
3
Basic Derandomization Techniques

In the previous section, we saw some striking examples of the power of
randomness for the design of efficient algorithms:

• Polynomial Identity Testing in co-RP.
• [×(1 + ε)]-Approx #DNF in prBPP.
• Perfect Matching in RNC.
• Undirected S-T Connectivity in RL.
• Approximating MaxCut in probabilistic polynomial time.

This was of course only a small sample; there are entire texts on
randomized algorithms. (See the notes and references for Section 2.)

In the rest of this survey, we will turn toward derandomization —
trying to remove the randomness from these algorithms. We will achieve
this for some of the specific algorithms we studied, and also consider the
larger question of whether all efficient randomized algorithms can be
derandomized. For example, does BPP = P? RL = L? RNC = NC?

In this section, we will introduce a variety of “basic” derandom-
ization techniques. These will each be deficient in that they are either
infeasible (e.g., cannot be carried out in polynomial time) or special-
ized (e.g., apply only in very specific circumstances). But it will be

50



3.1 Enumeration 51

useful to have these as tools before we proceed to study more sophisti-
cated tools for derandomization (namely, the “pseudorandom objects”
of Sections 4–7).

3.1 Enumeration

We are interested in quantifying how much savings randomization pro-
vides. One way of doing this is to find the smallest possible upper bound
on the deterministic time complexity of languages in BPP. For exam-
ple, we would like to know which of the following complexity classes
contain BPP:

Definition 3.1 (Deterministic Time Classes). 1

DTIME(t(n)) = {L : L can be decided deterministically

in time O(t(n))}
P = ∪cDTIME(nc) (“polynomial time”)

P̃ = ∪cDTIME(2(logn)c
) (“quasipolynomial time”)

SUBEXP = ∩εDTIME(2nε
) (“subexponential time”)

EXP = ∪cDTIME(2nc
) (“exponential time”)

The “Time Hierarchy Theorem” of complexity theory implies that
all of these classes are distinct, i.e., P � P̃ � SUBEXP � EXP. More
generally, it says that DTIME(O(t(n)/ log t(n))) � DTIME(t(n)) for
any efficiently computable time bound t. (What is difficult in complex-
ity theory is separating classes that involve different computational
resources, like deterministic time versus nondeterministic time.)

Enumeration is a derandomization technique that enables us to
deterministically simulate any randomized algorithm with an exponen-
tial slowdown.

Proposition 3.2. BPP ⊂ EXP.

1 Often DTIME(·) is written as TIME(·), but we include the D to emphasize that it
refers to deterministic rather than randomized algorithms. Also, in some contexts (e.g.,
cryptography), “exponential time” refers to DTIME(2O(n)) and “subexponential time”
to be DTIME(2o(n)); we will use E to denote the former class when it arises in Section 7.



52 Basic Derandomization Techniques

Proof. If L is in BPP, then there is a probabilistic polynomial-time
algorithm A for L running in time t(n) for some polynomial t. As
in the proof of Theorem 2.30, we write A(x;r) for As output on input
x ∈ {0,1}n and coin tosses r ∈ {0,1}m(n), where we may assume m(n) ≤
t(n) without loss of generality. Then:

Pr[A(x;r) accepts] =
1

2m(n)

∑
r∈{0,1}m(n)

A(x;r)

We can compute the right-hand side of the above expression in deter-
ministic time 2m(n) · t(n).

We see that the enumeration method is general in that it applies
to all BPP algorithms, but it is infeasible (taking exponential time).
However, if the algorithm uses only a small number of random bits, it
becomes feasible:

Proposition 3.3. If L has a probabilistic polynomial-time algo-
rithm that runs in time t(n) and uses m(n) random bits, then L ∈
DTIME(t(n) · 2m(n)). In particular, if t(n) = poly(n) and m(n) =
O(logn), then L ∈ P.

Thus an approach to proving BPP = P is to show that the number
of random bits used by any BPP algorithm can be reduced to O(logn).
We will explore this approach in Section 7. However, to date, Propo-
sition 3.2 remains the best unconditional upper-bound we have on the
deterministic time-complexity of BPP.

Open Problem 3.4. Is BPP “closer” to P or EXP? Is BPP ⊂ P̃?
Is BPP ⊂ SUBEXP?

3.2 Nonconstructive/Nonuniform Derandomization

Next we look at a derandomization technique that can be implemented
efficiently but requires some nonconstructive “advice” that depends on
the input length.



3.2 Nonconstructive/Nonuniform Derandomization 53

Proposition 3.5. If A(x;r) is a randomized algorithm for a language
L that has error probability smaller than 2−n on inputs x of length n,
then for every n, there exists a fixed sequence of coin tosses rn such
that A(x;rn) is correct for all x ∈ {0,1}n.

Proof. We use the Probabilistic Method. Consider Rn chosen uniformly
at random from {0,1}r(n), where r(n) is the number of coin tosses used
by A on inputs of length n. Then

Pr[∃x ∈ {0,1}n s.t. A(x;Rn) incorrect on x]

≤
∑

x

Pr[A(x;Rn) incorrect on x]

< 2n · 2−n = 1

Thus, there exists a fixed value Rn = rn that yields a correct answer
for all x ∈ {0,1}n.

The advantage of this method over enumeration is that once we
have the fixed string rn, computing A(x;rn) can be done in polynomial
time. However, the proof that rn exists is nonconstructive; it is not
clear how to find it in less than exponential time.

Note that we know that we can reduce the error probability of
any BPP (or RP, RL, RNC, etc.) algorithm to smaller than 2−n by
repetitions, so this proposition is always applicable. However, we begin
by looking at some interesting special cases.

Example 3.6 (Perfect Matching). We apply the proposition to
Algorithm 2.7. Let G = (V,E) be a bipartite graph with m vertices
on each side, and let AG(x1,1, . . . ,xm,m) be the matrix that has entries
AG

i,j = xi,j if (i, j) ∈ E, and AG
i,j = 0 if (i, j) �∈ E. Recall that the poly-

nomial det(AG(x)) is nonzero if and only if G has a perfect matching.
Let Sm = {0,1,2, . . . ,m2m2}. We argued that, by the Schwartz–Zippel
Lemma, if we choose α

R← Sm2

m at random and evaluate det(AG(α)),
we can determine whether det(AG(x)) is zero with error probability at
most m/|S| which is smaller than 2−m2

. Since a bipartite graph with m



54 Basic Derandomization Techniques

vertices per side is specified by a string of length n = m2, by Proposi-
tion 3.5 we know that for every m, there exists an αm ∈ Sm2

m such that
det(AG(αm)) �= 0 if and only if G has a perfect matching, for every
bipartite graph G with m vertices on each side.

