
4
Expander Graphs

Now that we have seen a variety of basic derandomization techniques,
we will move on to study the first major “pseudorandom object” in this
survey, expander graphs. These are graphs that are “sparse” yet very
“well-connected.”

4.1 Measures of Expansion

We will typically interpret the properties of expander graphs in an
asymptotic sense. That is, there will be an infinite family of graphs Gi,
with a growing number of vertices Ni. By “sparse,” we mean that the
degree Di of Gi should be very slowly growing as a function of Ni. The
“well-connectedness” property has a variety of different interpretations,
which we will discuss below. Typically, we will drop the subscripts of i

and the fact that we are talking about an infinite family of graphs will
be implicit in our theorems. As in Section 2.4.2, we will state many
of our definitions for directed multigraphs (which we’ll call digraphs for
short), though in the end we will mostly study undirected multigraphs.

80
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4.1.1 Vertex Expansion

The classic measure of well-connectedness in expanders requires that
every “not-too-large” set of vertices has “many” neighbors:

Definition 4.1. A digraph G is a (K,A) vertex expander if for
all sets S of at most K vertices, the neighborhood N(S) def= {u|∃v ∈
S s.t. (u,v) ∈ E} is of size at least A · |S|.

Ideally, we would like D = O(1), K = Ω(N), where N is the number
of vertices, and A as close to D as possible.

There are several other measures of expansion, some of which we
will examine in forthcoming sections:

• Boundary Expansion: Instead of N(S), only use the boundary
∂S

def= N(S) \ S.
• Edge Expansion (cuts): Instead of ∂S, use the number of

edges leaving S.
• Random Walks: Random walks converge quickly to the uni-

form distribution, that is, the second eigenvalue λ(G) is
small.

• “Quasi-randomness” (a.k.a “Mixing”): for every two sets S

and T (say of constant density), the fraction of edges between
S and T is roughly the product of their densities.

All of these measures are very closely related to each other, and are
even equivalent for certain settings of parameters.

It is not obvious from the definition that good vertex expanders
(say, with D = O(1), K = Ω(N), and A = 1 + Ω(1)) even exist. We
will show this using the Probabilistic Method.

Theorem 4.2. For all constants D ≥ 3, there is a constant α > 0 such
that for all N , a random D-regular undirected graph on N vertices is
an (αN,D − 1.01) vertex expander with probability at least 1/2.

Note that the degree bound of 3 is the smallest possible, as every
graph of degree 2 is a poor expander (being a union of cycles and
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chains). In addition, for most settings of parameters, it is impossible to
have expansion larger than D − 1 (as shown in Problem 4.3).

We prove a slightly simpler theorem for bipartite expanders.

Definition 4.3. A bipartite multigraph G is a (K,A) vertex expander
if for all sets S of left-vertices of size at most K, the neighborhood
N(S) is of size at least A · |S|.

Now, let BipN,D be the set of bipartite multigraphs that have N

vertices on each side and are D-leftregular, meaning that every vertex
on the left has D neighbors, numbered from 1, . . . ,D (but vertices on
the right may have varying degrees).

Theorem 4.4. For every constant D, there exists a constant α > 0
such that for all N , a uniformly random graph from BipN,D is an
(αN,D − 2) vertex expander with probability at least 1/2.

Proof. First, note that choosing G
R← BipN,D is equivalent to uniformly

and independently choosing D neighbors on the right for each left
vertex v. Now, for K ≤ αN , let pK be the probability that there
exists a left-set S of size exactly K that does not expand by at
least D − 2. Fixing a subset S of size K, N(S) is a set of KD ran-
dom vertices in [N ] (chosen with replacement). We can imagine these
vertices V1,V2, . . . ,VKD being chosen in sequence. Call Vi a repeat if
Vi ∈ {V1, . . . ,Vi−1}. Then the probability that Vi is a repeat, even con-
ditioned on V1, . . . ,Vi−1, is at most (i − 1)/N ≤KD/N . So,

Pr[|N(S)| ≤ (D − 2) · K] ≤ Pr[there are at least 2K

repeats among V1, . . . ,VKD]

≤
(

KD

2K

)(
KD

N

)2K

.
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where e is the base of the natural logarithm. Since K ≤ αN , we can
set α = 1/(e3D4) to obtain pK ≤ 4−K . Thus

Pr
G∈BipN,D

[G is not an (αN,D − 2) expander] ≤
αN�∑
K=1

4−K <
1
2
.

