below. Typically, we will
drop the subscripts of i and the fact that we are talking about an infinite family of graphs will
be implicit in our theorems. As in Section 2.4.2, we will state many of our definitions for directed
multigraphs (digraphs for short), though in the end we will mostly study undirected multigraphs.

4.1.1 Vertex Expansion

The classic measure of well-connectedness in expanders follows:

Definition 4.1. A digraph G is a (K,A) vertex expander if for all sets S of at most K vertices,
the neighborhood N(S) def= {u|∃v ∈ S s.t. (u, v) ∈ E} is of size at least A · |S|.

Ideally, we would like D = O(1), K = Ω(N) where N is the number of vertices, and A as close
to D as possible.

There are several other measures of expansion, some of which we will examine in forthcoming
sections:

• Edge expansion (cuts): instead of N(S), use the number of edges leaving S.
• Random walks: random walks converge quickly to uniform distribution, i.e. the second

eigenvalue λ(G) is small.
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• “Quasi-randomness” (a.k.a “Mixing”): for every two sets S and T (say of constant den-
sity), the fraction of edges between S and T is roughly the product of their densities.

All of these measures are very closely related to each other, and are even equivalent for certain
settings of parameters.

It is not obvious from the definition that good vertex expanders (say, with D = O(1), K = Ω(N),
and A = 1 + Ω(1)) even exist. We will show this using the Probabilistic Method.

Theorem 4.2. For all constants D ≥ 3, there is a constant α > 0 such that for all sufficiently
large N , a random D-regular undirected graph on N vertices is an (αN,D− 1.01) vertex expander
with probability at least 1/2.

Note that the degree bound of 3 is the smallest possible, as every graph of degree 2 is a poor
expander (being a union of cycles and chains).

We prove a slightly simpler theorem for bipartite expanders.

Definition 4.3. A bipartite multigraph G is a (K,A) vertex expander if for all sets S of left-vertices
of size at most K, the neighborhood N(S) is of size at least A · |S|.

Now, let BipN,D be the set of bipartite multigraphs that have N vertices on each side and are
D-leftregular, meaning that every vertex on the left has D neighbors, numbered from 1, . . . , D (but
vertices on the right may have varying degrees).

Theorem 4.4. For every constant D, there exists a constant α > 0 such that for all sufficiently
large N , a uniformly random graph from BipN,D is an (αN,D−2) vertex expander with probability
at least 1/2.

Proof. First, note that choosing G R←BipN,D is equivalent to uniformly and independently choosing
D neighbors on the right for each left vertex v. Now, for K ≤ αN , let pK be the probability that
there exists a left-set S of size exactly K that does not expand by D− 2. Fixing a subset S of size
K, N(S) is a set of KD random vertices in R (chosen with replacement). We can imagine these
vertices V1, V2, . . . , VKD being chosen in sequence. Call Vi a repeat if Vi ∈ {V1, . . . , Vi−1}. Then the
probability that Vi is a repeat, even conditioned on V1, . . . , Vi−1, is at most (i − 1)/N ≤ KD/N .
So,

Pr[|N(S)| ≤ (D − 2) ·K] ≤ Pr [there are at least 2K repeats among V1, . . . , VKD]

≤
(
KD

2K

)(
KD

N

)2K

.

Thus, we find that

pK ≤
(
N

K

)(
KD

2K

)(
KD

N

)2K

≤
(
Ne

K

)K (KDe
2K

)2K (KD
N

)2K

=
(
e3D4K

4N

)K
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where e is the base of the natural logarithm. Since K ≤ αN , we can set α = 1/(e3D4) to obtain
pK ≤ 4−K . Thus

Pr
G∈BipN,D

[G is not an (αN,D − 2) expander] ≤
bαNc∑
K=1

4−K <
1
2

There are a number of variants to the above probabilistic construction of expanders.

• We can obtain a bipartite multigraph that is D-regular on both sides by taking the union
of D random perfect matchings. This can be analyzed using a small modification of the
analysis above; even though V1, . . . , VKD are not independent, the probability of a Vi
being a repeat conditioned on V1, . . . , Vi−1 can still be bounded by KD/(N −K). Also,
the multiple edges in the resulting graph can be eliminated or redistributed to obtain a
simple graph that is at least as good an expander.
• One can optimize α rather than the expansion factor A, showing that for all constants
α < 1 and D > 2, there exists a constant A > 1 such that for all sufficiently large N , a
random graph in BipN,D is an (αN,A) vertex expander with high probability.
• In fact, a very general tradeoff between D, α, and A is known: a random D-regular
N -vertex bipartite multigraph is an (αN,A) vertex expander with high probability if
D > H(α)+H(αA)

H(α)−αAH(1/A) , where H(p) = p log(1/p)+(1−p) log(1/(1−p)) is the binary entropy
function.
• The results can also be extended to unbalanced bipartite graphs (where the right side

is smaller than the left), and non-bipartite graphs as well, and both of these cases are
important in some applications.

In addition to being natural combinatorial objects, expander graphs have numerous applica-
tions in theoretical computer science, including the construction of fault-tolerant networks (indeed,
the first papers on expanders were in conferences on telephone networks), sorting in O(log n) time
in parallel, derandomization (as we will see), lower bounds in circuit complexity and proof com-
plexity, error-correcting codes, negative results regarding integrality gaps for linear programming
relaxations and metric embeddings, distributed routing, and data structures. For many of these
applications, it is not enough to know that a random graph is a good expander — we need explicit
constructions. That is, constructions that are deterministic and efficient. We view explicit expanders
as “pseudorandom objects” because they are fixed graphs that possess many of the properties of
random graphs.

4.1.2 Spectral Expansion

Intuitively, another way of saying that a graph is well-connected is to require that random walks
on the graph converge quickly to the stationary distribution. As we have seen in Section 2.4.2,
the mixing rate of random walks in turn is captured well by the second largest eigenvalue of the
transition matrix, and this turns out to be a very useful measure of expansion for many purposes.

Recall that for an N -vertex regular directed graph G with random-walk matrix M , we define

λ(G) def= max
π

‖πM − u‖
‖π − u‖

= max
x⊥u

‖xM‖
‖x‖

,
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where u = (1/N, . . . , 1/N) ∈ RN is the uniform distribution on [N ], the first maximum is over all
probability distributions π ∈ [0, 1]N , and the second maximum is over all vectors x ∈ RN that are
orthogonal to u. We write γ(G) def= 1− λ(G) to denote the spectral gap of G.

Definition 4.5. For γ ∈ [0, 1], we say that a regular digraph G has spectral expansion γ if γ(G) ≥ γ
(equivalently, λ(G) ≤ 1− γ).1

Larger values of γ(G) (or smaller values of λ(G)) correspond to better expansion. Sometimes it
is more natural to state results in terms of γ(G) and sometimes in terms of λ(G). Surprisingly, this
linear-algebraic measure of expansion turns out to be equivalent to the combinatorial measure of
vertex expansion for common parameters of interest.

One direction is given by the following:

Theorem 4.6 (spectral expansion ⇒ vertex expansion). If G is a regular digraph with
spectral expansion γ = 1 − λ for some λ ∈ [0, 1], then, for every α ∈ [0, 1], G is an(
αN, 1/((1− α)λ2 + α)

)
vertex expander. In particular, G is an (N/2, 1 + γ) expander.

We prove this theorem using the following two useful statistics of probability distributions.

Definition 4.7. For a probability distribution π, the collision probability of π is defined to be the
probability that two independent samples from π are equal, namely CP(π) =

∑
x π

2
x. The support

of π is Supp(π) = {x : πx > 0}.

Lemma 4.8. For every probability distribution π ∈ [0, 1]N , we have:

(1) CP(π) = ‖π‖2 = ‖π − u‖2 + 1/N , where u is the uniform distribution on [N ].
(2) CP(π) ≥ 1/ |Supp(π)|, with equality iff π is uniform on Supp(π).

Proof. For Part 1, the fact that CP(π) = ‖π‖2 follows immediately from the definition. Then,
writing π = u+(π−u), and noting that π−u is orthogonal to u, we have ‖π‖2 = ‖u‖2 +‖π−u‖2 =
1/N + ‖π − u‖2.

For Part 2, by Cauchy-Schwarz we have

1 =
∑

x∈Supp(π)

πx ≤
√
|Supp(π)| ·

√∑
x

π2
x =

√
|Supp(π)| ·

√
CP(π),

with equality iff π is uniform on Supp(π).

1 In other sources (including the original lecture notes on which this survey was based), the spectral expansion referred to λ

rather than γ. Here we use γ, because it has the more natural feature that larger values of γ correspond to the graph being

“more expanding”.
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Proof. [of Theorem 4.6] The condition that G has spectral expansion γ = 1 − λ is equivalent to
saying that λ(G) ≤ λ. By the definition of λ(G) and Part 1 of Lemma 4.8, we have

CP(πM)− 1
N
≤ λ2 ·

(
CP(π)− 1

N

)
for every probability distribution π. Letting S be any subset of the vertices of size at most αN and π
the uniform distribution on S, we have CP(π) = 1/|S| and CP(πM) ≥ 1/ |Supp(πM)| = 1/ |N(S)|.
Thus, (

1
|N(S)|

− 1
N

)
≤ λ2 ·

(
1
|S|
− 1
N

)
Solving for |N(S)| and using N ≥ |S|/α, we obtain |N(S)| ≥ |S|/(λ2(1− α) + α), as desired.

The other direction, i.e. obtaining spectral expansion from vertex expansion, is more difficult
(and we will not prove it here).

Theorem 4.9 (vertex expansion ⇒ spectral expansion). For every δ > 0 and D > 0, there
exists γ > 0 such that if G is a D-regular (N/2, 1 + δ) vertex expander, then it is also (1 − γ)
spectral expander. Specifically, we can take γ = Ω((δ/D)2).

Note first the dependence on subset size being N/2: this is necessary, because a graph can have
vertex expansion (αN, 1+Ω(1)) for α < 1/2 and be disconnected (eg the disjoint union of two good
expanders), thereby having no spectral expansion. Also note that the bound on γ depends on D.
This is also necessary, because adding edges to a good expander cannot hurt its vertex expansion,
but can hurt its spectral expansion.

Still, roughly speaking, these two results show that vertex expansion and spectral expansion are
closely related, indeed equivalent for many interesting settings of parameters:

Corollary 4.10. Let G be an infinite family of D-regular multigraphs, for a constant D ∈ N. Then
the following two conditions are equivalent:

• There is a constant δ > 0 such that every G ∈ G is an (N/2, 1 + δ) vertex expander.
• There is a constant γ > 0 such that every G ∈ G has spectral expansion γ.

When people informally use the term “expander,” they often mean a family of regular graphs
of constant degree D satisfying one of the two equivalent conditions above.