Open Problem 3.7. Can we find such an αm ∈ {0, . . . ,m2m2}m2

explicitly, i.e., deterministically and efficiently? An NC algorithm (i.e.,
parallel time polylog(m) with poly(m) processors) would put Perfect

Matching in deterministic NC, but even a subexponential-time algo-
rithm would be interesting.

Example 3.8 (Universal Traversal Sequences). Let G be a con-
nected d-regular undirected multigraph on n vertices. From Theo-
rem 2.49, we know that a random walk of poly(n,d) steps from any
start vertex will visit any other vertex with high probability. By increas-
ing the length of the walk by a polynomial factor, we can ensure
that every vertex is visited with probability greater than 1 − 2−nd logn.
By the same reasoning as in the previous example, we conclude that
for every pair (n,d), there exists a universal traversal sequence w ∈
{1,2, . . . ,d}poly(n,d) such that for every n-vertex, d-regular, connected
G and every vertex s in G, if we start from s and follow w then we will
visit the entire graph.

Open Problem 3.9. Can we construct such a universal traversal
sequence explicitly (e.g., in polynomial time or even logarithmic space)?

There has been substantial progress toward resolving this question
in the positive; see Section 4.4.

We now cast the nonconstructive derandomizations provided by
Proposition 3.5 in the language of “nonuniform” complexity classes.

Definition 3.10. Let C be a class of languages, and a : N→ N be a
function. Then C/a is the class of languages defined as follows: L ∈ C/a



3.2 Nonconstructive/Nonuniform Derandomization 55

if there exists L′ ∈ C, and α1,α2, . . . ∈ {0,1}∗ with |αn| ≤ a(n), such
that x ∈ L⇔ (x,α|x|) ∈ L′. The αs are called the advice strings.

P/poly is the class
⋃

c P/nc, i.e., polynomial time with polynomial
advice.

A basic result in complexity theory is that P/poly is exactly the
class of languages that can be decided by polynomial-sized Boolean
circuits:

Fact 3.11. L ∈ P/poly iff there is a sequence of Boolean circuits
{Cn}n∈N and a polynomial p such that for all n

(1) Cn : {0,1}n→ {0,1} decides L ∩ {0,1}n
(2) |Cn| ≤ p(n).

We refer to P/poly as a “nonuniform” model of computation
because it allows for different, unrelated “programs” for each input
length (e.g., the circuits Cn, or the advice αn), in contrast to classes
like P, BPP, and NP, that require a single “program” of constant
size specifying how the computation should behave for inputs of arbi-
trary length. Although P/poly contains some undecidable problems,2

people generally believe that NP �⊂ P/poly. Indeed, trying to prove
lower bounds on circuit size is one of the main approaches to proving
P �= NP, since circuits seem much more concrete and combinatorial
than Turing machines. However, this too has turned out to be quite
difficult; the best circuit lower bound known for computing an explicit
function is roughly 5n.

Proposition 3.5 directly implies:

Corollary 3.12. BPP ⊂ P/poly.

A more general meta-theorem is that “nonuniformity is more pow-
erful than randomness.”

2 Consider the unary version of the Halting Problem, which can be decided in constant
time given advice αn ∈ {0,1} that specifies whether the nth Turing machine halts or not.



56 Basic Derandomization Techniques

3.3 Nondeterminism

Although physically unrealistic, nondeterminism has proven to be a
very useful resource in the study of computational complexity (e.g.,
leading to the class NP). Thus it is natural to study how it compares
in power to randomness. Intuitively, with nondeterminism we should
be able to guess a “good” sequence of coin tosses for a randomized
algorithm and then do the computation deterministically. This intuition
does apply directly for randomized algorithms with 1-sided error:

Proposition 3.13. RP ⊂NP.

Proof. Let L ∈RP and A be a randomized algorithm that decides it.
A polynomial-time verifiable witness that x ∈ L is any sequence of coin
tosses r such that A(x;r) = accept.

However, for 2-sided error (BPP), containment in NP is not clear.
Even if we guess a “good” random string (one that leads to a correct
answer), it is not clear how we can verify it in polynomial time. Indeed,
it is consistent with current knowledge that BPP equals NEXP (non-
deterministic exponential time)! Nevertheless, there is a sense in which
we can show that BPP is no more powerful than NP:

Theorem 3.14. If P = NP, then P = BPP.

Proof. For any language L ∈ BPP, we will show how to express mem-
bership in L using two quantifiers. That is, for some polynomial-time
predicate P ,

x ∈ L ⇐⇒ ∃y∀zP (x,y,z), (3.1)

where we quantify over y and z of length poly(|x|).
Assuming P = NP, we can replace ∀zP (x,y,z) by a polynomial-

time predicate Q(x,y), because the language {(x,y) : ∀zP (x,y,z)} is
in co-NP = P. Then L = {x : ∃yQ(x,y)} ∈NP = P.

To obtain the two-quantifier expression (3.1), consider a randomized
algorithm A for L, and assume w.l.o.g. that its error probability



3.3 Nondeterminism 57

is smaller than 2−n and that it uses m = poly(n) coin tosses. Let
Ax ⊂ {0,1}m be the set of coin tosses r for which A(x;r) = 1. We will
show that if x is in L, there exist m “shifts” (or “translations”) of Ax

that cover all points in {0,1}m. (Notice that this is a ∃∀ statement.)
Intuitively, this should be possible because Ax contains all but an expo-
nentially small fraction of {0,1}m. On the other hand if x /∈ L, then no
m shifts of Ax can cover all of {0,1}m. Intuitively, this is because Ax

is an exponentially small fraction of {0,1}m.
Formally, by a “shift of Ax” we mean a set of the form Ax ⊕ s =

{r ⊕ s : r ∈ Ax} for some s ∈ {0,1}m; note that |Ax ⊕ s| = |Ax|. We
will show

x ∈ L ⇒ ∃s1,s2, . . . ,sm ∈ {0,1}m∀r ∈ {0,1}m r ∈
m⋃

i=1

(Ax ⊕ si)

⇔ ∃s1,s2, . . . ,sm ∈ {0,1}m∀r ∈ {0,1}m
m∨

i=1

(A(x;r ⊕ si) = 1);

x /∈ L ⇒ ∀s1,s2, . . . ,sm ∈ {0,1}m∃r ∈ {0,1}m r /∈
m⋃

i=1

(Ax ⊕ si)

⇔ ∀s1,s2, . . . ,sm ∈ {0,1}m∃r ∈ {0,1}m ¬
m∨

i=1

(A(x;r ⊕ si) = 1).