There are a number of variants to the above probabilistic construc-
tion of expanders.

• We can obtain a bipartite multigraph that is D-regular on
both sides by taking the union of D random perfect match-
ings. This can be analyzed using a small modification of the
analysis above; even though V1, . . . ,VKD are not indepen-
dent, the probability of a Vi being a repeat conditioned on
V1, . . . ,Vi−1 can still be bounded by KD/(N − K). Also, the
multigraph can be made into a simple graph by eliminating
or redistributing edges.

• One can optimize α rather than the expansion factor A,
showing that for all constants α < 1 and D > 2, there exists
a constant A > 1 such that for all sufficiently large N , a
random graph in BipN,D is an (αN,A) vertex expander with
high probability.

• In fact, a very general tradeoff between D, α, and A is known:
a random D-regular N -vertex bipartite multigraph is an
(αN,A) vertex expander with high probability for sufficiently
large N if D > H(α)+H(αA)

H(α)−αAH(1/A) , where H(p) = p log(1/p) +
(1 − p) log(1/(1 − p)) is the binary entropy function.

• The results can also be extended to unbalanced bipartite
graphs (where the right side is smaller than the left), and
nonbipartite graphs as well, and both of these cases are
important in some applications.

In addition to being natural combinatorial objects, expander graphs
have numerous applications in theoretical computer science, including
the construction of fault-tolerant networks (indeed, the first papers
on expanders were in conferences on telephone networks), sorting in
O(logn) time in parallel, derandomization (as we will see), lower
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bounds in circuit complexity and proof complexity, error-correcting
codes, negative results regarding integrality gaps for linear
programming relaxations and metric embeddings, distributed routing,
and data structures. For many of these applications, it is not enough
to know that a random graph is a good expander — we need explicit
constructions, that is, ones that are deterministic and efficient. We view
such explicit expanders as “pseudorandom objects” because they are
fixed graphs that possess many of the properties of random graphs.

4.1.2 Spectral Expansion

Intuitively, another way of saying that a graph is well-connected is
to require that random walks on the graph converge quickly to the
stationary distribution. As we have seen in Section 2.4.2, the mixing
rate of random walks in turn is captured well by the second largest
eigenvalue of the transition matrix, and this turns out to be a very
useful measure of expansion for many purposes.

Recall that for an N -vertex regular directed graph G with random-
walk matrix M , we define

λ(G) def= max
π

‖πM − u‖
‖π − u‖ = max

x⊥u

‖xM‖
‖x‖ ,

where u = (1/N,. . . ,1/N) ∈ RN is the uniform distribution on [N ], the
first maximum is over all probability distributions π ∈ [0,1]N , and the
second maximum is over all vectors x ∈ RN that are orthogonal to u.
We write γ(G) def= 1 − λ(G) to denote the spectral gap of G.

Definition 4.5. For γ ∈ [0,1], we say that a regular digraph G has
spectral expansion γ if γ(G) ≥ γ (equivalently, λ(G) ≤ 1 − γ).1

Larger values of γ(G) (or smaller values of λ(G)) correspond to bet-
ter expansion. Sometimes it is more natural to state results in terms of
γ(G) and sometimes in terms of λ(G). Surprisingly, this linear-algebraic

1 In other sources (including the original lecture notes on which this survey was based), the
spectral expansion referred to λ rather than γ. Here we use γ, because it has the more
natural feature that larger values of γ correspond to the graph being “more expanding.”
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measure of expansion turns out to be equivalent to the combinatorial
measure of vertex expansion for common parameters of interest.

One direction is given by the following:

Theorem 4.6 (spectral expansion ⇒ vertex expansion). If G

is a regular digraph with spectral expansion γ = 1 − λ for some λ ∈
[0,1], then, for every α ∈ [0,1], G is an

(
αN,1/((1 − α)λ2 + α)

)
vertex

expander. In particular, G is an (N/2,1 + γ) expander.