However, the two measures are no longer equivalent if one wants to optimize the expansion
constants. For vertex expansion, we have already seen that if we allow α to be a small constant
(depending on D), then there exist (αN,A) vertex expanders with A very close to D, e.g. A =
D−1.01, and clearly one cannot have A to be any larger than D. The optimal value for the spectral
expansion is also well-understood. First note that, by taking α → 0 in Theorem 4.6, a graph with
spectral expansion 1− λ spectral expander has vertex expansion A ≈ 1/λ2 for small sets. Thus, a
lower bound on λ is 1/

√
D − o(1). In fact, this lower bound can be improved:
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Theorem 4.11. For every constant D ∈ N, any D-regular, N -vertex multigraph G satisfies λ(G) ≥
2
√
D − 1/D − o(1), where the o(1) term vanishes as N →∞ (and D is held constant).

Surprisingly, there exist explicit constructions giving λ(G) < 2
√
D − 1/D. Graphs meeting this

bound are called Ramanujan graphs. Random graphs almost match this bound, as well:

Theorem 4.12. For any constant D ∈ N, a random D-regular N -vertex graph λ(G) ≤
2
√
D − 1/D + o(1) with probability 1 − o(1) where both o(1) terms vanish as N → ∞ (and D

is held constant).

Now let us see what these results for spectral expansion imply in the world of vertex expansion.
With Ramanujan graphs (λ(G) ≤ 2

√
D − 1/D), the bound from Theorem 4.6 gives a vertex ex-

pansion factor of A ≈ D/4 for small sets. This is not tight, and it is known that Ramanujan graphs
actually have vertex expansion D/2− o(1) for sets of density o(1), which is tight in the sense that
there are families of graphs with λ(G)→ 2

√
D − 1/D but vertex expansion at most D/2. Still, this

vertex expansion is not as good as we obtained via the Probabilistic Method (Theorem 4.2), where
we achieved vertex expansion D−O(1). This means that we cannot obtain optimal vertex expansion
by going through spectral expansion. Similarly, we cannot obtain optimal spectral expansion by
going through vertex expansion. The conclusion is that vertex and spectral expansion are loosely
equivalent, but only if we are not interested in optimizing the constants in the tradeoffs between
various parameters (and for some applications these are crucial).

4.1.3 Other Measures of Expansion

In this section, we mention two other useful measures of expansion involving edges crossing cuts in
the graph. For two sets S, T ⊂ V (G), let e(S, T ) = {(u, v) ∈ S × T | {u, v} ∈ E}. Here (u, v) refers
to an ordered pair, in contrast to the definition of cut(S, T ) in Section 2.3.4. Thus, we count edges
entirely within S ∩ T twice, corresponding to both orientations.

Definition 4.13. A D-regular digraph G is a (K, ε) edge expander if for all sets S of at most K
vertices, the cut e(S, S) is of size at least ε · |S| ·D.

That is, at least an ε fraction of the edges from S lead outside S. (Sometimes edge expansion is
defined without the normalization factor of D, only requiring |e(S, S)| ≥ ε · |S|.) When viewed in
terms of the random walk on G, the ratio e(S, S)/(|S|·D) is the probability that, if we condition the
stationary distribution on being in S, the random walk leaves S in one step. It turns out that if we
fix K = N/2, then edge expansion turns out to be even more closely related to spectral expansion
than is vertex expansion. Indeed:

Theorem 4.14. (1) If a D-regular, N -vertex digraph G has spectral expansion γ, then G

is an (N/2, γ/2) edge expander.
(2) If a D-regular, N -vertex digraph G is a (N/2, ε) edge expander and at least an α frac-

tion of edges leaving each vertex are self-loops for some α ∈ [0, 1], then G has spectral
expansion α · ε2/2.
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The condition about self-loops in Part ?? is to ensure that the graph is far from being bipartite
(or more generally “periodic” in the sense that all cycle lengths are divisible by some number
larger than 1), because a bipartite graph has spectral expansion 0 but can have positive edge
expansion. For graphs with a constant fraction of self-loops at each vertex, the theorem implies
that the edge expansion is bounded away from 0 iff the spectral expansion is bounded away from
0. Unlike Corollary 4.10, this equivalence holds even for graphs of unbounded degree. The intuition
for the relation is that a large edge expansion ε implies that the random walk on the graph has no
“bottlenecks” and thus should mix rapidly. This connection also holds for Markov chains in general
(when the definitions are appropriately generalized), where the edge expansion is known as the
conductance. Part 1 of Theorem 4.14 will follow as a special case of the Expander Mixing Lemma
below; we omit the proof of Part ??.

Next, we consider a generalization of edge expansion, where we look at edges not just from a set
S to its complement but between any two sets S and T . If we think of an expander as being like a
random graph, we would expect the fraction of graph edges that are in e(S, T ) to be approximately
equal to the product of the densities of S and T . The following result shows that this intuition is
correct:

Lemma 4.15 (Expander Mixing Lemma). Let G be a D-regular, N -vertex digraph with spec-
tral expansion 1 − λ. Then for all sets of vertices S, T of densities α = |S|/N and β = |T |/N , we
have ∣∣∣∣e(S, T )

N ·D
− αβ

∣∣∣∣ ≤ λ
√
α · (1− α) · β · (1− β).

≤ λ
√
αβ ≤ λ.

Observe that the denominator N ·D counts all edges of the graph (as ordered pairs). The lemma
states that the difference between the fraction of edges in e(S, T ) and the expected value if we were
to choose G randomly is “small”, roughly λ times the square root of this fraction. Finally, note that
Part 1 of Theorem 4.14 follows from the Expander Mixing Lemma by setting T = Sc, so β = 1−α
and e(S, T )/ND ≥ (1− λ) · α · (1− α) ≥ γα/2.

When a digraph G = (V,E) has the property that |e(S, T )/|E|−αβ| = o(1) for all sets S, T (with
densities α, β), the graph is called quasirandom. Thus, the Expander Mixing Lemma implies that a
regular digraph with λ(G) = o(1) is quasirandom. Quasirandomness has been studied extensively
for dense graphs, in which case it has numerous equivalent formulations. Here we are most interested
in sparse graphs, especially constant-degree graphs (for which λ(G) = o(1) is impossible).

Proof. Let χS be the characteristic (row) vector of S and χT the characteristic vector of T . Let
A be the adjacency matrix of G, and M = A/D be the random-walk matrix for G. Note that
e(S, T ) = χSAχ

t
T = χS(DM)χtT , where the superscript t denotes the transpose.

As usual, we can express χS as the sum of two components, one parallel to the uniform
distribution u, and the other a vector χ⊥S , where χ⊥S ⊥ u. The coefficient of u should be
〈χS , u〉/‖u‖ =

∑
i(χS)i = |S| = αN . Then χS = (αN)u + χ⊥S and similarly χT = (βN)u + χ⊥T .

Intuitively, the components parallel to the uniform distribution “spread” the weight of S and T

uniformly over the entire graph, and χ⊥S and χ⊥T will yield the error term.
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Formally, we have

e(S, T )
N ·D

=
1
N

((αN)u+ χ⊥S )M((βN)u+ χ⊥T )t

=
1
N

(αβN2)uMut +
1
N

(αN)uM(χ⊥T )t +
1
N

(βN)χ⊥SMut + χ⊥SM(χ⊥T )t.

Since uM = u and Mut = ut, and both χ⊥S and χ⊥T are orthogonal to u, the above expression
simplifies to:

e(S, T )
N ·D

= (αβN)u · u+
χ⊥SM(χ⊥T )t

N
= αβ +

(χ⊥S ·M)χ⊥T
N

.

Thus, ∣∣∣∣e(S, T )
N ·D

− αβ
∣∣∣∣ =

∣∣∣∣(χ⊥S ·M)χ⊥T
N

∣∣∣∣
≤ 1

N
‖χ⊥SM‖ · ‖χ⊥T ‖

≤ 1
N
λ‖χ⊥S ‖ · ‖χ⊥T ‖.

To complete the proof, we note that

αN = ‖χS‖2 = ‖(αN)u‖2 + ‖χ⊥S ‖2 = α2N + ‖χ⊥S ‖2,

so ‖χ⊥S ‖ =
√
α− α2 =

√
α · (1− α) and similarly χ⊥T =

√
β · (1− β).

Similarly to vertex expansion and edge expansion, a natural question is to what extent the
converse holds. That is, if e(S, T )/ND is always “close” to the product of the densities of S and T ,
then is λ(G) necessarily small? This is indeed true:

Theorem 4.16 (Converse to Expander Mixing Lemma). Let G be a D-regular, N -vertex
undirected graph. Suppose that for all pairs of disjoint vertex sets S, T , we have∣∣∣ e(S,T )
N ·D − µ(S)µ(T )

∣∣∣ ≤ θ
√
µ(S)µ(T ) for some θ ∈ [0, 1], where µ(R) = |R|/N for any set R of

vertices. Then λ(G) = O (θ log(1/θ)).

Putting the two theorems together, we see that λ and θ differ by at most a logarithmic factor.
Thus, unlike the other connections we have seen, this connection is good for highly expanding
graphs (i.e. λ(G) close to zero, γ(G) close to 1).

4.2 Random Walks on Expanders

From the previous section, we know that one way of characterizing an expander graph G is by
having a bound on its second eigenvalue λ(G), and in fact there exist constant-degree expanders
where λ(G) is bounded by a constant less than 1. From Section 2.4.3, we know that this implies
that the random walk on G converges quickly to the uniform distribution. Specifically, a walk of
length t started at any vertex ends at `2 distance at most λt from the uniform distribution. Thus
after t = O(logN) steps, the distribution is very close to uniform, e.g. the probability of every
vertex is (1 ± .01)/N . Note that, if G has constant degree, the number of random bits invested
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here is O(t) = O(logN), which is within a constant factor of optimal; clearly logN −O(1) random
bits are also necessary to sample an almost uniform vertex. Thus, expander walks give a very good
tradeoff between the number of random bits invested and the “randomness” of the final vertex in
the walk. Remarkably, expander walks give good randomness properties not only for the final vertex
in the walk, but also for the sequence of vertices traversed in the walk. Indeed, in several ways to
be formalized below, this sequence of vertices “behaves” like uniform independent samples of the
vertex set.

A canonical application of expander walks is for randomness-efficient error reduction of random-
ized algorithms: Suppose we have an algorithm with constant error probability, which uses some
m random bits. Our goal is to reduce the error to 2−k, with a minimal penalty in random bits and
time. Independent repetitions of the algorithm suffers just an O(k) multiplicative penalty in time,
but needs O(km) random bits. We have already seen that with pairwise independence we can use
just O(m+ k) random bits, but the time blows up by O(2k). Expander graphs let us have the best
of both worlds, using just m+O(k) random bits, and increasing the time by only an O(k) factor.
Note that for k = o(m), the number of random bits is (1+o(1)) ·m, even better than what pairwise
independence gives.