We prove both parts by the Probabilistic Method, starting with the
second (which is simpler).

x /∈ L Let s1, . . . ,sm be arbitrary, and choose R
R← {0,1}m at ran-

dom. Now Ax and hence each Ax ⊕ si contains less than a
2−n fraction of {0,1}m. So, by a union bound,

Pr[R ∈
⋃
i

(Ax ⊕ si)] ≤
∑

i

Pr[R ∈ Ax ⊕ si]

< m · 2−n < 1,

for sufficiently large n. In particular, there exists an r ∈
{0,1}m such that r /∈ ⋃i(Ax ⊕ si).



58 Basic Derandomization Techniques

x ∈ L: Choose S1,S2, . . . ,Sm
R← {0,1}m. Then, for every fixed r, we

have:

Pr[r /∈
⋃
i

(Ax ⊕ Si)] =
∏

i

Pr[r /∈ Ax ⊕ Si]

=
∏

i

Pr[Si /∈ Ax ⊕ r]

< (2−n)m,

since Ax and hence Ax ⊕ r contains more than a 1 − 2−n

fraction of {0,1}m. By a union bound, we have:

Pr[∃r r /∈
⋃
i

(Ax ⊕ Si)] < 2m · (2−n)m ≤ 1.

Thus, there exist s1, . . . ,sm such that
⋃

i(Ax ⊕ si) contains
all points r in {0,1}m.

Readers familiar with complexity theory might notice that the
above proof shows that BPP is contained in the second level of the
polynomial-time hierarchy (PH). In general, the kth level of the PH
contains all languages that satisfy a k-quantifier expression analogous
to (3.1).

3.4 The Method of Conditional Expectations

In the previous sections, we saw several derandomization techniques
(enumeration, nonuniformity, nondeterminism) that are general in the
sense that they apply to all of BPP, but are infeasible in the sense
that they cannot be implemented by efficient deterministic algorithms.
In this section and the next one, we will see two derandomization tech-
niques that sometimes can be implemented efficiently, but do not apply
to all randomized algorithms.

3.4.1 The General Approach

Consider a randomized algorithm that uses m random bits. We can
view all its sequences of coin tosses as corresponding to a binary tree



3.4 The Method of Conditional Expectations 59

of depth m. We know that most paths (from the root to the leaf) are
“good,” that is, give a correct answer. A natural idea is to try and find
such a path by walking down from the root and making “good” choices
at each step. Equivalently, we try to find a good sequence of coin tosses
“bit-by-bit.”

To make this precise, fix a randomized algorithm A and an input
x, and let m be the number of random bits used by A on input x.
For 1 ≤ i ≤m and r1, r2, . . . , ri ∈ {0,1}, define P (r1, r2, . . . , ri) to be the
fraction of continuations that are good sequences of coin tosses. More
precisely, if R1, . . . ,Rm are uniform and independent random bits, then

P (r1, r2, . . . , ri)
def= Pr

R1,R2,...,Rm

[A(x;R1,R2, . . . ,Rm) is correct

|R1 = r1,R2 = r2, . . . ,Ri = ri]

= E
Ri+1

[P (r1, r2, . . . , ri,Ri+1)].

(See Figure 3.1.)
By averaging, there exists an ri+1 ∈ {0,1} such that

P (r1, r2, . . . , ri, ri+1) ≥ P (r1, r2, . . . , ri). So at node (r1, r2, . . . , ri),
we simply pick ri+1 that maximizes P (r1, r2, . . . , ri, ri+1). At the end
we have r1, r2, . . . , rm, and

P (r1, r2, . . . , rm) ≥ P (r1, r2, . . . , rm−1) ≥ ·· · ≥ P (r1) ≥ P (Λ) ≥ 2/3,

P(0,1)=7/8

0 1

0 1 0 1

o o x o o o o o

Fig. 3.1 An example of P (r1, r2), where “o” at the leaf denotes a good path.



60 Basic Derandomization Techniques

where P (Λ) denotes the fraction of good paths from the root. Then
P (r1, r2, . . . , rm) = 1, since it is either 1 or 0.

Note that to implement this method, we need to compute
P (r1, r2, . . . , ri) deterministically, and this may be infeasible. However,
there are nontrivial algorithms where this method does work, often for
search problems rather than decision problems, and where we measure
not a boolean outcome (e.g., whether A is correct as above) but some
other measure of quality of the output. Below we see one such example,
where it turns out to yield a natural “greedy algorithm.”

3.4.2 Derandomized MAXCUT Approximation

Recall the MaxCutproblem:

Computational Problem 3.15 (Computational Problem 2.38,
rephrased). MaxCut: Given a graph G = (V,E), find a partition
S,T of V (i.e., S ∪ T = V , S ∩ T = ∅) maximizing the size of the set
cut(S,T ) = {{u,v} ∈ E : u ∈ S,v ∈ T}.

We saw a simple randomized algorithm that finds a cut of (expected)
size at least |E|/2 (not counting any self-loops, which can never be cut),
which we now phrase in a way suitable for derandomization.

Algorithm 3.16 (randomized MaxCut, rephrased).
Input: A graph G = ([N ],E) (with no self-loops)

Flip N coins r1, r2, . . . , rN , put vertex i in S if ri = 0 and in T if
ri = 1. Output (S,T ).

To derandomize this algorithm using the Method of Conditional
Expectations, define the conditional expectation

e(r1, r2, . . . , ri)
def= E

R1,R2,...,RN

[
|cut(S,T )|

∣∣∣R1 = r1,R2 = r2, . . . ,Ri = ri

]
to be the expected cut size when the random choices for the first i coins
are fixed to r1, r2, . . . , ri.



3.4 The Method of Conditional Expectations 61

We know that when no random bits are fixed, e[Λ] = |E|/2 (because
each edge is cut with probability 1/2), and all we need to calculate is
e(r1, r2, . . . , ri) for 1 ≤ i ≤ N . For this particular algorithm it turns out
that the quantity is not hard to compute. Let Si

def= {j : j ≤ i,rj = 0}
(resp. Ti

def= {j : j ≤ i,rj = 1}) be the set of vertices in S (resp. T ) after

we determine r1, . . . , ri, and Ui
def= {i + 1, i + 2, . . . ,N} be the “unde-

cided” vertices that have not been put into S or T . Then

e(r1, r2, . . . , ri) = |cut(Si,Ti)| + 1/2(|cut(Ui, [N ])|). (3.2)

Note that cut(Ui, [N ]) is the set of unordered edges that have at least
one endpoint in Ui. Now we can deterministically select a value for ri+1,
by computing and comparing e(r1, r2, . . . , ri,0) and e(r1, r2, . . . , ri,1).