We prove this theorem using the following two useful statistics of
probability distributions.

Definition 4.7. For a probability distribution π, the collision proba-
bility of π is defined to be the probability that two independent sam-
ples from π are equal, namely CP(π) =

∑
x π2

x. The support of π is
Supp(π) = {x : πx > 0}.

Lemma 4.8. For every probability distribution π ∈ [0,1]N , we have:

(1) CP(π) = ‖π‖2 = ‖π − u‖2 + 1/N , where u is the uniform
distribution on [N ].

(2) CP(π) ≥ 1/ |Supp(π)|, with equality iff π is uniform on
Supp(π).

Proof. For Part 1, the fact that CP(π) = ‖π‖2 follows immediately from
the definition. Then, writing π = u + (π − u), and noting that π − u is
orthogonal to u, we have ‖π‖2 = ‖u‖2 + ‖π − u‖2 = 1/N + ‖π − u‖2.

For Part 2, by Cauchy–Schwarz we have

1 =
∑

x∈Supp(π)

πx ≤
√
|Supp(π)| ·

√∑
x

π2
x =

√
|Supp(π)| ·

√
CP(π),

with equality iff π is uniform on Supp(π).

Proof of Theorem 4.6 The condition that G has spectral expansion
γ = 1 − λ is equivalent to saying that λ(G) ≤ λ. By the definition of
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λ(G) and Part 1 of Lemma 4.8, we have

CP(πM) − 1
N
≤ λ2 ·

(
CP(π) − 1

N

)
for every probability distribution π. Letting S be any subset of the
vertices of size at most αN and π the uniform distribution on S, we
have CP(π) = 1/|S| and CP(πM) ≥ 1/ |Supp(πM)| = 1/ |N(S)|. Thus,(

1
|N(S)| −

1
N

)
≤ λ2 ·

(
1
|S| −

1
N

)
.

Solving for |N(S)| and using N ≥ |S|/α, we obtain |N(S)| ≥
|S|/(λ2(1 − α) + α), as desired.

The other direction, i.e., obtaining spectral expansion from vertex
expansion, is more difficult (and we will not prove it here).

Theorem 4.9 (vertex expansion ⇒ spectral expansion). For
every δ > 0 and D > 0, there exists γ > 0 such that if G is a D-regular
(N/2,1 + δ) vertex expander, then it also has spectral expansion γ.
Specifically, we can take γ = Ω((δ/D)2).

Note first the dependence on subset size being N/2: this is necessary,
because a graph can have vertex expansion (αN,1 + Ω(1)) for α < 1/2
and be disconnected (e.g., the disjoint union of two good expanders),
thereby having no spectral expansion. Also note that the bound on γ

deteriorates as D increases. This is also necessary, because adding edges
to a good expander cannot hurt its vertex expansion, but can hurt its
spectral expansion.

Still, roughly speaking, these two results show that vertex expansion
and spectral expansion are closely related, indeed equivalent for many
interesting settings of parameters:

Corollary 4.10. Let G be an infinite family of D-regular multigraphs,
for a constant D ∈ N. Then the following two conditions are equivalent:

• There is a constant δ > 0 such that every G ∈ G is an
(N/2,1 + δ) vertex expander.
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• There is a constant γ > 0 such that every G ∈ G has spectral
expansion γ.

When people informally use the term “expander,” they often mean
a family of regular graphs of constant degree D satisfying one of the
two equivalent conditions above.

However, the two measures are no longer equivalent if one wants
to optimize the expansion constants. For vertex expansion, we have
already seen that if we allow α to be a small constant (depending on
D), then there exist (αN,A) vertex expanders with A very close to
D − 1, e.g., A = D − 1.01, and Problem 4.3 shows that A cannot be
any larger than D − 1. The optimal value for the spectral expansion is
also well-understood. First note that, by taking α→ 0 in Theorem 4.6,
a graph with spectral expansion 1 − λ has vertex expansion A ≈ 1/λ2

for small sets. Thus, a lower bound on λ is 1/
√

D − o(1). In fact, this
lower bound can be improved, as shown in the following theorem (and
proven in Problem 4.4):

Theorem 4.11. For every constant D ∈ N, any D-regular, N -vertex
multigraph G satisfies λ(G) ≥ 2

√
D − 1/D − O(1), where the O(1)

term vanishes as N →∞ (and D is held constant).