The general approach is to consider an expander graph with vertex set {0, 1}m, where each
vertex is associated with a setting of the random bits. We will choose a uniformly random vertex v1

and then do a random walk of length t− 1, visiting additional vertices v2, . . . , vt. (Note that unlike
the rapid mixing analysis, here we start at a uniformly random vertex.) This requires m random
bits for the initial choice, and logD for each of the t− 1 steps. For every vertex vi on the random
walk, we will run the algorithm with vi as the setting of the random coins.

First, we consider the special case of randomized algorithms with one-sided error (RP). For
these, we should accept if at least one execution of the algorithm accepts, and reject otherwise.
If the input is a no instance, the algorithm never accepts, so we also reject. If the input is a yes

instance, we want our random walk to hit at least one vertex that makes the algorithm accept. Let
B denote the set of “bad” vertices giving coin tosses that make the algorithm reject. By definition,
the density of B is at most 1/2. Thus, our aim is to show that the probability that all the vertices
in the walk v1, . . . , vt are in B vanishes exponentially fast in t, if G is a good expander.

The case t = 2 follows from the Expander Mixing Lemma given last time. If we choose a random
edge in a graph with spectral expansion 1− λ, the probability that both endpoints are in a set B
is at most µ(B)2 + λ · µ(B). So if λ � µ(B), then the probability is roughly µ(B)2, just like two
independent random samples. The case of larger t is given by the following theorem.

Theorem 4.17 (Hitting Property of Expander Walks). If G is a regular digraph with spec-
tral expansion 1 − λ , then for any B ⊂ V (G) of density µ, the probability that a random walk
(V1, . . . , Vt) of t− 1 steps in G starting in a uniformly random vertex V1 always remains in B is

Pr

[
t∧
i=1

Vi ∈ B

]
≤ (µ+ λ · (1− µ))t

.

Equivalently, a random walk “hits” the complement of B with high probability. Note that if
µ and λ are constants less than 1, then the probability of staying in B is 2−Ω(t), completing the
analysis of the efficient error-reduction algorithm for RP.
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Before proving the theorem, we discuss general approaches to analyzing spectral expanders
and random walks on them. Typically, the first step is to express the quantities of interest linear-
algebraically, involving applications of the random-walk (or adjacency) matrix M to some vectors
v. For example, last time when proving the Expander Mixing Lemma, we expressed the fraction of
edges between sets S and T as χtSMχT (up to some normalization factor). Then we can proceed
in one of the two following ways:

Vector Decomposition Decompose the input vector v as v = v‖+v⊥, where v‖ = (〈v, u〉/〈u, u〉)u
is the component of v in the direction of the uniform distribution u and v⊥ is the component
of v orthogonal to u. Then this induces a similar orthogonal decomposition of the output
vector vM into vM = (vM)‖ + (vM)⊥ = v‖M + v⊥M , where v‖M = v‖ and ‖v⊥M‖ ≤
λ · ‖v⊥‖. Thus, from information about how v’s lengths are divided into the uniform and
non-uniform components, we deduce information about how vM is divided into the uniform
and non-uniform components. This is the approach we took in the proof of the Expander
Mixing Lemma.

Matrix Decomposition This corresponds to a different decomposition of the output vector vM
that can be expressed in a way that is independent of the decomposition of the input vector
v. Specifically, if G has spectral expansion γ = 1− λ, then

vM = v‖ + v⊥M = γ · v‖ + (λ · v‖ + v⊥M) = γ · vJ + λ · vE = v(γJ + λE),

where J is the matrix in which every entry is 1/N and the error matrix E satisfies
‖vE‖ ≤ ‖v‖. The advantage of this decomposition is that we can apply it even when
we have no information about how v decomposes (only its length). The fact that M is a
convex combination of J and E means that we can often treat each of these components
separately and then just apply triangle inequality. However, it is less refined than the vector
decomposition approach, and sometimes gives weaker bounds. Indeed, if we used it to prove
the Expander Mixing Lemma (without decomposing χS and χT ), we would get a slightly
worse error term of λ

√
µ(S)µ(T ) + λµ(S)µ(T ).

The Matrix Decomposition Approach can be formalized using the following notion.

Definition 4.18. The (spectral) norm of an N ×N real matrix M is defined to be

‖M‖ = max
x∈RN

‖xM‖
‖x‖

(If M is symmetric, then ‖M‖ equals the largest absolute value of any eigenvalue of M .)

Some basic properties of the matrix norm are that ‖cA‖ = |c| · ‖A‖, ‖A+B‖ ≤ ‖A‖+ ‖B‖, and
‖A · B‖ ≤ ‖A‖ · ‖B‖ for every two matrices A, B, and c ∈ R. From the discussion above, we have
the following lemma:

Lemma 4.19. Let G be a regular digraph on N vertices with random-walk matrix M . Then G

has spectral expansion γ = 1−λ iff M = γJ +λE, where J is the N ×N matrix where every entry
is 1/N (i.e. the random-walk matrix for the complete graph with self-loops) and ‖E‖ ≤ 1.

57



This lemma has a nice intuition: we can think of a random step on a graph with spectral
expansion γ as being a random step on the complete graph with probability γ and “not doing
damage” with probability 1−γ. This intuition would be completely accurate if E were a stochastic
matrix, but it is typically not (e.g. it may have negative entries). Still, note that the bound given
in Theorem 4.17 exactly matches this intuition: in every step, the probability of remaining in B is
at most γ · µ+ λ = µ+ λ · (1− µ).

Now we can return to the proof of the theorem.

Proof. We need a way to express getting stuck in B linear-algebraically. For that, we define P to
be the diagonal matrix with Pi,i = 1 if i ∈ B and Pi,i = 0 otherwise. An example of using P would
be to say that the probability a distribution π picks a node in B is |πP |1, where | · |1 is the `1
norm, |x|1 =

∑
|xi| (which in our case is equal to the sum of the components of the vector, since

all values are nonnegative).
Let M be the random-walk matrix of G. The probability distribution for V1 is given by the

vector u. Now we can state the following crucial fact:

Claim 4.20. The probability that the random walk stays entirely within B is precisely
|uP (MP )t−1|1.

Proof of claim: By induction on `, we show that
(
uP (MP )`

)
i

is the probability
that the random walk is entirely within B for the first `+1 steps and is at node i at
step `+ 1. The base case is ` = 0. If i ∈ B, (uP )i = 1/N ; if i /∈ B, (uP )i = 0. Now
assume the hypothesis holds up to some `. Then

(
uP (MP )`M

)
i

is the probability
that the random walk is entirely within B for the first `+ 1 steps and is at node i
at step `+ 2. Multiplying by P , we zero out all components for nodes not in B and
leave the others unchanged. Thus, we obtain the probability that the random walk
is at i after `+ 2 steps, and never leaves B. �

To get a bound in terms of the spectral expansion, we will now switch to the `2 norm. The
intuition is that multiplying by M shrinks the component that is perpendicular to u (by expansion)
and multiplying by P shrinks the component parallel to u (because it zeroes out some entries). Thus,
we should be able to show that the norm ‖MP‖ is strictly less than 1. Actually, to get the best
bound, we note that uP (MP )t−1 = uP (PMP )t−1, because P 2 = P , so we instead bound ‖PMP‖.
Specifically:

Claim 4.21. ‖PMP‖ ≤ µ+ λ · (1− µ).

Proof of claim: Using the Matrix Decomposition Lemma (Lemma 4.19), we have:

‖PMP‖ = ‖P (γJ + λE)P‖
≤ γ · ‖PJP‖+ λ · ‖PEP‖
≤ γ · ‖PJP‖+ λ

Thus, we only need to analyze the case of J , the random walk on the complete
graph. Given any vector x, let y = xP . Note that ‖y‖ ≤ ‖x‖ and y has at most µN
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nonzero coordinates. Then

xPJP = yJP =

(∑
i

yi

)
uP,

so

‖xPJP‖ ≤

∣∣∣∣∣∑
i

yi

∣∣∣∣∣ · ‖uP‖ ≤ (√µN · ‖y‖) ·
√
µ

N
≤ µ · ‖x‖.

Thus,
‖PMP‖ ≤ γ · µ+ λ = µ+ λ · (1− µ).

�

Using Claim 4.21, the probability of never leaving B in a t-step random walk is

|uP (MP )t−1|1 ≤
√
µN · ‖uP (MP )t−1‖

≤
√
µN · ‖uP‖ · ‖PMP‖t−1

≤
√
µN ·

√
µ

N
· (µ+ λ · (1− µ))t−1

≤ (µ+ λ · (1− µ))t

The hitting properties described above suffice for reducing the error of RP algorithms. What
about BPP algorithms, which have two-sided error? They are handled by the following.

Theorem 4.22 (Chernoff Bound for Expander Walks). Let G be a regular digraph with on
N vertices with spectral expansion 1 − λ, and let f : [N ] → [0, 1] be any function. Consider a
random walk V1, . . . , Vt in G from a uniform start vertex V1. Then for any ε > 0

Pr

[∣∣∣∣∣1t∑
i

f(Vi)− µ(f)

∣∣∣∣∣ ≥ λ+ ε

]
≤ 2e−Ω(ε2t).

Note that this is just like the standard Chernoff Bound (Theorem 2.21), except that our additive
approximation error increases by λ = 1 − γ. Thus, unlike the Hitting Property we proved above,
this bound is only useful when λ is sufficiently small (as opposed to bounded away from 1). This
can be achieved by taking an appropriate power of the initial expander. However, there is a better
Chernoff Bound for Expander Walks, where λ does not appear in the approximation error, but the
exponent in the probability of error is Ω(γε2t) instead of Ω(ε2t). The bound above suffices in the
common case that a small constant approximation error can be tolerated, as in error reduction for
BPP.

Proof. Let Xi be the random variable f(Vi), and X =
∑

iXi. Just like in the standard proof of the
Chernoff Bound (Problem 2.7), we show that the expectation of the moment generating function
erX =

∏
i e
rXi is not much larger than erE[X] and apply Markov’s Inequality, for a suitable choice
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of r. However, here the factors erXi are not independent, so the expectation does not commute with
the product. Instead, we express E[erX ] linear-algebraically as follows. Define a diagonal matrix P
whose (i, i)’th entry is erf(i). Then, similarly to the hitting proof above, we observe that

E[erX ] =
∣∣uP (MP )t−1

∣∣
1

=
∣∣u(MP )t

∣∣
1
≤
√
N · ‖u‖ · ‖MP‖t = ‖MP‖t.

To see this, we simply note that each cross-term in the matrix product uP (MP )t−1 corresponds to
exactly one expander walk v1, . . . , vt, with a coefficient equal to the probability of this walk times∏
i e
f(vi). By the Matrix Decomposition Lemma (Lemma 4.19), we can bound

‖MP‖ ≤ (1− λ) · ‖JP‖+ λ · ‖EP‖.