In fact, the decision on ri+1 can be made even simpler than com-
puting (3.2) in its entirety, by observing that the set cut(Ui+1, [N ])
is independent of the choice of ri+1. Therefore, to maximize
e(r1, r2 . . . , ri, ri+1), it is enough to choose ri+1 that maximizes the
|cut(S,T )| term. This term increases by either |cut({i + 1},Ti)| or
|cut({i + 1},Si)| depending on whether we place vertex i + 1 in S or
T , respectively. To summarize, we have

e(r1, . . . , ri,0) − e(r1, . . . , ri,1) = |cut({i + 1},Ti)| − |cut({i + 1},Si)|.
This gives rise to the following deterministic algorithm, which is guar-
anteed to always find a cut of size at least |E|/2:

Algorithm 3.17 (deterministic MaxCut approximation).
Input: A graph G = ([N ],E) (with no self-loops)

(1) Set S = ∅, T = ∅
(2) For i = 0, . . . ,N − 1:

(a) If |cut({i + 1},T )| > |cut({i + 1},S)|, set S ← S ∪
{i + 1},

(b) Else set T ← T ∪ {i + 1}.

Note that this is the natural “greedy” algorithm for this problem. In
other cases, the Method of Conditional Expectations yields algorithms



62 Basic Derandomization Techniques

that, while still arguably “greedy,” would have been much less easy to
find directly. Thus, designing a randomized algorithm and then trying
to derandomize it can be a useful paradigm for the design of deter-
ministic algorithms even if the randomization does not provide gains
in efficiency.

3.5 Pairwise Independence

3.5.1 An Example

As a motivating example for pairwise independence, we give another
way of derandomizing the MaxCut approximation algorithm discussed
above. Recall the analysis of the randomized algorithm:

E[|cut(S)|] =
∑

(i,j)∈E

Pr[Ri �= Rj ] = |E|/2,

where R1, . . . ,RN are the random bits of the algorithm. The key obser-
vation is that this analysis applies for any distribution on (R1, . . . ,RN )
satisfying Pr[Ri �= Rj ] = 1/2 for each i �= j. Thus, they do not need to
be completely independent random variables; it suffices for them to be
pairwise independent. That is, each Ri is an unbiased random bit, and
for each i �= j, Ri is independent from Rj .

This leads to the question: Can we generate N pairwise independent
bits using less than N truly random bits? The answer turns out to be
yes, as illustrated by the following construction.

Construction 3.18 (pairwise independent bits). Let B1, . . . ,Bk

be k independent unbiased random bits. For each nonempty S ⊂ [k],
let RS be the random variable ⊕i∈SBi, where ⊕ denotes XOR.

Proposition 3.19. The 2k − 1 random variables RS in Construc-
tion 3.18 are pairwise independent unbiased random bits.

Proof. It is evident that each RS is unbiased. For pairwise indepen-
dence, consider any two nonempty sets S �= T ⊂ [k]. Then:

RS = RS∩T ⊕ RS\T
RT = RS∩T ⊕ RT\S .



3.5 Pairwise Independence 63

Note that RS∩T , RS\T , and RT\S are independent as they depend
on disjoint subsets of the Bis, and at least two of these subsets are
nonempty. This implies that (RS ,RT ) takes each value in {0,1}2 with
probability 1/4.

Note that this gives us a way to generate N pairwise independent
bits from �log(N + 1)� independent random bits. Thus, we can reduce
the randomness required by the MaxCut algorithm to logarithmic,
and then we can obtain a deterministic algorithm by enumeration.

Algorithm 3.20 (deterministic MaxCut algorithm II).
Input: A graph G = ([N ],E) (with no self-loops)

For all sequences of bits b1, b2, . . . , b	log(N+1)
, run the random-
ized MaxCut algorithm using coin tosses (rS = ⊕i∈Sbi)S �=∅ and
choose the largest cut thus obtained.

Since there are at most 2(N + 1) sequences of bis, the deran-
domized algorithm still runs in polynomial time. It is slower than
the algorithm we obtained by the Method of Conditional Expecta-
tions (Algorithm 3.17), but it has the advantage of using logarithmic
workspace and being parallelizable. The derandomization can be sped
up using almost pairwise independence (at the price of a slightly worse
approximation factor); see Problem 3.4.

3.5.2 Pairwise Independent Hash Functions

Some applications require pairwise independent random variables that
take values from a larger range, for example, we want N = 2n pair-
wise independent random variables, each of which is uniformly dis-
tributed in {0,1}m = [M ]. (Throughout this survey, we will often use
the convention that a lowercase letter equals the logarithm (base 2)
of the corresponding capital letter.) The naive approach is to repeat
the above algorithm for the individual bits m times. This uses roughly
n · m = (logM)(logN) initial random bits, which is no longer logarith-
mic in N if M is nonconstant. Below we will see that we can do much
better. But first some definitions.



64 Basic Derandomization Techniques

A sequence of N random variables each taking a value in [M ] can be
viewed as a distribution on sequences in [M ]N . Another interpretation
of such a sequence is as a mapping f : [N ]→ [M ]. The latter interpre-
tation turns out to be more useful when discussing the computational
complexity of the constructions.

Definition 3.21 (pairwise independent hash functions). A
family (i.e., multiset) of functionsH = {h : [N ]→ [M ]} is pairwise inde-
pendent if the following two conditions hold when H

R←H is a function
chosen uniformly at random from H:

(1) ∀x ∈ [N ], the random variable H(x) is uniformly distributed
in [M ].

(2) ∀x1 �= x2 ∈ [N ], the random variables H(x1) and H(x2) are
independent.

Equivalently, we can combine the two conditions and require that

∀x1 �= x2 ∈ [N ],∀y1,y2 ∈ [M ], Pr
H

R←H
[H(x1) = y1 ∧ H(x2) = y2] =

1
M2 .

Note that the probability above is over the random choice of a function
from the family H. This is why we talk about a family of functions
rather than a single function. The description in terms of functions
makes it natural to impose a strong efficiency requirement:

Definition 3.22. A family of functionsH = {h : [N ]→ [M ]} is explicit
if given the description of h and x ∈ [N ], the value h(x) can be com-
puted in time poly(logN, logM).

Pairwise independent hash functions are sometimes referred to as
strongly 2-universal hash functions, to contrast with the weaker notion
of 2-universal hash functions, which requires only that Pr[H(x1) =
H(x2)] ≤ 1/M for all x1 �= x2. (Note that this property is all we needed
for the deterministic MaxCut algorithm, and it allows for a small sav-
ings in that we can also include S = ∅ in Construction 3.18.)

Below we present another construction of a pairwise independent
family.



3.5 Pairwise Independence 65

Construction 3.23 (pairwise independent hash functions from
linear maps). Let F be a finite field. Define the family of functions
H = { ha,b : F→ F}a,b∈F where ha,b(x) = ax + b.

Proposition 3.24. The family of functions H in Construction 3.23 is
pairwise independent.

