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Abstract

This is the first volume of a 2-part survey on pseudorandomness, the theory of efficiently generating
objects that “look random” despite being constructed using little or no randomness. The survey
places particular emphasis on the intimate connections that have been discovered between a vari-
ety of fundamental “pseudorandom objects” that at first seem very different in nature: expander
graphs, randomness extractors, list-decodable error-correcting codes, samplers, and pseudorandom
generators. The survey also illustrates the significance the theory of pseudorandomness has for the
study of computational complexity, algorithms, cryptography, combinatorics, and communications.
The structure of the presentation is meant to be suitable for teaching in a graduate-level course,
with exercises accompanying each chapter.
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1

Introduction

1.1 Overview of this Survey

Over the past few decades, randomization has become one of the most pervasive paradigms in
computer science. Its widespread uses include:

Algorithm Design: For a number of important algorithmic problems, the most efficient algo-
rithms known are randomized. For example:

• Primality. This was shown to have a randomized polynomial-time algorithm in 1977.
It wasn’t until 2002 that a deterministic polynomial-time algorithm was discovered. (We
will see this algorithm, but not its proof.)
• Approximate Counting. Many approximate counting problems (e.g. counting perfect

matchings in a bipartite graph) have randomized polynomial-time algorithms, but the
fastest known deterministic algorithms take exponential time.
• Undirected S-T Connectivity. This was shown to have a randomized logspace algo-

rithm in 1979. It wasn’t until 2005 that a deterministic logspace algorithm was discovered
— using tools from the theory of pseudorandomness, as we will see.
• Perfect Matching. This was shown to have a randomized polylogarithmic-time parallel

algorithm in the late 1970’s. Deterministically, we only know polynomial-time algorithms.

Cryptography: Randomization is central to cryptography. Indeed, cryptography is concerned
with protecting secrets, and how can something be secret if it is deterministically fixed? For example,
we assume that cryptographic keys are chosen at random (e.g. uniformly from the set of n-bit
strings). In addition to the keys, it is known that often the cryptographic algorithms themselves
(e.g. for encryption) must be randomized to achieve satisfactory notions of security (e.g. that no
partial information about the message is leaked).
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Combinatorial Constructions: Randomness is often used to prove the existence of combina-
torial objects with a desired properties. Specifically, if one can show that a randomly chosen object
has the property with nonzero probability, then it follows that such an object must, in fact, exist.
A famous example due to Erdős is the existence of Ramsey graphs: A randomly chosen n-vertex
graph has no clique or independent set of size 2 log n. We will see several other applications of
this “Probabilistic Method” in this survey, such as with two important objects mentioned below:
expander graphs and error-correcting codes.

Though these applications of randomness are interesting and rich topics of study in their own
right, they are not the focus of the course. Rather, we ask the following:

Main Question: Can we reduce or even eliminate the use of randomness in these settings?

We have several motivations for doing this.

• Complexity Theory: We are interested in understanding and comparing the power of
various kinds of computational resources. Since randomness is such a widely used resource,
we want to know how it relates to other resources such as time, space, and parallelism. In
particular, we ask: Can every randomized algorithm be derandomized with only a small
loss in efficiency?
• Using Physical Random Sources: It is unclear whether the real world has physical sources

of perfect randomness. We may use sources that seem to have some unpredictability, like
the low order bits of a system clock or thermal noise, but these sources will generally
have biases and, more problematically, correlations. Thus we ask: What can we do with
a source of biased and correlated bits?
• Explicit Constructions: Probabilistic constructions of combinatorial objects often do not

provide us with efficient algorithms for using those objects. Indeed, the randomly chosen
object often has a description that is exponential in the relevant parameters. Thus, we
look for explicit constructions — ones that are deterministic and efficient. In addition
to their applications, improvements in explicit constructions serve as a measure of our
progress in understanding the objects at hand. Indeed, Erdős posed the explicit construc-
tion of near-optimal Ramsey graphs as an open problem, and substantial progress on this
problem was recently made using the theory of pseudorandomness (namely randomness
extractors).
• Unexpected Applications: In addition, the theory of pseudorandomness has turned out to

have many applications to problems that seem to have no connection to derandomization.
These include data structures, distributed computation (e.g. leader election), circuit lower
bounds in complexity theory, reducing interaction in interactive protocols, saving memory
in streaming algorithms, and more. We will see some of these applications in this survey
(especially the exercises).