Since J simply projects onto the uniform direction, we have

‖JP‖2 =
‖uP‖2

‖u‖2

=
∑

v(e
r·f(v)/N)2∑
v(1/N)2

=
1
N
·
∑
v

e2rf(v)

=
1
N
·
∑
v

(1 + 2rf(v) +O(r2))

= 1 + 2rµ+O(r2)

for r ≤ 1, and thus
‖JP‖ =

√
1 + 2rµ+O(r2) = 1 + rµ+O(r2).

For the error term, we have

‖EP‖ ≤ ‖P‖ ≤ er = 1 + r +O(r2).

Thus,

‖MP‖ ≤ (1− λ) · (1 + rµ+O(r2)) + λ · (1 + r +O(r2)) ≤ 1 + (µ+ λ)r +O(r2),

and we have
E[erX ] ≤ (1 + (µ+ λ)r +O(r2))t ≤ e(µ+λ)rt+O(r2t).

By Markov’s Inequality,

Pr[X ≥ (µ+ λ+ ε) · t] ≤ e−εrt+O(r2t) = e−Ω(ε2t),

if we set r = ε/c for a large enough constant c. By applying the same analysis to the function 1−f ,
we see that Pr[X ≤ (µ− λ− ε)t] = e−Ω(ε2t), and this establishes the theorem.

We now summarize the properties that expander walks give us for randomness-efficient error
reduction and sampling.

For reducing the error of a BPP algorithm from 1/3 to 2−k, we can apply Theorem 4.22 with
λ = ε = 1/12, so that a walk of length t = O(k) suffices. If the original BPP algorithm used
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m random bits and the expander is of constant degree (which is possible with λ = 1/12), then
the number of random bits needed is only m + O(k). Comparing with previous methods for error
reduction, we have:

Number of Repetitions Number of Random Bits
Independent Repetitions O(k) O(km)
Pairwise Independent Repetitions O(2k) O(k +m)
Expander Walks O(k) m+O(k)

For Sampling, where we are given an oracle to a function f : {0, 1}m → [0, 1] and we
want to approximate µ(f) to within an additive error of ε, we can apply Theorem 4.22 with error
ε/2 and λ = ε/2. The needed expander can be obtained by taking an O(log(1/ε))’th power of a
constant-degree expander, yielding the following bounds:

Number of Samples Number of Random Bits
Truly Random Sample O( 1

ε2
log 1

δ ) O(m
ε2

log 1
δ )

Pairwise Independent Samples O( 1
ε2δ

) O(m+ log 1
ε + log 1

δ )
Expander Walks O( 1

ε2
log 1

δ ) m+O((log 1
δ ) · (log 1

ε )/ε2)

The log(1/ε) factor in the number of random bits used by expander walks is actually not
necessary and comes from the slightly weaker Chernoff Bound we proved. In any case, note that
expander walks have a much better dependence on the error probability δ in the number of samples
(as compared to pairwise independence), but have a worse dependence on the approximation error
ε in the number of random bits.

Before we end, we make an important remark: we have not actually given an algorithm for
randomness-efficient error reduction! Our algorithm assumes an expander graph of exponential
size, namely 2m where m is the number of random bits used by the algorithm. Generating such
a graph at random would use far too many coins. Even generating it deterministically would not
suffice, since we would have to write down an exponential-size object. In the following section, we
will see how to implicitly construct an expander (without writing it down), and do random walks
in such a graph.

4.3 Explicit Constructions

As discussed in previous sections, expander graphs have numerous applications in theoretical com-
puter science. (See also the Chapter Notes and Exercises.) For some of these applications, it may
be acceptable to simply choose the graph at random, as we know that a random graph will be a
good expander with high probability. For many applications, however, this simple approach does
not suffice. Some reasons (in increasing order of significance):

• We may not want to tolerate the error probability introduced by the (unlikely) event
that the graph is not an expander. To deal with this, we could try checking that the
graph is an expander. Computing most combinatorial measures of expansion (e.g. vertex
expansion or edge expansion) of a given graph is NP-hard, but the spectral expansion
can be computed to high precision in time polynomial in the size of the graph (as it
is just an eigenvalue computation). As we saw, spectral expansion does yield estimates
on vertex expansion and edge expansion (but cannot give optimal expansion in these
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measures).
• Some of the applications of expanders (like the one from the previous section) are for

reducing the amount of randomness needed for certain tasks. Thus choosing the graph
at random defeats the purpose.
• A number of the applications require exponentially large expander graphs, and thus we

cannot even write down a randomly chosen expander. For example, for randomness-
efficient error reduction of randomized algorithms, we need an expander on 2m nodes
where m is the number of random bits used by the algorithm.

From a more philosophical perspective, finding explicit constructions is a way of developing and
measuring our understanding of these fundamental combinatorial objects.

A couple of alternatives for defining explicit constructions of expanders on N nodes are:

Mildly Explicit: Construct a complete representation of the graph in time poly(N).
Fully Explicit: Given a node u ∈ [N ] and i ∈ [D], where D is the degree of the expander, compute

the ith neighbor of u in time poly(logN).

Consider the randomness-efficient error reduction application discussed in the previous section, in
which we performed a random walk on an expander graph with exponentially many nodes. Mild
explicitness is insufficient for this application, as the desired expander graph is of exponential size,
and hence cannot be even entirely stored, let alone constructed. But full explicitness is perfectly
suited for efficiently conducting a random walk on a huge graph. So now our goal is the following:

Goal: Devise a fully explicit construction of an infinite family {Gi} of D-regular graphs with
spectral expansion at least γ, where D and γ > 0 are constants independent of i.

We remark that we would also like the set {Ni}, where Ni is the number of vertices in Gi, to
be not too sparse, so that the family of graphs {Gi} has graphs of size close to any desired size.

4.3.1 Algebraic Constructions

Here we mention a few known explicit constructions that are of interest because of their simple
description, the parameters achieved, and/or the mathematics that goes into their analysis. We will
not prove the expansion properties of any of these constructions (but will rather give a different
explicit construction in the subsequent sections).

Construction 4.23 (Gabber–Galil expanders). This is the graph G = (V,E) with nodes V =
[M ]2 (namely, each node is a pair of numbers from {0, ...,M − 1}), and edges connecting each node
(x, y) with each of the following nodes: (x, y), (x, x+ y), (x, x+ y+ 1), (x+ y, y), and (x+ y+ 1, y),
where all arithmetic is mod M .

This is a fully explicit 5-regular digraph with N = M2 nodes and spectral expansion γ = Ω(1),
proved using Fourier analysis. We note that this graph is directed, but it can be made undirected
by adding a reverse copy of each edge.

Construction 4.24 (p-Cycle with inverse chords). This is the graph G = (V,E) with vertex
set V = Zp, the integers modulo p, and edges that connect each node x with the nodes: x+ 1, x−1
and x−1 (where all arithmetic is mod p and we define 0−1 to be 0).
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This graph is only mildly explicit since we do not know how to construct n-bit primes deter-
ministically in time poly(n) (though it is conjectured that we can do so by simply checking the
first poly(n) n-bit numbers). The proof of expansion relies on the “Selberg 3/16 Theorem” from
number theory.

Construction 4.25 (Ramanujan graphs). The graph G = (V,E) with nodes V = Fq ∪ {∞}
elements in the finite field of prime order q s.t. q ≡ 1 mod 4 plus one extra node representing
infinity. The edges in this graph connect each node z with all z′ of the form

z′ =
(a0 + ia1)z + (a2 + ia3)

(−a2 + ia3)z + (a0 − ia1)

for a0, a1, a2, a3 ∈ Z such that a2
0 + a2

1 + a2
2 + a2

3 = p, a0 is odd and positive, and a1, a2, a3 are even,
for some fixed prime p 6= q satisfying p ≡ 1 mod 4 and where i2 = −1 mod q.

The degree of the graph is the number of solutions to the equation a2
0 + a2

1 + a2
2 + a2

3 = p, which
turns out to be D = p + 1, and it has λ(G) ≤ 2

√
D − 1/D, so it is an optimal spectral expander.

(See Theorems 4.11 and 4.12, and note that this bound is even better than we know for random
graphs, which have an additive o(1) term in the spectral expansion.) These graphs are also only
mildly explicit.

These are called Ramanujan Graphs because the proof of their spectral expansion relies on
results in number theory concerning the “Ramanujan Conjectures.” Subsequently, the term Ra-
manujan graphs came to refer to any infinite family of graphs with optimal spectral expansion
γ ≥ 2

√
D − 1/D.

4.3.2 Graph Operations

The explicit construction of expanders given in the next section will be an iterative one, where
we start with a “constant size” expander H and repeatedly apply graph operations to get bigger
expanders. The operations that we apply should increase the number of nodes in the graph, while
keeping the degree and the second eigenvalue λ bounded. We’ll see three operations, each improv-
ing one property while paying a price on the others; however, combined together, they yield the
desired expander. It turns out that this approach for constructing expanders will also be useful
in derandomizing the logspace algorithm for Undirected S-T Connectivity, as we will see in
Section 4.4.

The following concise notation will be useful to keep track of each of the parameters:

Definition 4.26. An (N,D, γ)-graph is a D-regular digraph on N vertices with spectral expansion
γ.

4.3.2.1 Squaring

Definition 4.27 (Squaring of Graphs). If G = (V,E) is a D-regular digraph, then G2 = (V,E′)
is a D2-regular digraph on the same vertex set, where the (i, j)’th neighbor of a vertex x is the j’th
neighbor of the i’th neighbor of x. In particular, a random step on G2 consists of two random steps
on G.
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Lemma 4.28. If G is a (N,D, 1− λ)-graph, then G2 is a (N,D2, 1− λ2)-graph.

Namely, the degree deteriorates by squaring, while the spectral expansion is improved from
γ = 1− λ to γ′ = 1− λ2 = 2γ − γ2.

Proof. The effect of squaring on the number of nodes N and the degree D is immediate from the
definition. For the spectral expansion, note that if M is the random-walk matrix for G, then M2 is
the random-walk matrix for G2. So for any vector x ⊥ u,

‖xM2‖ ≤ λ · ‖xM‖ ≤ λ2 · ‖x‖.

4.3.2.2 Tensoring

The next operation we consider increases the size of the graph at the price of increasing the degree.

Definition 4.29 (Tensor Product of Graphs). Let G1 = (V1, E1) be D1-regular and G2 =
(V2, E2) be D2-regular. Then their tensor product is the D1D2-regular graph G1⊗G2 = (V1×V2, E),
where the (i1, i2)’th neighbor of a vertex (x1, x2) is (y1, y2), where yb is the ib’th neighbor of xb in
Gb. That is, a random step on G1⊗G2 consists of a random step on G1 in the first component and
a random step on G2 in the second component.

Often this operation is simply called the “product” of G1 and G2, but we use “tensor product”
to avoid confusion with squaring and to reflect its connection with the standard tensor products in
linear algebra:

Definition 4.30 (Tensor Products of Vectors and Matrices). Let x ∈ RN1 , y ∈ RN2 , then
their tensor product z = x⊗ y ∈ RN1N2 is the vector2 zij = xiyj .