Proof. Notice that the graph of the function ha,b(x) is the line with
slope a and y-intercept b. Given x1 �= x2 and y1,y2, there is exactly
one such line containing the points (x1,y1) and (x2,y2) (namely, the
line with slope a = (y1 − y2)/(x1 − x2) and y-intercept b = y1 − ax1).
Thus, the probability over a,b that ha,b(x1) = y1 and ha,b(x2) = y2

equals the reciprocal of the number of lines, namely 1/|F|2.

This construction uses 2 log |F| random bits, since we have to choose
a and b at random from F to get a function ha,b

R←H. Compare this to
|F| log |F| bits required to choose a truly random function, and (log |F|)2
bits for repeating the construction of Proposition 3.19 for each output
bit.

Note that evaluating the functions of Construction 3.23 requires
a description of the field F that enables us to perform addition and
multiplication of field elements. Thus we take a brief aside to review
the complexity of constructing and computing in finite fields.

Remark 3.25 (constructing finite fields). Recall that for every
prime power q = pk there is a field Fq (often denoted GF(q)) of size
q, and this field is unique up to isomorphism (renaming elements). The
prime p is called the characteristic of the field. Fq has a description
of length O(logq) enabling addition, multiplication, and division to be
performed in polynomial time (i.e., time poly(logq)). (This description
is simply an irreducible polynomial f of degree k over Fp = Zp.) To
construct this description, we first need to determine the characteris-
tic p; finding a prime p of a desired bitlength � can be done proba-
bilistically in time poly(�) = poly(logp) and deterministically in time



66 Basic Derandomization Techniques

poly(2�) = poly(p). Then given p and k, a description of Fq (for q = pk)
can be found probabilistically in time poly(logp,k) = poly(logq) and
deterministically in time poly(p,k). Note that for both steps, the deter-
ministic algorithms are exponential in the bitlength of the characteris-
tic p. Thus, for computational purposes, a convenient choice is often to
instead take p = 2 and k large, in which case everything can be done
deterministically in time poly(k) = poly(logq).

Using a finite fields of size 2n as suggested above, we obtain an
explicit construction of pairwise independent hash functions Hn,n =
{h : {0,1}n→ {0,1}n} for every n. What if we want a family Hn,m

of pairwise independent hash functions where the input length n and
output length m are not equal? For n < m, we can take hash functions
h from Hm,m and restrict their domain to {0,1}n by defining h′(x) =
h(x ◦ 0m−n). In the case that m < n, we can take h from Hn,n and
throw away n − m bits of the output. That is, define h′(x) = h(x)|m,
where h(x)|m denotes the first m bits of h(x).

In both cases, we use 2max{n,m} random bits. This is the best
possible when m ≥ n. When m < n, it can be reduced to m + n ran-
dom bits by using (ax)|m + b where b ∈ {0,1}m instead of (ax + b)|m.
Summarizing:

Theorem 3.26. For every n,m ∈ N, there is an explicit family of
pairwise independent functions Hn,m = {h : {0,1}n→ {0,1}m} where
a random function from Hn,m can be selected using max{m,n} + m

random bits.

Problem 3.5 shows that max{m,n} + m random bits is essentially
optimal.

3.5.3 Hash Tables

The original motivating application for pairwise independent functions
was for hash tables. Suppose we want to store a set S ⊂ [N ] of values
and answer queries of the form “Is x ∈ S?” efficiently (or, more gener-
ally, acquire some piece of data associated with key x in case x ∈ S).



3.5 Pairwise Independence 67

A simple solution is to have a table T such that T [x] = 1 if and
only if x ∈ S. But this requires N bits of storage, which is inefficient
if |S|  N .

A better solution is to use hashing. Assume that we have a hash
function h : [N ]→ [M ] for some M to be determined later. Let T be a
table of size M , initially empty. For each x ∈ [N ], we let T [h(x)] = x if
x ∈ S. So to test whether a given y ∈ S, we compute h(y) and check if
T [h(y)] = y. In order for this construction to be well-defined, we need h

to be one-to-one on the set S. Suppose we choose a random function H

from [N ] to [M ]. Then, for any set S of size at most K, the probability
that there are any collisions is

Pr[∃ x �= y s.t. H(x) = H(y)] ≤
∑

x�=y∈S

Pr[H(x)

= H(y)] ≤
(

K

2

)
· 1
M

< ε

for M = K2/ε. Notice that the above analysis does not require H to be
a completely random function; it suffices that H be pairwise indepen-
dent (or even 2-universal). Thus using Theorem 3.26, we can generate
and store H using O(logN) random bits. The storage required for the
table T is O(M logN) = O(K2 logN) bits, which is much smaller than
N when K = No(1). Note that to uniquely represent a set of size K,
we need space at least log

(
N
K

)
= Ω(K logN) (when K ≤ N0.99). In fact,

there is a data structure achieving a matching space upper bound of
O(K logN), which works by taking M = O(K) in the above construc-
tion and using additional hash functions to separate the (few) collisions
that will occur.

Often, when people analyze applications of hashing in computer sci-
ence, they model the hash function as a truly random function. How-
ever, the domain of the hash function is often exponentially large, and
thus it is infeasible to even write down a truly random hash function.
Thus, it would be preferable to show that some explicit family of hash
function works for the application with similar performance. In many
cases (such as the one above), it can be shown that pairwise indepen-
dence (or k-wise independence, as discussed below) suffices.



68 Basic Derandomization Techniques

3.5.4 Randomness-Efficient Error Reduction and Sampling

Suppose we have a BPP algorithm for a language L that has a constant
error probability. We want to reduce the error to 2−k. We have already
seen that this can be done using O(k) independent repetitions (by a
Chernoff Bound). If the algorithm originally used m random bits, then
we use O(km) random bits after error reduction. Here we will see how
to reduce the number of random bits required for error reduction by
doing repetitions that are only pairwise independent.

To analyze this, we will need an analogue of the Chernoff Bound
(Theorem 2.21) that applies to averages of pairwise independent ran-
dom variables. This will follow from Chebyshev’s Inequality, which
bounds the deviations of a random variable X from its mean µ in
terms its variance Var[X] = E[(X − µ)2] = E[X2] − µ2.

Lemma 3.27(Chebyshev’s Inequality). If X is a random variable
with expectation µ, then

Pr[|X − µ| ≥ ε] ≤ Var[X]
ε2

Proof. Applying Markov’s Inequality (Lemma 2.20) to the random vari-
able Y = (X − µ)2, we have:

Pr[|X − µ| ≥ ε] = Pr[(X − µ)2 ≥ ε2] ≤ E[(X − µ)2]
ε2 =

Var[X]
ε2 .

We now use this to show that a sum of pairwise independent random
variables is concentrated around its expectation.

