Problem 6.1. (Min-entropy and Statistical Difference)

1. Prove that for every two random variables X and Y,
 \[
 \Delta(X,Y) = \max_f |E[f(X)] - E[f(Y)]| = \frac{1}{2} \cdot |X - Y|_1,
 \]
 where the maximum is over all $[0,1]$-valued functions f. (Hint: first identify the functions f that maximize $|E[f(X)] - E[f(Y)]|$.)

2. Suppose that (W,X) are jointly distributed random variables where (W,X) is a k-source and $|\text{Supp}(W)| \leq 2^k$. Show that for every $\varepsilon > 0$, with probability at least $1 - \varepsilon$ over $w \overset{\text{iid}}{\rightarrow} W$, we have $X|_{W=w}$ is a $(k - \ell - \log(1/\varepsilon))$-source.

3. Suppose that X is an $(n - \Delta)$-source taking values in $\{0,1\}^n$, and we let X_1 consist of the first n_1 bits of X and X_2 the remaining $n_2 = n - n_1$ bits. Show that for every $\varepsilon > 0$, (X_1,X_2) is ε-close to some $(n_1 - \Delta, n_2 - \Delta - \log(1/\varepsilon))$ block source.

Problem 6.5. (Extractors vs. Samplers) Use the connection between extractors and averaging samplers to do the following:

1. Prove that for all constants $\varepsilon, \alpha > 0$, there is a constant $\beta < 1$ such that for all n, there is an explicit $(\beta n, \varepsilon)$ extractor $\text{Ext} : \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ with $d \leq \log n$ and $m \geq (1 - \alpha)n$.

2. Prove that for every $m \in \mathbb{N}$, $\varepsilon, \delta > 0$, there exists a (nonconstructive) (δ, ε) averaging sampler $\text{Smp} : \{0,1\}^n \rightarrow \{(0,1)^m\}^t$ using $n = m + 2\log(1/\varepsilon) + \log(1/\delta) + O(1)$ random bits and $t = O(1/(\varepsilon^2 \delta))$ samples.
3. Suppose we are given a constant-error BPP algorithm that uses \(r = r(n) \) random bits on inputs of length \(n \). Show how, using the explicit extractor of Theorem 6.36, we can reduce its error probability to \(2^{-\ell} \) using \(O(r) + \ell \) random bits, for any polynomial \(\ell = \ell(n) \). (Note that this improves the \(r + O(\ell) \) given by expander walks for \(\ell \gg r \).) Conclude that every problem in BPP has a randomized polynomial-time algorithm that only errs for \(2^{\varepsilon_0 \ell} \) choices of its \(q = q(n) \) random bits.

Problem 6.7. (The Building-Block Extractor) Prove Lemma 6.37: Show that for every constant \(t > 0 \) and all positive integers \(n \geq k \) and all \(\varepsilon > 0 \), there is an explicit \((k, \varepsilon) \)-extractor \(\text{Ext}: \{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m \) with \(m \geq k/2 \) and \(d = k/t + O(\log(n/\varepsilon)) \). (Hint: convert the source into a block source with blocks of length \(k/O(t) + O(\log(n/\varepsilon)) \).)

Problem 6.8. (Encryption and Deterministic Extraction) A (one-time) encryption scheme with key length \(n \) and message length \(m \) consists of an encryption function \(\text{Enc}: \{0,1\}^n \times \{0,1\}^m \rightarrow \{0,1\}^\ell \) and a decryption function \(\text{Dec}: \{0,1\}^n \times \{0,1\}^\ell \rightarrow \{0,1\}^m \) such that \(\text{Dec}(k, \text{Enc}(k, u)) = u \) for every \(k \in \{0,1\}^n \) and \(u \in \{0,1\}^m \). Let \(K \) be a random variable taking values in \(\{0,1\}^n \). We say that \((\text{Enc}, \text{Dec}) \) is (statistically) \(\varepsilon \)-secure with respect to \(K \) if for every two messages \(u, v \in \{0,1\}^m \), we have \(\Delta(\text{Enc}(K, u), \text{Enc}(K, v)) \leq \varepsilon \). For example, the one-time pad, where \(n = m = \ell \) and \(\text{Enc}(k, u) = k \oplus u = \text{Dec}(k, u) \) is 0-secure (aka perfectly secure) with respect to the uniform distribution \(K = U_m \). For a class \(C \) of sources on \(\{0,1\}^n \), we say that the encryption scheme \((\text{Enc}, \text{Dec}) \) is \(\varepsilon \)-secure with respect to \(C \) if \(\text{Enc} \) is \(\varepsilon \)-secure with respect to every \(K \in C \).

1. Show that if there exists a deterministic \(\varepsilon \)-extractor \(\text{Ext}: \{0,1\}^n \rightarrow \{0,1\}^m \) for \(C \), then there exists an \(2\varepsilon \)-secure encryption scheme with respect to \(C \).

2. Conversely, use the following steps to show that if there exists an \(\varepsilon \)-secure encryption scheme \((\text{Enc}, \text{Dec}) \) with respect to \(C \), where \(\text{Enc}: \{0,1\}^n \times \{0,1\}^m \rightarrow \{0,1\}^\ell \), then there exists a deterministic \(2\varepsilon \)-extractor \(\text{Ext}: \{0,1\}^n \rightarrow \{0,1\}^{m-2\log(1/\varepsilon) - O(1)} \) for \(C \), provided \(m \geq \log n + 2\log(1/\varepsilon) + O(1) \).

 (a) For each fixed key \(k \in \{0,1\}^n \), define a source \(X_k \) on \(\{0,1\}^\ell \) by \(X_k = \text{Enc}(k, U_m) \), and let \(C' \) be the class of all these sources (i.e., \(C' = \{X_k : k \in \{0,1\}^n\} \)). Show that there exists a deterministic \(\varepsilon \)-extractor \(\text{Ext}' : \{0,1\}^\ell \rightarrow \{0,1\}^{m-2\log(1/\varepsilon) - O(1)} \) for \(C' \), provided \(m \geq \log n + 2\log(1/\varepsilon) + O(1) \).

 (b) Show that if \(\text{Ext}' \) is a deterministic \(\varepsilon \)-extractor for \(C' \) and \(\text{Enc} \) is \(\varepsilon \)-secure with respect to \(C \), then \(\text{Ext}(k) = \text{Ext}'(\text{Enc}(k, 0^m)) \) is a deterministic \(2\varepsilon \)-extractor for \(C \).

Thus, a class of sources can be used for secure encryption iff it is deterministically extractable.

Problem 6.9. (Extracting from Symbol-Fixing Sources*) A generalization of a bit-fixing source is a symbol-fixing source \(X \) taking values in \(\Sigma^n \) for some alphabet \(\Sigma \), where subset of the coordinates of \(X \) are fixed and the rest are uniformly distributed and independent elements of \(\Sigma \). For \(\Sigma = \{0,1\} \) and \(k \in [0, n] \), give an explicit \(\varepsilon \)-extractor \(\text{Ext}: \Sigma^n \rightarrow \{0,1\}^m \) for the class of of symbol-fixing sources on \(\Sigma^n \) with min-entropy at least \(k \), with \(m = \Omega(k) \) and \(\varepsilon = 2^{-O(k)} \). (Hint: use a random walk on a consistently labelled 3-regular expander graph.)