Similarly, for matrices A = (aij) ∈ RN1×N1 , B = (bij) ∈ RN2×N2 , their tensor product C =
A⊗B ∈ RN1N2×N1N2 is the matrix C = (cij) where cij,i′j′ = aii′bjj′ .

A few comments on the tensor operation:

• A random walk on a tensor graph G1⊗G2 is equivalent to taking two independent random
walks on G1 and G2.
• For vectors x ∈ RN1 , y ∈ RN2 that are probability distributions (i.e. nonnegative vectors

with `1 norm 1), their tensor product x ⊗ y is a probability distribution on [N1] × [N2]
elements where the two components are independently distributed according to x and y,
respectively.
• (x ⊗ y)(A ⊗ B) = (xA) ⊗ (yB) for every x ∈ RN1 , y ∈ RN2 , and in fact A ⊗ B is the

unique matrix with this property.

2 For convenience we index the vector z by two indices i, j. To transform to a standard indexing we can map ij to iN1 + j.
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• Not all vectors z ∈ RN1N2 are decomposable as x ⊗ y for x ∈ RN1 and y ∈ RN2 . Never-
theless, the set of all decomposable tensors x⊗ y spans RN1N2 .
• If M1,M2 are the random-walk matrices for graphs G1, G2 respectively, then the random-

walk matrix for the graph G1 ⊗G2 is

M1 ⊗M2 = (IN1 ⊗M2)(M1 ⊗ IN2) = (M1 ⊗ IN2)(IN1 ⊗M2),

where IN denotes the N × N identity matrix. That is, we can view a random step
on G1 ⊗ G2 as being a random step on the G1 component followed by one on the G2

component or vice-versa.

Lemma 4.31. If G1 is an (N1, D1, γ1)-graph and G2 is an (N2, D2, γ2)-graph, then G1 ⊗G2 is an
(N1N2, D1D2,min{γ1, γ2})-graph.

In particular, if G1 = G2, then the number of nodes improves, the degree deteriorates, and the
spectral expansion remains unchanged.

Proof. As usual, we write γ1 = 1 − λ1, γ2 = 1 − λ2; then our goal is to show that G1 ⊗ G2 has
spectral expansion 1−max{λ1, λ2}. The intuition for the construction is as follows. Any probability
distribution (V1, V2) on the vertices (v1, v2) of G1 ⊗ G2 can be thought of as picking a cloud v1

according to the marginal distribution3 V1 and then picking the vertex v2 within the cloud v1

according to the conditional distribution V2|V1=v1 . If the overall distribution on pairs is far from
uniform, then either

(1) The marginal distribution on the clouds must be far from uniform, or
(2) the conditional distribution within the clouds must be far from uniform.

When we take a random step, the expansion of G1 will bring us closer to uniform in Case 1 and
the expansion of G2 will bring us closer to uniform in Case 2.

One way to prove the bound in the case of undirected graphs is to use the fact that the eigenvalues
of M1 ⊗M2 are all the products of eigenvalues of M1 and M2, so the three largest absolute values
are {1·1, λ1 ·1, 1·λ2}. Instead, we instead use the Vector Decomposition Method to give a proof that
matches the intuition more closely and is a good warm-up for the analysis of the zig-zag product in
the next section. Given any vector x ∈ RN1N2 that is orthogonal to uN1N2 , we can decompose x as
x = x‖+ x⊥ where x‖ is a multiple of uN2 on each cloud of size N2 and x⊥ is orthogonal to uN2 on
each cloud. Note that x‖ = y ⊗ uN2 , where y ∈ RN1 is orthogonal to uN1 (because x‖ = x − x⊥ is
orthogonal to uN1N2). If we think of x as the nonuniform component of a probability distribution,
then x‖ and x⊥ correspond to the two cases in the intuition above.

For the first case, we have

x‖M = (y ⊗ uN2)(M1 ⊗M2) = (yM1)⊗ uN2 .

3 For two jointly distributed random variables (X,Y ), the marginal distribution of X is simply the distribution of X alone,

ignoring information about Y .
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The expansion of G1 tells us that M1 shrinks y by a factor of λ1, and thus M shrinks x‖ by the
same factor. For the second case, we write

x⊥M = x⊥(IN1 ⊗M2)(M1 ⊗ IN2).

The expansion of G2 tells us that M2 will shrink x⊥ by a factor of λ2 on each cloud, and thus
IN1 ⊗ M2 will shrink x⊥ by the same factor. The subsequent application of M1 ⊗ IN2 cannot
increase the length (being the random-walk matrix for a regular graph, albeit a disconnected one).
Thus, ‖x⊥M‖ ≤ λ2‖x⊥‖.

Finally, we argue that x‖M and x⊥M are orthogonal. Note that x‖M = (yM1) ⊗ uN2 is a
multiple of uN2 on every cloud. Thus it suffices to argue that x⊥ remains orthogonal to uN2 on
every cloud after we apply M . Applying (IN1 ⊗M2) retains this property (because applying M2

preserves orthogonality to uN2 , by regularity of G2) and applying (M1 ⊗ IN2) retains this property
because it assigns each cloud a linear combination of several other clouds (and a linear combination
of vectors orthogonal to uN2 is also orthogonal to uN2).

Thus,

‖xM‖2 = ‖x‖M‖2 + ‖x⊥M‖2

≤ λ2
1 · ‖x‖‖2 + λ2

2 · ‖x⊥‖2

≤ max{λ1, λ2}2 · (‖x‖‖2 + ‖x⊥‖2)

= max{λ1, λ2}2 · ‖x‖2,

as desired.

4.3.2.3 The Zig-Zag Product

Of the two operations we have seen, one (squaring) improves expansion and one (tensoring) increases
size, but both have the deleterious effect of increasing the degree. Now we will see a third operation
that decreases the degree, without losing too much in the expansion. By repeatedly applying these
three operations, we will be able to construct arbitrarily large expanders while keeping both the
degree and expansion constant.

Let G be an (N1, D1, γ1) expander and H be a (D1, D2, γ2) expander. The zig-zag product of G
and H, denoted G©z H, will be defined as follows. The nodes of G©z H are the pairs (u, i) where
u ∈ V (G) and i ∈ V (H). The edges of G©z H will be defined so that a random step on G©z H
corresponds to a random step on G, but using a random steps on H to choose the edge in G. (This
is the reason why we require the number of vertices in H to be equal to the degree of G.) A step in
G©z H will therefore involve a step to a random neighbor in H and then a step in G to a neighbor
whose index is equal to the label of the current node in H. Intuitively, a random walk on an a
“good” expander graph H should generate choices that are sufficiently random to produce a “good’
random walk on G. One problem with this definition is that it is not symmetrical. That is, the
fact that you can go from (u, i) to (v, j) does not mean that you can go from (v, j) to (u, i). We
correct this by adding another step in H after the step in G. In addition to allowing us to construct
undirected expander graphs, this extra step will also turn out to be important for the expansion of
G©z H.

More formally,
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Definition 4.32 (Zig-zag Product). Let G be an D1-regular digraph on N1 vertices, and H a
D2-regular digraph onD1 vertices. ThenG©zH is a graph whose vertices are pairs (u, i) ∈ [N1]×[D1].
For a, b ∈ D2, the (a, b)’th neighbor of a vertex (u, i) is the vertex (v, j) computed as follows:

(1) Let i′ be the a’th neighbor of i in H.
(2) Let v be the i′’th neighbor of u in G, so e = (u, v) is the i′’th edge leaving v. Let j′ be

such that e is the j′’th edge entering v in G. (In an undirected graph, this means that u
is the j′’th neighbor of v.)

(3) Let j be the b’th neighbor of j′ in H.

Theorem 4.33. If G is a (N1, D1, γ1)-graph, and H is a (D1, D2, γ2)-graph then G©z H is a
(N1D1, D

2
2, γ = γ1 · γ2

2)-graph. In particular, if γ1 = 1 − λ1 and γ2 = 1 − λ2, then γ = 1 − λ for
λ ≤ λ1 + 2λ2.

G should be thought of as a big graph and H as a small graph, where D1 is a large constant and
D2 is a small constant. Note that the number of nodes D1 in H is required to equal the degree of
G. Observe that when D1 > D2

2 the degree is reduced by the zig-zag product.
There are two different intuitions underlying the expansion of the zig-zag product:

• Given an initial distribution on the vertices of G1©z G2 that is far from uniform, there
are two extreme cases just as in the intuition for the tensor product. Either

(1) All the (conditional) distributions within the clouds are far from uniform, or

(2) All the (conditional) distributions within the clouds of size D1 are uniform (in
which case the marginal distribution on the clouds must be far from uniform).

In Case 1, the first H-step already brings us closer to the uniform distribution, and the
other two steps cannot hurt (as they are steps on regular graphs). In Case 2, the first
H-step has no effect, but the G-step has the effect of making the marginal distribution on
clouds closer to uniform. But note that we haven’t actually gotten closer to the uniform
distribution on the vertices of G1©z G2 because the G-step is a permutation. Still, if
the marginal distribution on clouds has become closer to uniform, then the conditional
distributions within the clouds must have become further from uniform, and thus the
second H-step brings us closer to uniform. This leads to a proof by Vector Decomposition,
where we decompose any vector x that is orthogonal to uniform into components x‖ and
x⊥, where x‖ is uniform on each cloud, and x⊥ is orthogonal to uniform on each cloud.
This approach gives the best known bounds on the spectral expansion of the zig-zag
product, but it can be a bit messy since the two components generally do not remain
orthogonal (unlike the case of the tensor product, where we were able to show that x‖M
is orthogonal to x⊥M).
• The second intuition is to think of the expanderH as behaving “similarly” to the complete

graph on D1 vertices (with self-loops). In the case that H equals the complete graph, then
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it is easy to see that G©z H = G⊗H. Thus it is natural to apply Matrix Decomposition,
writing the random-walk matrix for an arbitrary expander H as a convex combination of
the random-walk matrix for the complete graph and an error matrix. This gives a very
clean analysis, but slightly worse bounds than the Vector Decomposition Method.

We now proceed with the formal proof, following the Matrix Decomposition approach.

Proof. [of Theorem 4.33] Let A, B, and M be the random-walk matrices for G1, G2, and G1©z G2,
respectively. We decompose M into the product of three matrices, corresponding to the three steps
in the definition of G1©z G2’s edges. Let B̃ be the transition matrix for taking a random G2-step on
the second component of [N1]× [D1], i.e. B̃ = IN1⊗B, where IN1 is the N1×N1 identity matrix. Let
Â be the permutation matrix corresponding to the G1-step. That is, Â(u,i),(v,j) is 1 iff (u, v) is the
i’th edge leaving u and the j’th edge entering v. By the definition of G1©z G2, we have M = B̃ÂB̃.