Proposition 3.28 (Pairwise Independent Tail Inequality). Let
X1, . . . ,Xt be pairwise independent random variables taking values in
the interval [0,1], let X = (

∑
i Xi)/t, and µ = E[X]. Then

Pr[|X − µ| ≥ ε] ≤ 1
tε2 .



3.5 Pairwise Independence 69

Proof. Let µi = E[Xi]. Then

Var[X] = E
[
(X − µ)2

]
=

1
t2
· E
(∑

i

(Xi − µi)

)2


=
1
t2
·
∑
i,j

E[(Xi − µi)(Xj − µj)]

=
1
t2
·
∑

i

E[(Xi − µi)2] (by pairwise independence)

=
1
t2
·
∑

i

Var[Xi]

≤ 1
t

Now apply Chebyshev’s Inequality.

While this requires less independence than the Chernoff Bound, notice
that the error probability decreases only linearly rather than exponen-
tially with the number t of samples.

Error Reduction. Proposition 3.28 tells us that if we use t = O(2k)
pairwise independent repetitions, we can reduce the error proba-
bility of a BPP algorithm from 1/3 to 2−k. If the original BPP
algorithm uses m random bits, then we can do this by choosing
h : {0,1}k+O(1)→ {0,1}m at random from a pairwise independent
family, and running the algorithm using coin tosses h(x) for all
x ∈ {0,1}k+O(1). This requires m + max{m,k + O(1)} = O(m + k)
random bits.

Number of Number of
Repetitions Random Bits

Independent Repetitions O(k) O(km)
Pairwise Independent Repetitions O(2k) O(m + k)



70 Basic Derandomization Techniques

Note that we saved substantially on the number of random bits,
but paid a lot in the number of repetitions needed. To maintain a
polynomial-time algorithm, we can only afford k = O(logn). This set-
ting implies that if we have a BPP algorithm with constant error
that uses m random bits, we have another BPP algorithm that uses
O(m + logn) = O(m) random bits and has error 1/poly(n). That is,
we can go from constant to inverse-polynomial error only paying a con-
stant factor in randomness. (In fact, it turns out there is a way to
achieve this with no penalty in randomness; see Problem 4.6.)

Sampling. Recall the Sampling problem: Given oracle access to a
function f : {0,1}m→ [0,1], we want to approximate µ(f) to within an
additive error of ε.

In Section 2.3.1, we saw that we can solve this problem with
probability 1 − δ by outputting the average of f on a random
sample of t = O(log(1/δ)/ε2) points in {0,1}m, where the correct-
ness follows from the Chernoff Bound. To reduce the number of
truly random bits used, we can use a pairwise independent sample
instead. Specifically, taking t = 1/(ε2δ) pairwise independent points,
we get an error probability of at most δ (by Proposition 3.28). To
generate t pairwise independent samples of m bits each, we need
O(m + log t) = O(m + log(1/ε) + log(1/δ)) truly random bits.

Number of Number of
Samples Random Bits

Truly Random Sample O((1/ε2) · log(1/δ)) O(m · (1/ε2)
· log(1/δ))

Pairwise Independent O((1/ε2) · (1/δ)) O(m + log(1/ε)
Repetitions +log(1/δ))

Both of these sampling algorithms have a natural restricted structure.
First, they choose all of their queries to the oracle f nonadaptively,
based solely on their coin tosses and not based on the answers to pre-
vious queries. Second, their output is simply the average of the queried



3.5 Pairwise Independence 71

values, whereas the original sampling problem does not constrain the
output function. It is useful to abstract these properties as follows.

Definition 3.29. A sampler Samp for domain size M is given “coin
tosses” x

R← [N ] and outputs a sequence of samples z1, . . . ,zt ∈ [M ]. We
say that Samp : [N ]→ [M ]t is a (δ,ε) averaging sampler if for every
function f : [M ]→ [0,1], we have

Pr
(z1,...,zt)

R←Samp(U[N ])

[
1
t

t∑
i=1

f(zi) > µ(f) + ε

]
≤ δ. (3.3)

If Inequality 3.3 only holds for f with (boolean) range {0,1}, we call
Samp a boolean averaging sampler. We say that Samp is explicit if given
x ∈ [N ] and i ∈ [t], Samp(x)i can be computed in time poly(logN, log t).

We note that, in contrast to the Chernoff Bound (Theorem 2.21)
and the Pairwise Independent Tail Inequality (Proposition 3.28), this
definition seems to only provide an error guarantee in one direction,
namely that the sample average does not significantly exceed the global
average (except with small probability). However, a guarantee in the
other direction also follows by considering the function 1 − f . Thus,
up to a factor of 2 in the failure probability δ, the above definition
is equivalent to requiring that Pr[|(1/t) ·∑i f(zi) − µ(f)| > ε] ≤ δ. We
choose to use a one-sided guarantee because it will make the connection
to list-decodable codes (in Section 5) slightly cleaner.

Our pairwise-independent sampling algorithm can now be described
as follows:

Theorem 3.30 (Pairwise Independent Sampler). For every
m ∈ N and δ,ε ∈ [0,1], there is an explicit (δ,ε) averaging sampler
Samp : {0,1}n→ ({0,1}m)t using n = O(m + log(1/ε) + log(1/δ)) ran-
dom bits and t = O(1/(ε2δ)) samples.

As we will see in subsequent sections, averaging samplers are inti-
mately related to the other pseudorandom objects we are studying
(especially randomness extractors). In addition, some applications of
samplers require samplers of this restricted form.



72 Basic Derandomization Techniques

3.5.5 k-wise Independence

Our definition and construction of pairwise independent functions gen-
eralize naturally to k-wise independence for any k.

Definition 3.31 (k-wise independent hash functions). For
N,M,k ∈ N such that k ≤ N , a family of functions H = {h : [N ]→
[M ]} is k-wise independent if for all distinct x1,x2, . . . ,xk ∈ [N ], the
random variables H(x1), . . . ,H(xk) are independent and uniformly dis-
tributed in [M ] when H

R←H.

Construction 3.32 (k-wise independence from polynomials).
Let F be a finite field. Define the family of functions H =
{ha0,a1,...,ak−1 :F→ F} where each ha0,a1,...,ak−1(x) = a0 + a1x + a2x

2 +
· · · + ak−1x

k−1 for a0, . . . ,ak−1 ∈ F.

Proposition 3.33. The family H given in Construction 3.32 is k-wise
independent.

Proof. Similarly to the proof of Proposition 3.24, it suffices to prove
that for all distinct x1, . . . ,xk ∈ F and all y1, . . . ,yk ∈ F, there is exactly
one polynomial h of degree at most k − 1 such that h(xi) = yi for all i.
To show that such a polynomial exists, we can use the Lagrange Inter-
polation Formula:

h(x) =
k∑

i=1

yi ·
∏
j �=i

x − xj

xi − xj
.