Surprisingly, there exist explicit constructions giving λ(G) <

2
√

D − 1/D. Graphs meeting this bound are called Ramanujan graphs.
Random graphs almost match this bound, as well:

Theorem 4.12. For any constant D ∈ N, a random D-regular N -
vertex graph satisfies λ(G) ≤ 2

√
D − 1/D + O(1) with probability

1 − O(1) where both O(1) terms vanish as N →∞ (and D is held
constant).

Now let us see what these results for spectral expansion
imply in the world of vertex expansion. With Ramanujan graphs
(λ(G) ≤ 2

√
D − 1/D), the bound from Theorem 4.6 gives a vertex

expansion factor of A ≈ D/4 for small sets. This is not tight, and
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it is known that Ramanujan graphs actually have vertex expansion
D/2 − O(1) for sets of density O(1), which is tight in the sense that
there are families of graphs with λ(G)→ 2

√
D − 1/D but vertex

expansion at most D/2. Still, this vertex expansion is not as good
as we obtained via the Probabilistic Method (Theorem 4.2), where
we achieved vertex expansion D − O(1). This means that we cannot
obtain optimal vertex expansion by going through spectral expansion.
Similarly, we cannot obtain optimal spectral expansion by going
through vertex expansion (because the bound on spectral expansion in
Theorem 4.9 necessarily deteriorates as the degree D increases). The
conclusion is that vertex and spectral expansion are loosely equivalent,
but only if we are not interested in optimizing the constants in the
tradeoffs between various parameters (and for some applications these
are crucial).

4.1.3 Other Measures of Expansion

In this section, we mention two other useful measures of expansion
involving edges crossing cuts in the graph. For two sets S,T ⊂ V (G),
let e(S,T ) = ‖{(u,v) ∈ S × T | {u,v} ∈ E}‖. Here (u,v) refers to an
ordered pair, in contrast to the definition of cut(S,T ) in Section 2.3.4.
Thus, we count edges entirely within S ∩ T twice, corresponding to
both orientations.

Definition 4.13. A D-regular digraph G is a (K,ε) edge expander if
for all sets S of at most K vertices, the cut size e(S,S) is at least
ε · |S| · D.

That is, at least an ε fraction of the edges from S lead outside S.
(Sometimes edge expansion is defined without the normalization factor
of D, only requiring e(S,S) ≥ ε · |S|.) When viewed in terms of the
random walk on G, the ratio e(S,S)/(|S| · D) is the probability that,
if we condition the stationary distribution on being in S, the random
walk leaves S in one step. It turns out that if we fix K = N/2, then
edge expansion turns out to be even more closely related to spectral
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expansion than vertex expansion is. Indeed:

Theorem 4.14.

(1) If a D-regular, N -vertex digraph G has spectral expansion
γ, then G is an (N/2,γ/2) edge expander.

(2) If a D-regular, N -vertex digraph G is a (N/2,ε) edge
expander and at least an α fraction of edges leaving each
vertex are self-loops for some α ∈ [0,1], then G has spectral
expansion α · ε2/2.

The condition about self-loops in Part 2 is to ensure that the graph
is far from being bipartite (or more generally “periodic” in the sense
that all cycle lengths are divisible by some number larger than 1),
because a bipartite graph has spectral expansion 0 but can have positive
edge expansion. For graphs with a constant fraction of self-loops at
each vertex, the theorem implies that the edge expansion is bounded
away from 0 iff the spectral expansion is bounded away from 0. Unlike
Corollary 4.10, this equivalence holds even for graphs of unbounded
degree. The intuition for the relation is that a large edge expansion ε

implies that the random walk on the graph has no “bottlenecks” and
thus should mix rapidly. This connection also holds for Markov chains
in general (when the definitions are appropriately generalized), where
the edge expansion is known as the conductance. Part 1 of Theorem 4.14
will follow as a special case of the Expander Mixing Lemma below; we
omit the proof of Part 2.