By the Matrix Decomposition Lemma (Lemma 4.19), B = γ2J + (1− γ2)E, where every entry
of J equals 1/D1 and E has norm at most 1. Then B̃ = γ2J̃ + (1− γ2)Ẽ, where J̃ = IN1 ⊗ J and
Ẽ = IN1 ⊗ E has norm at most 1.

This gives

M =
(
γ2J̃ + (1− γ2)Ẽ

)
Â
(
γ2J̃ + (1− γ2)Ẽ

)
= γ2

2 J̃ÂJ̃ + (1− γ2
2)F,

where F has norm at most 1. Now, the key observation is that J̃ÂJ̃ = A⊗ J.
Thus,

M = γ2
2 ·A⊗ J + (1− γ2

2)F,

and thus

λ(M) ≤ γ2
2 · λ(A⊗ J) + (1− γ2

2)

≤ γ2
2 · (1− γ1) + (1− γ2

2)

= 1− γ1γ
2
2 ,

as desired.

4.3.3 The Expander Construction

Construction 4.34 (Mildly Explicit Expanders). As a first attempt for constructing a family
of expanders, we construct an infinite family G1, G2, ... of graphs utilizing only the squaring and
the zig-zag operations: Let H be a (D4, D, 1 − λ0)-graph for λ0 = 1/8 (e.g., as constructed in
Problem 4.3).

G1 = H2

Gt+1 = G2
t ©z H
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Proposition 4.35. For all t, Gt is a (D4t, D2, 1/2)-graph.

Proof. By induction on t.
Base Case: by the definition of H and Lemma 4.28, G1 = H2 is a (D4, D2, 1 − λ2

0)-graph and
λ2

0 ≤ 1/2.
Induction Step: First note that G2

t ©z H is well-defined because deg(G2
t ) = deg(Gt)2 = (D2)2 =

#nodes(H). Then,

deg(Gt+1) = deg(H)2 = D2

#nodes(Gt+1) = #nodes(G2
t ) ·#nodes(H) = Nt ·D4 = D4tD4 = D4(t+1)

λ(Gt+1) ≤ λ(Gt)2 + 2λ0 ≤ (1/2)2 + 2 · (1/8) = 1/2

Now, we recursively bound the time to compute neighbors in Gt. Actually, due to the way the G-
step in the zig-zag product is defined, we actually bound the time to compute the edge-rotation map
(u, i) 7→ (v, j), where the i’th edge leaving u equals the j’th edge entering v. Denote by time(Gt)
the time required for one evaluation of the edge-rotation map for Gt. This requires two evaluations
of the edge-rotation map for Gt−1 (the squaring requires two applications, while the zig-zag part
does not increase the number of applications), plus time poly(logNt) for manipulating strings of
length O(logNt). Therefore,

time(Gt) = 2 · time(Gt−1) + poly(logNt)

= 2t · poly(logNt)

= N
Θ(1)
t ,

where the last equality holds because Nt = D4t for a constant D. Thus, this construction is only
mildly explicit.

Construction 4.36 (Fully Explicit Expanders). We remedy the above difficulty by using ten-
soring to make the sizes of the graphs grow more quickly. Let H be a (D8, D, 1/8)-graph, and
define:

G1 = H2

Gt+1 = (Gt ⊗Gt)2©z H

In this family of graphs, the number of nodes grow doubly exponentially Nt ≈ c2t
, while com-

putation time grows only exponentially as before. Namely,

time(Gt) = 4t · poly(logNt) = poly(logNt).

We remark that the above family is rather sparse, i.e. the numbers in {Nt} are far apart. To
overcome this shortcoming, we can amend the above definition to have

Gt = (Gdt/2e ⊗Gbt/2c)2©z H.

Now Nt = D8t, so given a number N , we can find a graph Gt in the family whose size is at most D8 ·
N = O(N). Moreover, the construction remains fully explicit because time(Gt) = O(time(Gdt/2e)+
time(Gbt/2c)) = poly(t). Thus we have established:
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Theorem 4.37. There is a constant D such that for every t ∈ N, there is a fully explicit expander
graph Gt with degree D, spectral expansion 7/8, and Nt = D4t nodes.

4.3.4 Open Problems

As we have seen, spectral expanders such as those in Theorem 4.37 are also vertex expanders
(Theorem 4.6 and Corollary 4.10) and edge expanders (Theorem 4.14), but these equivalences do
not extend to optimizing the various expansion measures.

As mentioned in Section 4.3.1, there are explicit constructions of optimal spectral expanders,
namely Ramanujan graphs. However, unlike the expanders of Theorem 4.37, those constructions
rely on deep results in number theory. The lack of a more elementary construction seems to signify
a limitation in our understanding of expander graphs.

Open Problem 4.38. Give an explicit “combinatorial” construction of constant-degree expander
graphs G with λ(G) ≤ 2

√
D − 1/D (or even λ(G) = O(

√
D), where D is the degree.

For vertex expansion, it is known how to construct bipartite (or directed) expanders with con-
stant left-degree (or out-degree) D and expansion (1− ε) ·D for an arbitrarily small constant ε (see
Chapter 5), but achieving the optimal expansion of D − O(1) (cf., Theorem 4.4) or constructing
undirected vertex expanders with high expansion remains open.

Open Problem 4.39. For an arbitrarily large constant D, give an explicit construction of bipar-
tite (Ω(N), D − c) vertex expanders with N vertices on each side and left-degree D, where c is a
universal constant independent of D.

Open Problem 4.40. For an arbitrarily small constant ε > 0, give an explicit construction of
undirected (Ω(N), (1− ε)D) vertex expanders with N vertices and constant degree D that depends
only on ε.

We remark that the case of highly imbalanced bipartite expanders is even harder (despite them
being useful in a number of applications); see Chapter 5.

4.4 Undirected S-T Connectivity in Deterministic Logspace

Recall the Undirected S-T Connectivity problem: given an undirected graph G and two ver-
tices s, t, decide whether there is a path from s to t. In Section 2.4, we saw that this problem can be
solved in randomized logspace (RL). Here we will see how we can use expanders and the operations
above to solve this problem in deterministic logspace (L).

The algorithm is based on the following two ideas:

• Undirected S-T Connectivity can be solved in logspace on constant-degree expander
graphs. More precisely, it is easy on constant-degree graphs where every connected com-
ponent is promised to be an expander (i.e. has spectral expansion bounded away from 1):
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we can try all paths of length O(logN) from s in logarithmic space; this works because
expanders have logarithmic diameter. (See Problem 4.2.)
• The same operations we used to construct an infinite expander family above can also

be used to turn any graph into an expander (in logarithmic space). Above, we started
with a constant-sized expander and used various operations to build larger and larger
expanders. There, the goal was to increase the size of the graph (which was accomplished
by tensoring and/or zig-zag), while preserving the degree and the expansion (which was
accomplished by zig-zag and squaring, which made up for losses in these parameters).
Here, we want to improve the expansion (which will be accomplished by squaring), while
preserving the degree (as will be handled by zig-zag) and ensuring the graph remains of
polynomial size (so we will not use tensoring).

Specifically, the algorithm is as follows.

Algorithm 4.41 (Undirected S-T Connectivity in L).
Input: An undirected graph G with N edges and vertices s and t.

(1) Let H be a fixed (D4, D, 3/4) graph for some constant D.
(2) Reduce (G, s, t) to (G0, s0, t0), where G0 is a D2-regular graph in which every connected

component is nonbipartite and s0 and t0 are connected in G0 iff s and t are connected in
G.

(3) For k = 1, . . . , ` = O(logN), define:

(a) Let Gk = G2
k−1
©z H

(b) Let sk and tk be any two vertices in the “clouds” of Gk corresponding to sk−1

and tk−1, respectively. (Note that if sk and tk are connected in Gk, then sk−1 and
tk−1 are connected in Gk−1.)

(4) Try all paths of length O(logN) in G` from s` and accept if any of them visit t`.

We will discuss how to implement this algorithm in logspace later, and first analyze its cor-
rectness. Let Ck be the connected component of Gk containing sk. Observe that Ck is a connected
component of C2

k−1
©z H; below we will show that C2

k−1
©z H is connected and hence Ck = C2

k−1
©z H.

Since C0 is undirected, connected, and nonbipartite, we have γ(C0) ≥ 1/poly(N) by Theorem 2.55.
We will argue that in each iteration the spectral gap increases by a constant factor, and thus after
O(logN) iterations we have an expander.

By Lemma 4.28, we have

γ(C2
k−1) ≥ 2 · γ(Ck−1) · (1− γ(Ck−1)/2) ≈ 2γ(Ck)

for small γ(Ck−1). By Theorem 4.33, we have

γ(C2
k−1©z H) ≥ γ(H)2 · γ(C2

k−1)

≥
(

3
4

)2

· 2 · γ(Ck−1) · (1− γ(Ck−1)/2))

≥ min
{

17
16
· γ(Ck−1),

1
18

}
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where the last inequality is obtained by considering whether γ(Ck−1) ≤ 1/18 or γ(Ck−1) > 1/18.
In particular, C2

k−1
©z H is connected, so we have Ck = C2

k−1
©z H and

γ(Ck) ≥ min
{

17
16
· γ(Ck−1),

1
18

}
.

Thus, after ` = O(logN) iterations, we must have γ(C`) ≥ 1/18. Moreover, observe that the number
of vertices N` in G` is at most N0 · (D4)` = poly(N), so considering paths of length O(logN) will
suffice to decide s-t connectivity in G`.

To show that the algorithm can be implemented in logarithmic space, we argue that the
edge-rotation map of each Gk can be computed with only O(1) more space than the edge-
rotation map of Gk−1, so that G` requires space O(logN) + O(`) = O(logN). Since the in-
ductive claim here refers to sublogarithmic differences of space (indeed O(1) space) and sublog-
arithmic space is model-dependent (even keeping a pointer into the input requires logarithmic
space), we will refer to a specific model of computation in establishing it. (The final result,
that Undirected S-T Connectivity is in L, is, however, model-independent.) Formally, let
space(Gk) denote the workspace needed to compute the edge-rotation map of G` on a multi-tape
Turing machine with the following input/output conventions:

• Input Description:

– Tape 1 (read-only): Contains the initial input graph G, with the head at the
leftmost position of the tape.

– Tape 2 (read-write): Contains the input pair (v, i), where v is a vertex of Gi and
i ∈ [D2] is an index of the a neighbor on a read-write tape, with the head at the
rightmost position of i. The rest of the tape may contain additional data.

– Tapes 3+ (read-write): Blank worktapes with the head at the leftmost position.

• Output Description:

– Tape 1: The head should be returned to the leftmost position.

– Tape 2: In place of (v, i), it should contain the output (w, j) where w is the i’th
neighbor of v and v is the j’th neighbor of w. The head should be at the rightmost
position of j and the rest of the tape should remain unchanged from its state at
the beginning of the computation.

– Tapes 3+ (read-write): Are returned to the blank state with the heads at the
leftmost position.