To show uniqueness, suppose we have two polynomials h and g of degree
at most k − 1 such that h(xi) = g(xi) for i = 1, . . . ,k. Then h − g has
at least k roots, and thus must be the zero polynomial.

Corollary 3.34. For every n,m,k ∈ N, there is a family of k-wise
independent functions H = {h : {0,1}n→ {0,1}m} such that choosing



3.6 Exercises 73

a random function from H takes k · max{n,m} random bits, and eval-
uating a function from H takes time poly(n,m,k).

k-wise independent hash functions have applications similar to those
that pairwise independent hash functions have. The increased indepen-
dence is crucial in derandomizing some algorithms. k-wise independent
random variables also satisfy a tail bound similar to Proposition 3.28,
with the key improvement being that the error probability vanishes
linearly in tk/2 rather than t; see Problem 3.8.

3.6 Exercises

Problem 3.1 (Derandomizing RP versus BPP*). Show that
prRP = prP implies that prBPP = prP, and thus also that
BPP = P. (Hint: Look at the proof that NP = P⇒ BPP = P.)

Problem 3.2 (Designs). Designs (also known as packings) are col-
lections of sets that are nearly disjoint. In Section 7, we will see how
they are useful in the construction of pseudorandom generators. For-
mally, a collection of sets S1,S2, . . . ,Sm ⊂ [d] is called an (�,a)-design
(for integers a ≤ � ≤ d) if

• For all i, |Si| = �.
• For all i �= j, |Si ∩ Sj | < a.

For given �, we’d like m to be large, a to be small, and d to be small.
That is, we’d like to pack many sets into a small universe with small
intersections.

(1) Prove that if m ≤ (da)/(�
a

)2
, then there exists an (�,a)-design

S1, . . . ,Sm ⊂ [d].
Hint: Use the Probabilistic Method. Specifically, show that
if the sets are chosen randomly, then for every S1, . . . ,Si−1,

E
Si

[#{j < i : |Si ∩ Sj | ≥ a}] < 1.



74 Basic Derandomization Techniques

(2) Conclude that for every constant γ > 0 and every �,m ∈ N,
there exists an (�,a)-design S1, · · · ,Sm ⊂ [d] with d = O( �2

a )
and a = γ · logm. In particular, setting m = 2�, we fit expo-
nentially many sets of size � in a universe of size d = O(�)
while keeping the intersections an arbitrarily small fraction
of the set size.

(3) Using the Method of Conditional Expectations, show how
to construct designs as in Parts 1 and 2 deterministically in
time poly(m,d).

Problem 3.3 (More Pairwise Independent Families).

(1) (matrix-vector family) For an n × m {0,1}-matrix A and
b ∈ {0,1}n, define a function hA,b : {0,1}m→ {0,1}n by
hA,b(x) = (Ax + b) mod 2. (The “mod 2” is applied compo-
nentwise.) Show that Hm,n = {hA,b} is a pairwise indepen-
dent family. Compare the number of random bits needed to
generate a random function in Hm,n to Construction 3.23.

(2) (Toeplitz matrices) A is a Toeplitz matrix if it is constant on
diagonals, i.e., Ai+1,j+1 = Ai,j for all i, j. Show that even if
we restrict the family Hm,n in Part 1 to only include hA,b

for Toeplitz matrices A, we still get a pairwise independent
family. How many random bits are needed now?

Problem 3.4(Almost Pairwise Independence). A family of func-
tions H mapping domain [N ] to range [M ] is ε-almost pairwise
independent3 if for every x1 �= x2 ∈ [N ], y1,y2 ∈ [M ], we have

Pr
H

R←H
[H(x1) = y1 and H(x2) = y2] ≤ 1 + ε

M2 .

3 Another common definition of ε-almost pairwise independence requires instead that for
every x1 �= x2 ∈ [N ], if we choose a random hash function H

R←H, the random variable
(H(x1),H(x2)) is ε-close to two uniform and independent elements of [M ] in statistical
difference (as defined in Section 6). The two definitions are equivalent up to a factor of
M2 in the error parameter ε.



3.6 Exercises 75

(1) Show that there exists a family H of ε-almost pairwise inde-
pendent functions from {0,1}n to {0,1}m such that choosing
a random function from H requires only O(m + logn +
log(1/ε)) random bits (as opposed to O(m + n) for exact
pairwise independence). (Hint: First consider domain Fd+1

for an appropriately chosen finite field F and d ∈ N, and look
at maps of the form h = g ◦ fa, where g comes from some
pairwise independent family and fa : Fd+1→ F is defined by
fa(x0, . . . ,xd) = x0 + x1a + x2a

2 + · · · + xda
d.)

(2) Give a deterministic algorithm that on input an N -vertex,
M -edge graph G (with no self-loops), finds a cut of size
at least (1/2 − o(1)) ·M in time M · polylog(N) and space
O(logM) (thereby improving the M · poly(N) running time
of Algorithm 3.20).

Problem 3.5 (Size Lower Bound for Pairwise Independent
Families). Let H = {h : [N ]→ [M ]} be a pairwise independent family
of functions.

(1) Prove that if N ≥ 2, then |H| ≥M2.
(2) Prove that if M = 2, then |H| ≥ N + 1. (Hint: based on
H, construct a sequence of orthogonal vectors vx ∈ {±1}|H|
parameterized by x ∈ [N ].)

(3) More generally, prove that for arbitrary M , we have |H| ≥
N · (M − 1) + 1. (Hint: for each x ∈ [N ], construct M − 1
linearly independent vectors vx,y ∈ R|H| such that vx,y ⊥
vx′,y′ if x �= x′.)

(4) Deduce that for N = 2n and M = 2m, selecting a random
function from H requires at least max{n,m} + m random
bits.

Problem 3.6(Frequency Moments of Data Streams). Given one
pass through a huge “stream” of data items (a1,a2, . . . ,ak), where each



76 Basic Derandomization Techniques

ai ∈ {0,1}n, we want to compute statistics on the distribution of items
occurring in the stream while using small space (not enough to store all
the items or maintain a histogram). In this problem, you will see how to
compute the second frequency moment f2 =

∑
a m2

a, where ma = #{i :
ai = a}.

The algorithm works as follows: Before receiving any items, it
chooses t random 4-wise independent hash functions H1, . . . ,Ht :
{0,1}n→ {+1,−1}, and sets counters X1 = X2 = · · · = Xt = 0. Upon
receiving the ith item ai, it adds Hj(ai) to counter Xj . At the end of
the stream, it outputs Y = (X2

1 + · · · + X2
t )/t.