The paradigm we will use to study the Main Question is that of pseudorandomness: efficiently
generating objects that “look random” using little or no randomness.

Specifically, we will study four “pseudorandom” objects:
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Pseudorandom generators (PRGs): A PRG is an algorithm that takes as input a short,
perfectly random seed and then returns a (much longer) sequence of bits that “looks random.”
That the bits output cannot be perfectly random is clear — the output is determined by the seed
and there are far fewer seeds than possible bit sequences. Nevertheless, it is possible for the output
to “look random” in a very meaningful and general-purpose sense. Specifically, we will require that
no efficient algorithm can distinguish the output from those of a truly random sequence. The study
of pseudorandomn generators meeting this strong requirement originated in cryptography, where
they have numerous applications. In this survey, we will emphasize their role in derandomizing
algorithms.

Note that asserting that a function is a PRG is a statement about something that efficient
algorithms can’t do (in this case, distinguish two sequences). But proving that efficient algorithms
cannot compute things is typically out of reach for theoretical computer science; indeed this is why
the P vs. NP question is so hard. Thus, in this course, we will settle for conditional statements. An
ideal theorem would be something like: “If P 6= NP, then pseudorandom generators exist.” (The
assumptions we make won’t exactly be P 6= NP, but hypotheses of a similar flavor.)

Randomness Extractors: A randomness extractor takes as input a source of biased and corre-
lated bits, and then produces a sequence of almost-uniform bits as output. Their original motivation
was the simulation of randomized algorithms with sources of biased and correlated bits, but they
have found numerous other applications in theoretical computer science. Ideally, extractors would
be deterministic, but as we will see this proves to be impossible for general sources of biased
and correlated bits. Nevertheless, we will get close—producing extractors that are only “mildly”
probabilistic.

Expander Graphs: Expanders are graphs with two seemingly contradictory properties: they are
sparse (e.g. having degree that is a constant, independent of the number of vertices), but also “well-
connected” in some precise sense. For example, one might say that the graph cannot be bisected
without cutting a large (say, constant) fraction of the edges.

Expander graphs have numerous applications in theoretical computer science. They were origi-
nally studied for their use in designing fault-tolerant networks (e.g. for telephone lines), which are
networks that maintain good connectivity even when links or nodes fail. But they also have less
obvious applications, such as an O(log n)-time algorithm for sorting in parallel.

It is not obvious that expander graphs exist, but in fact it can be shown, via the Probabilistic
Method, that a random graph of degree 3 is a “good” expander with high probability. However,
many applications of expander graphs need explicit constructions, and these proved much harder
to find. We will see some explicit constructions in this survey, but they do not always match the
bounds given by the probabilistic method (in terms of the degree/expansion tradeoff).

Error-Correcting Codes: Error-correcting codes (ECCs) are tools for communicating over
noisy channels. Specifically, they specify a way to encode messages into longer, redundant code-
words so that even if the codeword gets somewhat corrupted along the way, it is still possible for
the receiver to decode the original message. In his landmark paper that introduced the field of cod-
ing theory, Shannon also proved the existence of good error-correcting codes via the probabilistic
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method. That is, a random mapping of n-bit messages to O(n)-bit codewords is a “good” error-
correcting code with high probability. Unfortunately, these probabilistic codes are not feasible to
actually use — a random mapping requires an exponentially long description, and we know of no
way to decode such a mapping efficiently. Again, explicit constructions are needed.

In this course, we will focus on the problem of list decoding. Specifically, we will consider scenarios
where the number of corruptions is so large that unique decoding is impossible; at best one can
produce a short list that is guaranteed to contain the correct message.

A Unified Theory: Each of the above objects has been the center of a large and beautiful body
of research, but until recently these corpora were largely distinct. An exciting development over
the past decade has been the realization that all four of these objects are almost the same when
interpreted appropriately. Their intimate connections will be a major focus of this survey, tying
together the variety of constructions and applications that we will see.