Next, we consider a generalization of edge expansion, where we look
at edges not just from a set S to its complement but between any
two sets S and T . If we think of an expander as being like a random
graph, we would expect the fraction of edges that go from S to T to be
approximately equal to the product of the densities of S and T . The
following result shows that this intuition is correct:

Lemma 4.15 (Expander Mixing Lemma). Let G be a D-regular,
N -vertex digraph with spectral expansion 1 − λ. Then for all sets of
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vertices S,T of densities α = |S|/N and β = |T |/N , we have∣∣∣∣e(S,T )
N · D − αβ

∣∣∣∣ ≤ λ
√

α · (1 − α) · β · (1 − β).

≤ λ
√

αβ ≤ λ.

Observe that the denominator N · D counts all edges of the graph
(as ordered pairs). The lemma states that the difference between the
fraction of edges from S to T and the expected value if we were to choose
G randomly is “small,” roughly λ times the square root of this fraction.
Finally, note that Part 1 of Theorem 4.14 follows from the Expander
Mixing Lemma by setting T = Sc, so β = 1 − α and e(S,T )/ND ≥
(1 − λ) · α · (1 − α) ≥ γα/2.

When a digraph G = (V,E) has the property that
|e(S,T )/|E| − αβ| = O(1) for all sets S,T (with densities α,β),
the graph is called quasirandom. Thus, the Expander Mixing Lemma
implies that a regular digraph with λ(G) = O(1) is quasirandom.
Quasirandomness has been studied extensively for dense graphs, in
which case it has numerous equivalent formulations. Here we are most
interested in sparse graphs, especially constant-degree graphs (for
which λ(G) = O(1) is impossible).

Proof. Let χS be the characteristic (row) vector of S and χT

the characteristic vector of T . Let A be the adjacency matrix of
G, and M = A/D be the random-walk matrix for G. Note that
e(S,T ) = χSAχt

T = χS(DM)χt
T , where the superscript t denotes the

transpose.
We can express χS as the sum of two components, one paral-

lel to the uniform distribution u, and the other a vector χ⊥S , where
χ⊥S ⊥ u. The coefficient of u is 〈χS ,u〉/〈u,u〉 =∑

i(χS)i = |S| = αN .
Then χS = (αN)u + χ⊥S and similarly χT = (βN)u + χ⊥T . Intuitively,
the components parallel to the uniform distribution “spread” the weight
of S and T uniformly over the entire graph, and χ⊥S and χ⊥T will yield
the error term.
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Formally, we have

e(S,T )
N · D =

1
N

((αN)u + χ⊥S )M((βN)u + χ⊥T )t

=
1
N

(αβN2)uMut +
1
N

(αN)uM(χ⊥T )t

+
1
N

(βN)χ⊥S Mut +
1
N

χ⊥S M(χ⊥T )t.

Since uM = u and Mut = ut, and both χ⊥S and χ⊥T are orthogonal to
u, the above expression simplifies to:

e(S,T )
N · D = (αβN)uut +

χ⊥S M(χ⊥T )t

N
= αβ +

(χ⊥S M)(χ⊥T )t

N
.

Thus, ∣∣∣∣e(S,T )
N · D − αβ

∣∣∣∣ =
∣∣∣∣(χ⊥S M)(χ⊥T )t

N

∣∣∣∣
≤ 1

N
· ‖χ⊥S M‖ · ‖χ⊥T ‖

≤ 1
N
· λ‖χ⊥S ‖ · ‖χ⊥T ‖.

To complete the proof, we note that

αN = ‖χS‖2 = ‖(αN)u‖2 + ‖χ⊥S ‖2 = α2N + ‖χ⊥S ‖2,
so ‖χ⊥S ‖ =

√
(α − α2)N =

√
α · (1 − α) · N and similarly χ⊥T =√

β · (1 − β) · N .