Notice that the algorithm only needs space O(t · n) to store the
hash functions Hj and space O(t · logk) to maintain the counters Xj

(compared to space k · n to store the entire stream, and space 2n · logk

to maintain a histogram).

(1) Show that for every data stream (a1, . . . ,ak) and each j, we
have E[X2

j ] = f2, where the expectation is over the choice of
the hash function Hj .

(2) Show that Var[X2
j ] ≤ 2f2

2 .
(3) Conclude that for a sufficiently large constant t (independent

of n and k), the output Y is within 1% of f2 with probability
at least 0.99.

(4) Show how to decrease the error probability to δ while only
increasing the space by a factor of log(1/δ).

Problem 3.7(Improved Pairwise Independent Tail Inequality).

(1) Show that if X is a random variable taking values in [0,1]
and µ = E[X], we have Var[X] ≤ µ · (1 − µ).

(2) Improve the Pairwise Independent Tail Inequality (Propo-
sition 3.28) to show that if X is the average of t pairwise
independent random variables taking values in [0,1] and µ =
E[X], then Pr[|X − µ| ≥ ε] ≤ µ · (1 − µ)/(t · ε2). In particu-
lar, for t = O(1/µ), we have Pr[.99µ ≤ X ≤ 1.01µ] ≥ 0.99.



3.7 Chapter Notes and References 77

Problem 3.8(k-wise Independent Tail Inequality). Let X be the
average of t k-wise independent random variables for an even integer k,
and let µ = E[X]. Prove that

Pr[|X − µ| ≥ ε] ≤
(

k2

4tε2

)k/2

.

(Hint: show that all terms in the expansion of E[(X − µ)k] =
E[(
∑

i(Xi − µi))k] that involve more than k/2 variables Xi are zero.)
Note that for fixed k, this probability decays like O(1/(tε2))k/2, improv-
ing the 1/(tε2) bound in pairwise independence when k > 2.

Problem 3.9(Hitting Samplers). A function Samp : [N ]→ [M ]t is
a (δ,ε) hitting sampler if for every set T ⊂ [M ] of density greater than
ε, we have

Pr
(z1,...,zt)

R←Samp(U[N ])
[∃i zi ∈ T ] ≥ 1 − δ.

(1) Show that every (δ,ε) averaging sampler is a (δ,ε) hitting
sampler.

(2) Show that if we only want a hitting sampler, the number of
samples in Theorem 3.30 can be reduced to O(1/(εδ)). (Hint:
use Problem 3.7.)

(3) For which subset of BPP algorithms are hitting samplers
useful for doing randomness-efficient error reduction?

3.7 Chapter Notes and References

The Time Hierarchy Theorem was proven by Hartmanis and
Stearns [200]; proofs can be found in any standard text on complex-
ity theory, for example, [32, 161, 366]. Adleman [3] showed that every
language in RP has polynomial-sized circuits (cf., Corollary 3.12),
and this was generalized to BPP by Gill. Pippenger [310] showed
the equivalence between having polynomial-sized circuits and P/poly



78 Basic Derandomization Techniques

(Fact 3.11). The general definition of complexity classes with advice
(Definition 3.10) is due to Karp and Lipton [235], who explored the rela-
tionship between nonuniform lower bounds and uniform lower bounds.
A 5n − O(n) circuit-size lower bound for an explicit function (in P)
was given by Iwama et al. [218, 254].

The existence of universal traversal sequences (Example 3.8) was
proven by Aleliunas et al. [13], who suggested finding an explicit con-
struction (Open Problem 3.9) as an approach to derandomizing the
logspace algorithm for Undirected S-T Connectivity. For the state
of the art on these problems, see Section 4.4. An conjectured determin-
istic NC algorithm for Perfect Matching (derandomizing Algo-
rithm 2.7 in a different way than Open Problem 3.7) is given in [4].

Theorem 3.14 is due to Sipser [364], who proved that BPP is in
the fourth level of the polynomial-time hierarchy; this was improved to
the second level by Gács. Our proof of Theorem 3.14 is due to Laute-
mann [256]. Problem 3.1 is due to Buhrman and Fortnow [85]. For more
on nondeterministic computation and nonuniform complexity, see text-
books on computational complexity, such as [32, 161, 366].

The Method of Conditional Probabilities was formalized and
popularized as an algorithmic tool in the work of Spencer [370] and
Raghavan [316]. Its use in Algorithm 3.17 for approximating Max-

Cut is implicit in [279]. For more on this method, see the textbooks
[25, 291].

A more detailed treatment of pairwise independence (along with
a variety of other topics in pseudorandomness and derandomization)
can be found in the survey by Luby and Wigderson [281]. The use of
limited independence in computer science originates with the seminal
papers of Carter and Wegman [93, 417], which introduced the notions
of universal, strongly universal (i.e., k-wise independent), and almost
strongly universal (i.e., almost k-wise independent) families of hash
functions. The pairwise independent and k-wise independent sample
spaces of Constructions 3.18, 3.23, and 3.32 date back to the work
of Lancaster [255] and Joffe [222, 223] in the probability literature,
and were rediscovered several times in the computer science literature.
The construction of pairwise independent hash functions from Part 1
of Problem 3.3 is due to Carter and Wegman [93] and Part 2 is implicit



3.7 Chapter Notes and References 79

in [408, 168]. The size lower bound for pairwise independent families
in Problem 3.5 is due to Stinson [376], based on the Plackett–Burman
bound for orthogonal arrays [312]. The construction of almost pairwise
independent families in Problem 3.4 is due to Bierbrauer et al. [67]
(though the resulting parameters follow from the earlier work of Naor
and Naor [296]).

The application to hash tables from Section 3.5.3 is due to Carter
and Wegman [93], and the method mentioned for improving the
space complexity to O(K logN) is due to Fredman, Komlos, and
Szemerédi [142]. The problem of randomness-efficient error reduc-
tion (sometimes called “deterministic amplification”) was first studied
by Karp, Pippenger, and Sipser [234], and the method using pair-
wise independence given in Section 3.5.4 was proposed by Chor and
Goldreich [97]. The use of pairwise independence for derandomizing
algorithms was pioneered by Luby [278]; Algorithm 3.20 for MaxCut

is implicit in [279]. The notion of averaging samplers was introduced
by Bellare and Rompel [57] (under the term “oblivious samplers”). For
more on samplers and averaging samplers, see the survey by Goldre-
ich [155]. Tail bounds for k-wise independent random variables, such
as the one in Problem 3.8, can be found in the papers [57, 97, 350].

Problem 3.2 on designs is from [134], with the derandomization of
Part 3 being from [281, 302]. Problem 3.6 on the frequency moments
of data streams is due to Alon, Matias, and Szegedy [22]. For more on
data stream algorithms, we refer to the survey by Muthukrishnan [295].