The surprise and beauty of these connections has to do with the seemingly different nature of
each of these objects. PRGs, by asserting what efficient algorithms cannot do, are objects of com-
plexity theory. Extractors, with their focus on extracting the entropy in a correlated and biased
sequence, are information-theoretic objects. Expander graphs are of course combinatorial objects
(as defined above), though they can also be interpreted algebraically, as we will see. Error-correcting
codes involve a mix of combinatorics, information theory, and algebra. Because of the connections,
we obtain new perspectives on each of the objects, and make substantial advances on our under-
standing of each by translating intuitions and techniques from the study of the others.

1.2 Background Required and Teaching Tips

The presentation assumes a good undergraduate background in the theory of computation, and
general mathematical maturity. Specifically, it is assumed that the reader is familiar with basic
algorithms and discrete mathematics, e.g. as covered in [CLRS], including some exposure to ran-
domized algorithms; and with basic computational complexity including P, NP, and reductions,
e.g. as covered in [Sip2]. Experience with elementary abstract algebra, particularly finite fields, is
helpful; recommended texts are [Art, LN].

Most of the material in both volumes is covered in a one-semester graduate course that the
author teaches at Harvard University, which consists of 24 lectures of 1.5 hours each. Most of the
students in that course take at least one graduate-level course in the theoretical computer science
before this one.

The exercises are an important part of the survey, as they include proofs of key facts used in
lecture, introduce some concepts that will be used in later chapters, and illustrate applications of
the material to other topics. Problems that are particularly challenging or require more creativity
than most are marked with a star.

1.3 Notational Conventions

All logarithms are base 2 unless otherwise specified. We denote the set of numbers {1, . . . , n} by
[n]. We write N for the set of nonnegative integers (i.e. 0 is a natural number). We write S ⊂ T to
mean that S is a subset of T , and S ( T for S being a strict subset of T .
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Throughout, we consider random variables that can take values in arbitrary discrete sets (not
just real-valued random variables). We generally use capital letters, e.g. X, to denote random
variables and lowercase letters, e.g. x, to denote specific values. We write x R←X to indicate that
x is sampled according to X. For a set S, we write x R← S to mean that x is selected uniformly
at random from S. We use the convention that multiple occurrences of a random variable in an
expression refer to the same instantiation, e.g. Pr[X = X] = 1. For an event E, we write X|E to
denote the random variable X conditioned on the event E.

1.4 Chapter Notes and References

General introductions to the theory of pseudorandomness (other than this survey) include [Gol2,
Mil2].

Recommended textbooks focused on randomized algorithms are [MU, MR]. The first randomized
polynomial-time algorithms for Primality were discovered by Solovay and Strassen [SS] and Miller
and Rabin [Mil1, Rab]; a deterministic polynomial-time algorithm was given by Agrawal, Kayal,
and Saxena [AKS1]. The first randomized algorithms for approximate counting were found by
Karp and Luby [KLM]; the algorithm for coutning perfect matchings is due to Jerrum, Sinclair,
and Vigoda [JSV], building on [Bro, JS]. The randomized logspace algorithm for Undirected

S-T Connectivity was given by Aleliunas et al. [AKL+]; it was derandomized by Reingold [Rei].
The randomized parallel algorithm for deciding Perfect Matching is due to Lovász [Lov1]; the
search version is handled in [KUW] (see also [MVV]).

Recommended textbooks on cryptography are [Gol3, Gol4, KL]. The idea that encryption should
be randomized is due to Goldwasser and Micali [GM].

The Probabilistic Method for combinatorial constructions is the subject of the book [AS]. Erdős
used this method to prove the existence of Ramsey graphs in [Erd]. Major recent progress on explicit
constructions of Ramsey graphs was obtained by Barak, Rao, Shaltiel, and Wigderson [BRSW] via
the theory of randomness extractors.

The modern notion of pseudorandom generator was formulated in the works of Blum and Mi-
cali [BM] and Yao [Yao], motivated by cryptographic applications. We will spend most of our time
on a variant of the Blum–Micali–Yao notion, proposed by Nisan and Wigderson [NW], where the
generator is allowed more running time than the algorithms it fools. A detailed treatment of the
Blum–Micali–Yao notion can be found in [Gol3].