Similarly to vertex expansion and edge expansion, a natural ques-
tion is to what extent the converse holds. That is, if e(S,T )/ND is
always “close” to the product of the densities of S and T , then is λ(G)
necessarily small? This is indeed true:

Theorem 4.16 (Converse to Expander Mixing Lemma). Let G

be a D-regular, N -vertex undirected graph. Suppose that for all pairs
of disjoint vertex sets S,T , we have |e(S,T )/(N · D) − µ(S)µ(T )| ≤
θ
√

µ(S)µ(T ) for some θ ∈ [0,1], where µ(R) = |R|/N for any set R of
vertices. Then λ(G) = O (θ log(1/θ)).
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Putting the two theorems together, we see that λ and θ are the
same up to a logarithmic factor. Thus, unlike the other connections we
have seen, this connection is good for highly expanding graphs (i.e.,
λ(G) close to zero, γ(G) close to 1).

4.2 Random Walks on Expanders

From the previous section, we know that one way of characterizing
an expander graph G is by having a bound on its second eigenvalue
λ(G), and in fact there exist constant-degree expanders where λ(G) is
bounded by a constant less than 1. From Section 2.4.3, we know that
this implies that the random walk on G converges quickly to the uni-
form distribution. Specifically, a walk of length t started at any vertex
ends at �2 distance at most λt from the uniform distribution. Thus
after t = O(logN) steps, the distribution is very close to uniform, for
example, the probability of every vertex is (1 ± 0.01)/N . Note that,
if G has constant degree, the number of random bits invested here is
O(t) = O(logN), which is within a constant factor of optimal; clearly
logN − O(1) random bits are also necessary to sample an almost uni-
form vertex. Thus, expander walks give a very good tradeoff between
the number of random bits invested and the “randomness” of the final
vertex in the walk. Remarkably, expander walks give good randomness
properties not only for the final vertex in the walk, but also for the
sequence of vertices traversed in the walk. Indeed, in several ways to
be formalized below, this sequence of vertices “behaves” like uniform
independent samples of the vertex set.

A canonical application of expander walks is for randomness-
efficient error reduction of randomized algorithms: Suppose we have an
algorithm with constant error probability, which uses some m random
bits. Our goal is to reduce the error to 2−k, with a minimal penalty in
random bits and time. Independent repetitions of the algorithm suffers
just an O(k) multiplicative penalty in time, but needs O(km) random
bits. We have already seen that with pairwise independence we can use
just O(m + k) random bits, but the time blows up by O(2k). Expander
graphs let us have the best of both worlds, using just m + O(k) ran-
dom bits, and increasing the time by only an O(k) factor. Note that
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for k = O(m), the number of random bits is (1 + O(1)) · m, even better
than what pairwise independence gives.

The general approach is to consider an expander graph with vertex
set {0,1}m, where each vertex is associated with a setting of the random
bits. We will choose a uniformly random vertex v1 and then do a ran-
dom walk of length t − 1, visiting additional vertices v2, . . . ,vt. (Note
that unlike the rapid mixing analysis, here we start at a uniformly ran-
dom vertex.) This requires m random bits for the initial choice, and
logD for each of the t − 1 steps. For every vertex vi on the random walk,
we will run the algorithm with vi as the setting of the random coins.

First, we consider the special case of randomized algorithms with
one-sided error (RP). For these, we should accept if at least one exe-
cution of the algorithm accepts, and reject otherwise. If the input is a
No instance, the algorithm never accepts, so we also reject. If the input
is a Yes instance, we want our random walk to hit at least one vertex
that makes the algorithm accept. Let B denote the set of “bad” vertices
giving coin tosses that make the algorithm reject. By the definition of
RP, the density of B is at most 1/2. Thus, our aim is to show that the
probability that all the vertices in the walk v1, . . . ,vt are in B vanishes
exponentially fast in t, if G is a good expander.

The case t = 2 follows from the Expander Mixing Lemma given
in the previous section. If we choose a random edge in a graph with
spectral expansion 1 − λ, the probability that both endpoints are in a
set B is at most µ(B)2 + λ · µ(B). So if λ µ(B), then the probability
is roughly µ(B)2, just like two independent random samples. The case
of larger t is given by the following theorem.