With these conventions, it is not difficult to argue that space(G0) = O(logN), and space(Gk) =
space(Gk−1)+O(1). For the latter, we first argue that space(G2

k−1) = space(Gk−1)+O(1), and then
that space(G2

k−1
©z H) = space(G2

k−1) +O(1). For G2
k−1, we are given a triple (v, (i1, i2)), with the

head on the rightmost position of i2, and both i1 and i2 are elements of [D2] (and thus of constant
size). We move the head left to the rightmost position of i1, compute the edge-rotation map of
Gk−1 on (v, i1) so that the tape contents are now (w, j1, i2). Then we swap j1 and i2, and run the
edge-rotation map of Gk−1 on (w, i2) to get (w, j2, j1), which is the final output. For G2

k−1
©z H,

we are given a tuple ((v, i), (a1, a2)), where v is a vertex of G2
k−1, i is a vertex of H (equivalently,
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an edge-label for G2
k−1), and a1, a2 are edge labels for H. Evaluating the rotation map requires

two evaluations of the rotation map for H (both of which are “constant-size” operations) and one
evaluation of the rotation map of G2

k−1.
Thus we have proven:

Theorem 4.42. Undirected S-T Connectivity is in L.

We remark that proving RL = L in general remains open. The best deterministic simulation
known for RL is essentially L3/2 = DSPACE(log3/2 n), which makes beautiful use of known pseu-
dorandom generators for logspace computation. (Unfortunately, we do not have space to cover this
line of work in this survey.) Historically, improved derandomizations for Undirected S-T Con-

nectivity have inspired improved derandomizations of RL (and vice-versa). Since Theorem 4.42
is still quite recent (2005), there is a good chance that we have not yet exhausted the ideas in it.

Open Problem 4.43. Show that RL ⊆ Lc for some constant c < 3/2.

Another open problem is the construction of universal traversal sequences — fixed walks of
polynomial length that are guaranteed to visit all vertices in any connected undirected regular graph
of a given size. (See Example 3.8 and Open Problem 3.9.) Using the ideas from the algorithm above,
it is possible to obtain logspace-constructible, polynomial-length universal traversal sequences for
all regular graphs that are consistently labelled in the sense that no pair of distinct vertices have
the same i’th neighbor for any i ∈ [D]. For general labellings, the best known universal traversal
sequences are of length NO(logN) (and are constructible in space O(log2N)).

Open Problem 4.44 (Open Problem 3.9, restated). Give an explicit construction of univer-
sal traversal sequences of polynomial length for arbitrarily labelled undirected graphs (or even for
an arbitrary labelling of the complete graph!).

We remark that handling general labellings (for “pseudorandom walk generators” rather than
universal traversal sequences) seems to be the main obstacle in extending the techniques of Theo-
rem 4.42 to prove RL = L.

4.5 Exercises

Problem 4.1. (Bipartite vs. Nonbipartite Expanders) Show that constructing bipartite expanders
is equivalent to constructing (standard, nonbipartite) expanders. That is, show how given an explicit
construction of one of the following, you can obtain an explicit construction of the other:

(1) D-regular (αN,A) expanders on N vertices for infinitely many N , where α > 0, A > 1,
and D are constants independent of N .

(2) D-regular (on both sides) (αN,A) bipartite expanders with N vertices on each side for
infinitely many N , where α > 0, A > 1, and D are constants independent of N .

(Your transformations need not preserve the constants.)
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Problem 4.2. (More Combinatorial Consequences of Spectral Expansion) Let G be a graph on N
vertices with spectral expansion γ = 1− λ. Prove that:

(1) The independence number α(G) is at most λN , where α(G) is defined to be the size of
the largest independent set, i.e. subset S of vertices s.t. there are no edges with both
endpoints in S.

(2) The chromatic number χ(G) is at least 1/λ, where χ(G) is defined to be the smallest
number of colors for which the vertices of G can be colored s.t. all pairs of adjacent
vertices have different colors.

(3) The diameter of G is O(log1/λN).

Recall that computing α(G) and χ(G) exactly are NP-complete problems. However, the above
shows that for expanders, nontrivial bounds on these quantities can be computed in polynomial
time.

Problem 4.3. (A “Constant-Sized” Expander)

(1) Let F be a finite field. Consider a graph G with vertex set F2 and edge set {((a, b), (c, d)) :
ac = b+ d}. That is, we connect vertex (a, b) to all points on the line y = ax− b. Prove
that G is |F|-regular and λ(G) ≤ 1/

√
|F|. (Hint: consider G2.)

(2) Show that if |F| is sufficiently large (but still constant), then by applying appropriate
operations to G, we can obtain a base graph for the expander construction given in
Section 4.3.3, i.e. a (D8, D, 7/8) graph for some constant D.

Problem 4.4. (The Replacement Product) Given a D1-regular graph G1 on N1 vertices and a
D2-regular graph G2 on D1 vertices, consider the following graph G1©r G2 on vertex set [N1]× [D1]:
vertex (u, i) is connected to (v, j) iff (a) u = v and (i, j) is an edge in G2, or (b) v is the i’th
neighbor of u in G1 and u is the j’th neighbor of v. That is, we “replace” each vertex v in G1 with
a copy of G2, associating each edge incident to v with one vertex of G2.

(1) Prove that there is a function g such that if G1 has spectral expansion γ1 and G2 has
spectral expansion γ2, then G1©r G2 has spectral expansion g(γ1, γ2, D2) > 0. (Hint: Note
that (G1©r G2)3 has G1©z G2 as a subgraph.)

(2) Show how to convert an explicit construction of constant-degree (spectral) expanders into
an explicit construction of degree 3 (spectral) expanders.

(3) Prove that a dependence on D2 in Part 1 is necessary by showing that γ(G1©r G2) =
O(1/D2) for sufficiently large N1.
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Problem 4.5. (Bounds on the Zig-Zag Product) In this problem, you will show some limitations
on the zig-zag product, namely that its expansion is limited by that of the two composed graphs.
Show that:

(1) The vertex expansion of G©z H is at most the degree of H. (That is, find a “small” set S
which does not expand by more than the degree of H. By small, we mean that |S| should
be sublinear in the number of vertices of G©z H.)

(2) λ(G©z H) ≥ λ(G).
(3) λ(G©z H) ≥ λ(H)2 if the labelling of clouds is consistent, i.e. if e = (u, v) is the i’th edge

leaving u, then it is also the i’th edge leaving v. (In other words, the same vertex of H
is mapped to the two vertices of G©z H corresponding to e (one in cloud u and one in
cloud v).)

Problem 4.6. (Unbalanced Vertex Expanders and Data Structures) Consider a (K, (1 − ε)D)
bipartite vertex expander G with N left vertices, M right vertices, and left degree D.

(1) For a set S of left vertices, a y ∈ N(S) is called a unique neighbor of S if y is incident
to exactly one edge from S. Prove that every left-set S of size at most K has at least
(1− 2ε)D|S| unique neighbors.

(2) For a set S of size at most K/2, prove that at most |S|/2 vertices outside S have at least
δD neighbors in N(S), for δ = O(ε).

Now we’ll see a beautiful application of such expanders to data structures. Suppose we want to
store a small subset S of a large universe [N ] such that we can test membership in S by probing just
1 bit of our data structure. A trivial way to achieve this is to store the characteristic vector of S,
but this requires N bits of storage. The hashing-based data structures mentioned in Section 3.5.3
only require storing O(|S|) words, each of O(logN) bits, but testing membership requires reading
an entire word (rather than just one bit.)

Our data structure will consist of M bits, which we think of as a {0, 1}-assignment to the right
vertices of our expander. This assignment will have the following property.

Property Π: For all left vertices x, all but a δ = O(ε) fraction of the neighbors of x are assigned
the value χS(x) (where χS(x) = 1 iff x ∈ S).

(3) Show that if we store an assignment satisfying Property Π, then we can probabilistically
test membership in S with error probability δ by reading just one bit of the data structure.

(4) Show that an assignment satisfying Property Π exists provided |S| ≤ K/2. (Hint: first
assign 1 to all of S’s neighbors and 0 to all its nonneighbors, then try to correct the
errors.)

It turns out that the needed expanders exist with M = O(K logN) (for any constant ε), so
the size of this data structure matches the hashing-based scheme while admitting 1-bit probes.
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However, note that such bipartite vertex expanders do not follow from explicit spectral expanders
as given in Theorem 4.37, because the latter do not provide vertex expansion beyond D/2 nor do
they yield highly imbalanced expanders (with M � N) as needed here. But later in this survey, we
will see how to explicitly construct expanders that are quite good for this application (specifically,
with M = K1.01 · polylogN).

Problem 4.7. (Error Reduction For Free*) Show that if a problem has a BPP algorithm with
constant error probability, then it has a BPP algorithm with error probability 1/n that uses exactly
the same number of random bits.

4.6 Chapter Notes and References

A detailed coverage of expander graphs and their applications is given by Hoory, Linial, and Wigder-
son [HLW].

The first papers on expander graphs appeared in conferences on telephone networks. Specifically,
Pinsker [Pin] proved that random graphs are good expanders, and used these to demonstrate the
existence of graphs called “concentrators.” Bassalygo [Bas] improved Pinsker’s results, in particular
giving the general tradeoff between the degree D, expansion factor A, and set density α mentioned
after Theorem 4.4. The first computer science application of expanders (and “superconcentrators”)
came in an approach by Valiant [Val] to proving circuit lower bounds. A early and striking algorith-
mic application was the O(log n)-depth sorting network by Ajtai, Komlós, and Szemerédi [AKS2],
which also illustrated the usefulness of expanders for derandomization.

The fact that spectral expansion implies vertex expansion and edge expansion was shown by
Tanner [Tan] (for vertex expansion) and Alon and Milman [AM] (for edge expansion). The converses
are discrete analogues of Cheeger’s Inequality for Riemannian manifolds [Che1], and various forms
of these were proven by Alon [Alo1] (for vertex expansion) and Jerrum and Sinclair [JS] (for edge
expansion in undirected graphs and, more generally, conductance in reversible Markov chains) and
Mihail [Mih] (for edge expansion in regular digraphs and conductance in non-reversible Markov
chains).

The “Ramanujan” upper bound on spectral expansion given by Theorem 4.11 was proven by
Alon and Boppana (see [Alo1, Nil]). Theorem 4.12, stating that random graphs are asymptotically
Ramanujan, was conjectured by Alon [Alo1], but was only proven recently by Friedman [Fri].
Kahale [Kah] proved that Ramanujan graphs have expansion roughly D/2 for small sets.

Forms of the Expander Mixing Lemma date back to Alon and Chung [AC2], who considered
the case that T = Sc. The converse to the Expander Mixing Lemma (Theorem 4.16) is due to Bilu
and Linac [BL]. For more on quasirandomness, see [CGW, AS] for the case of dense graphs and
[CG2, CG3] for sparse graphs.