Surveys on randomness extractors are [NT, Sha1]. The notion of extractor that we will focus on
is the one due to Nisan and Zuckerman [NZ].

A detailed survey of expander graphs is [HLW]. The probabilistic construction of expander
graphs is due to Pinsker [Pin]. The application of expanders to sorting in parallel is due to Ajtai,
Komlós, and Szemerédi [AKS2].

A classic text on coding theory is [MS]. For a modern, CS-oriented treatment, we recommend
Sudan’s lecture notes [Sud2]. Shannon’s paper that gave birth to the field and gave a probabilis-
tic construction of error-correcting codes is [Sha2]. The notion of list decoding was proposed by
Elias [Eli] and Wozencraft [Woz], and was reinvigorated in the work of Sudan [Sud1]. Recent progress
on list decoding is covered in [Gur].
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[SG] S. Sahni and T. Gonzalez. P -complete approximation problems. Journal of the Association for Computing
Machinery, 23(3):555–565, 1976.

[Sav] W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities. Journal of
Computer and System Sciences, 4:177–192, 1970.

[SSS] J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding bounds for applications with limited inde-
pendence. SIAM Journal on Discrete Mathematics, 8(2):223–250, 1995.

[Sch] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal of the Asso-
ciation for Computing Machinery, 27(4):701–717, 1980.

[Sha1] R. Shaltiel. Recent Developments in Extractors. In G. Paun, G. Rozenberg, and A. Salomaa, editors,
Current Trends in Theoretical Computer Science, volume 1: Algorithms and Complexity. World Scientific,
2004.

[Sha2] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27:379–423,
623–656, 1948.

[Sip1] M. Sipser. A Complexity Theoretic Approach to Randomness. In Proceedings of the Fifteenth Annual ACM
Symposium on Theory of Computing, pages 330–335, Boston, Massachusetts, 25–27 Apr. 1983.

[Sip2] M. Sipser. Introduction to the Theory of Computation. Course Technology, 2nd edition, 2005.
[SS] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal on Computing, 6(1):84–85,

1977.
[Spe] J. Spencer. Ten lectures on the probabilistic method, volume 64 of CBMS-NSF Regional Conference Series

in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edition, 1994.

[Spi] D. A. Spielman. Spectral Graph Theory and its Applications. In 48th Symposium on Foundations of
Computer Science (FOCS 2007), 21-23 October 2007, Providence, RI, USA, Proceedings, pages 29–38,
2007.

[Sud1] M. Sudan. Decoding of Reed Solomon Codes beyond the Error-Correction Bound. Journal of Complexity,
13(1):180–193, Mar. 1997.

[Sud2] M. Sudan. Essential Coding Theory (Lecture Notes). http://people.csail.mit.edu/madhu/FT04/, 2004.
[Vad] S. Vadhan. Probabilistic Proof Systems, Part I — Interactive & Zero-Knowledge Proofs. In S. Rudich and

A. Wigderson, editors, Computational Complexity Theory, volume 10 of IAS/Park City Mathematics Series,
pages 315–348. American Mathematical Society, 2004.

81



[WC] M. N. Wegman and J. L. Carter. New hash functions and their use in authentication and set equality. Journal
of Computer and System Sciences, 22(3):265–279, 1981. Special issue dedicated to Michael Machtey.

[Woz] J. Wozencraft. List decoding. Quarterly Progress Report, Research Laboratory of Electronics, MIT, 48:90–95,
1958.

[Yao] A. C. Yao. Theory and Applications of Trapdoor Functions (Extended Abstract). In 23rd Annual Symposium
on Foundations of Computer Science, pages 80–91, Chicago, Illinois, 3–5 Nov. 1982. IEEE.

[Zip] R. Zippel. Probabilistic algorithms for sparse polynomials. In E. W. Ng, editor, EUROSAM, volume 72 of
Lecture Notes in Computer Science, pages 216–226. Springer, 1979.

82