The sampling properties of random walks on expanders were analyzed in a series of works
starting with Ajtai, Komlós, and Szemerédi [AKS3]. The hitting bound of Theorem 4.17 is due
to Kahale [Kah], and the Chernoff Bound for expander walks (cf., Theorem 4.22) is due to Gill-
man [Gil2]. Our proof of the Chernoff Bound is inspired by that of Healy [Hea], who also provides
some other variants and generalizations. Problem 4.7 is due to Karp, Pippenger, and Sipser [KPS],
who initiated the study of randomness-efficient error reduction of randomized algorithms.
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The first explicit construction of constant-degree expanders was given by Margulis [Mar1], albeit
with a nonconstructive proof that the spectral expansion is bounded away from 0. Construction 4.23
is due to Gabber and Galil [GG], who simplified Margulis’ construction and gave an elementary
proof of expansion, with an explicit bound on the second eigenvalue. Ramanujan graphs (Con-
struction 4.25) were constructed independently by Lubotzky, Phillips, and Sarnak [LPS] and Mar-
gulis [Mar2]. For more on Ramanujan graphs and the mathematical machinery that goes into their
analysis, see the books [Lub, DSV].

The zig-zag product and the expander constructions of Section 4.3.3 are due to Reingold, Vad-
han, and Wigderson [RVW]. Our analysis of the zig-zag product is from [RTV], which in turn builds
on [RV], who used matrix decomposition (Lemma 4.19) for analyzing other graph products. Earlier
uses of graph products in constructing expanders include the use of the tensor product in [Tan].
Problem 4.4, on the replacement product, is from [RVW], and can be used in place of the zig-zag
product in both the expander constructions and the Undirected S-T Connectivity algorithm
(Algorithm 4.41. Independently of [RVW], Martin and Randall [MR] proved a “decomposition the-
orem” for Markov chains that implies a better bound on the spectral expansion of the replacement
product.

There has been substantial progress on Open Problem 4.38. Bilu and Linial [BL] give a mildly
explicit construction achieving λ(G) = Õ(

√
D), Ben-Aroya and Ta-Shma [BT] give a fully ex-

plicit construction achieving λ(G) = D1/2+o(1), and Spielman et al. [BSS] give a mildly explicit
construction of a weighted graph achieving λ(G) = O(

√
D).

Constant-degree bipartite expanders with expansion (1 − ε) ·D have been constructed by Ca-
palbo et al. [CRVW]. Alon and Capalbo [AC1] have made progress on Open Problem 4.40 by
giving an explicit construction of nonbipartite constant-degree “unique-neighbor” expanders (see
Problem 4.6).

The deterministic logspace algorithm for Undirected S-T Connectivity (Algorithm 4.41)
is due to Reingold [Rei]. Saks and Zhou [SZ] showed that RL ⊆ L3/2, making nontrivial use of
Nisan’s pseudorandom generator for space-bounded computation [Nis]. This was slightly improved
by Armoni [Arm], who showed that RL ⊆ DSPACE((log3/2 n)/

√
loglogn)), which remains the

best known derandomization of RL.
Based on Algorithm 4.41, explicit polynomial-length universal traversal sequences for “consis-

tently labelled” regular digraphs, as well as “pseudorandom walk generators” for such graphs, were
constructed in [Rei, RTV]. (See also [RV].) In [RTV], it is shown that pseudorandom walk gen-
erators for arbitrarily labelled regular digraphs would imply RL = L. The best known explicit
construction of a full-fledged universal traversal sequence is due to Nisan [Nis] has length nO(logn),
and can be constructed in time nO(logn) and space O(log2 n).

Problem 4.3, Part 1 is a variant of a construction of Alon [Alo2]; Part 2 is from [RVW]. The result
of Problem 4.6, on bit-probe data structures for set membership, is due to Buhrman, Miltersen,
Radhakrishnan, and Venkatesan [BMRV].
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Preview of Volume II

Volume II will contain a thorough treatment of three other major “pseudorandom objects” of
this survey — randomness extractors, list-decodable error-correcting codes, and pseudorandom
generators. In addition to developing the basic theory and providing constructions for each, a major
focus will be the connections between each of these objects have to each other and to expander
graphs. The survey will conclude by showing how all four pseudorandom objects can be cast in a
single “list-decoding” framework, with clarifies both the similarities and differences between them.
It will also include a brief discussion of some significant topics omitted from this survey, with
pointers to the literature.

Tentatively, the outline of Volume II will be as follows (omitting exercises and references, which
will be included in each chapter):

• Randomness Extractors

– Motivation and Definitions

– Relation to Hashing and Expanders

– Constructing Extractors

– Lossless Condensers as Expanders

• List-Decodable Codes

– Motivation and Definitions

– List-Decoding Algorithms

– List-Decoding View of Expanders and Extractors

• Pseudorandom Generators

– Motivation and Definitions

– Survey of Cryptographic Pseudorandom Generators

– Pseudorandom Generators from Average-Case Hardness
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– Worst-Case vs. Average-Case Hardness and Locally (List-)Decodable Codes

– Black-Box PRG Constructions and Extractors

• Conclusions

– A Unified Theory

– Other Topics
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[FKS] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1) worst case access time.
Journal of the Association for Computing Machinery, 31(3):538–544, 1984.

[Fri] J. Friedman. A proof of Alon’s second eigenvalue conjecture and related problems. Memoirs of the American
Mathematical Society, 195(910):viii+100, 2008.

[GG] O. Gabber and Z. Galil. Explicit Constructions of Linear-Sized Superconcentrators. Journal of Computer
and System Sciences, 22(3):407–420, June 1981.

[Gil1] J. Gill. Computational complexity of probabilistic Turing machines. SIAM Journal on Computing, 6(4):675–
695, 1977.

[Gil2] D. Gillman. A Chernoff bound for random walks on expander graphs. SIAM J. Comput., 27(4):1203–1220
(electronic), 1998.

[GW] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satis-
fiability problems using semidefinite programming. Journal of the Association for Computing Machinery,
42(6):1115–1145, 1995.

[Gol1] O. Goldreich. A Sample of Samplers - A Computational Perspective on Sampling (survey). Electronic
Colloquium on Computational Complexity (ECCC), 4(20), 1997.

[Gol2] O. Goldreich. Modern cryptography, probabilistic proofs and pseudorandomness, volume 17 of Algorithms
and Combinatorics. Springer-Verlag, Berlin, 1999.

[Gol3] O. Goldreich. Foundations of cryptography. Cambridge University Press, Cambridge, 2001. Basic tools.
[Gol4] O. Goldreich. Foundations of cryptography. II. Cambridge University Press, Cambridge, 2004. Basic

Applications.
[Gol5] O. Goldreich. On promise problems: a survey. In Theoretical computer science, volume 3895 of Lecture

Notes in Comput. Sci., pages 254–290. Springer, Berlin, 2006.
[Gol6] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press, 2008. To

appear.
[GMW] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity, or All languages in

NP have zero-knowledge proof systems. Journal of the Association for Computing Machinery, 38(3):691–
729, 1991.

[GM] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences, 28(2):270–
299, Apr. 1984.

[Gur] V. Guruswami. Algorithmic Results in List Decoding, volume 2, number 2 of Foundations and Trends in
Theoretical Computer Science. now publishers, 2006.

[HS] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Transactions of the
American Mathematical Society, 117:285–306, 1965.

[Har] N. J. A. Harvey. Algebraic Structures and Algorithms for Matching and Matroid Problems. In FOCS, pages
531–542. IEEE Computer Society, 2006.

[Hea] A. D. Healy. Randomness-efficient sampling within NC1. Computational Complexity, 17(1):3–37, 2008.
[Hoe] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American

Statistical Association, 58:13–30, 1963.
[HLW] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications. Bulletin of the AMS,

43(4):439–561, 2006.
[IM] K. Iwama and H. Morizumi. An explicit lower bound of 5n − o(n) for Boolean circuits. In Mathemati-

cal foundations of computer science 2002, volume 2420 of Lecture Notes in Comput. Sci., pages 353–364.
Springer, Berlin, 2002.

[JS] M. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal on Computing, 18(6):1149–1178,
1989.

[JSV] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm for the permanent of
a matrix with nonnegative entries. Journal of the ACM, 51(4):671–697 (electronic), 2004.

[Jof1] A. Joffe. On a sequence of almost deterministic pairwise independent random variables. Proceedings of the
American Mathematical Society, 29:381–382, 1971.

[Jof2] A. Joffe. On a set of almost deterministic k-independent random variables. Annals of Probability, 2(1):161–
162, 1974.

[Kah] N. Kahale. Eigenvalues and expansion of regular graphs. Journal of the Association for Computing Ma-
chinery, 42(5):1091–1106, 1995.

82



[KLNS] J. D. Kahn, N. Linial, N. Nisan, and M. E. Saks. On the cover time of random walks on graphs. Journal
of Theoretical Probability, 2(1):121–128, 1989.

[KPS] R. Karp, N. Pippenger, and M. Sipser. A time-randomness tradeoff. In AMS Conference on Probabilistic
Computational Complexity, Durham, New Hampshire, 1985.

[KL] R. M. Karp and R. J. Lipton. Turing machines that take advice. L’Enseignement Mathématique. Revue
Internationale. IIe Série, 28(3-4):191–209, 1982.

[KLM] R. M. Karp, M. Luby, and N. Madras. Monte Carlo approximation algorithms for enumeration problems.
Journal of Algorithms, 10(3):429–448, 1989.

[KUW] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in Random NC. Combinatorica,
6(1):35–48, 1986.

[KL] J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC Press, 2007. To
appear.

[KS] N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. Computational Complexity,
16(2):115–138, 2007.

[LR] O. Lachish and R. Raz. Explicit lower bound of 4.5n − o(n) for Boolean circuits. In Proceedings of the
Thirty-Third Annual ACM Symposium on Theory of Computing, pages 399–408 (electronic), New York,
2001. ACM.

[Lan] H. O. Lancaster. Pairwise statistical independence. Annals of Mathematical Statistics, 36:1313–1317, 1965.
[Lau] C. Lautemann. BPP and the polynomial hierarchy. Information Processing Letters, 17(4):215–217, 1983.
[Lei] F. T. Leighton. Introduction to parallel algorithms and architectures. Morgan Kaufmann, San Mateo, CA,

1992. Arrays, trees, hypercubes.
[LV] D. Lewin and S. Vadhan. Checking polynomial identities over any field: towards a derandomization? In

STOC ’98 (Dallas, TX), pages 438–447. ACM, New York, 1999.
[LN] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge University Press,

Cambridge, first edition, 1994.
[Lov1] L. Lovász. On determinants, matchings, and random algorithms. In FCT, pages 565–574, 1979.
[Lov2] L. Lovász. Combinatorial problems and exercises. AMS Chelsea Publishing, Providence, RI, second edition,

2007.
[Lub] A. Lubotzky. Discrete groups, expanding graphs and invariant measures, volume 125 of Progress in Mathe-
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