Theorem 4.17(Hitting Property of Expander Walks). If G is a
regular digraph with spectral expansion 1 − λ , then for any B ⊂ V (G)
of density µ, the probability that a random walk (V1, . . . ,Vt) of t − 1
steps in G starting in a uniformly random vertex V1 always remains in
B is

Pr

[
t∧

i=1

Vi ∈ B

]
≤ (µ + λ · (1 − µ))t .
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Equivalently, a random walk “hits” the complement of B with high
probability. Note that if µ and λ are constants less than 1, then the
probability of staying in B is 2−Ω(t), completing the analysis of the
efficient error-reduction algorithm for RP.

Before proving the theorem, we discuss general approaches to ana-
lyzing spectral expanders and random walks on them. Typically, the
first step is to express the quantities of interest linear-algebraically,
involving applications of the random-walk (or adjacency) matrix M

to some vectors v. For example, when proving the Expander Mixing
Lemma (Lemma 4.15), we expressed the fraction of edges between sets
S and T as χSMχt

T (up to some normalization factor). Then we can
proceed in one of the two following ways:

Vector Decomposition Decompose the input vector(s) v as v = v‖ +
v⊥, where v‖ = (〈v,u〉/〈u,u〉)u is the component of v in the
direction of the uniform distribution u and v⊥ is the component
of v orthogonal to u. Then this induces a similar orthogonal
decomposition of the output vector vM into

vM = (vM)‖ + (vM)⊥ = v‖M + v⊥M,

where v‖M = v‖ and ‖v⊥M‖ ≤ λ · ‖v⊥‖. Thus, from informa-
tion about how vs lengths are divided into the uniform and non-
uniform components, we deduce information about how vM is
divided into the uniform and non-uniform components. This
is the approach we took in the proof of the Expander Mixing
Lemma.

Matrix Decomposition This corresponds to a different decomposi-
tion of the output vector vM that can be expressed in a way
that is independent of the decomposition of the input vector v.
Specifically, if G has spectral expansion γ = 1 − λ, then

vM = v‖ + v⊥M = γ · v‖ + (λ · v‖ + v⊥M)

= γ · vJ + λ · vE = v(γJ + λE),

where J is the matrix in which every entry is 1/N and the error
matrix E satisfies ‖vE‖ ≤ ‖v‖. The advantage of this decom-
position is that we can apply it even when we have no infor-
mation about how v decomposes (only its length). The fact
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that M is a convex combination of J and E means that we
can often treat each of these components separately and then
just apply the triangle inequality. However, it is less refined
than the vector decomposition approach, and sometimes gives
weaker bounds. Indeed, if we used it to prove the Expander
Mixing Lemma (without decomposing χS and χT ), we would
get a slightly worse error term of λ

√
µ(S)µ(T ) + λµ(S)µ(T ).

The Matrix Decomposition Approach can be formalized using the
following notion.

Definition 4.18. The (spectral) norm of an N × N real matrix M is
defined to be

‖M‖ = max
x∈RN

‖xM‖
‖x‖

(If M is symmetric, then ‖M‖ equals the largest absolute value of any
eigenvalue of M .)

Some basic properties of the matrix norm are that ‖cA‖ = |c| · ‖A‖,
‖A + B‖ ≤ ‖A‖ + ‖B‖, and ‖A · B‖ ≤ ‖A‖ · ‖B‖ for every two matri-
ces A, B, and c ∈ R. Following the discussion above, we have the fol-
lowing lemma:

Lemma 4.19. Let G be a regular digraph on N vertices with random-
walk matrix M . Then G has spectral expansion γ = 1 − λ iff M =
γJ + λE, where J is the N × N matrix where every entry is 1/N (i.e.,
the random-walk matrix for the complete graph with self-loops) and
‖E‖ ≤ 1.

Proof. Suppose that G has spectral expansion γ. Then define E =
(M − γJ)/λ. To see that E has norm at most 1, first observe that
uE = (uM − γuJ)/λ = (1 − γ)u/λ = u. Thus it suffices to show that
for every vector v orthogonal to u, the vector vE is orthogonal to u and
is of length at most ‖v‖. Orthogonality follows because vM is orthog-
onal to u (by regularity of G) and vJ = 0. The length bounds follows
from vE = (vM)/λ and ‖vM‖ ≤ λ‖v‖ by the spectral expansion of G.
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Conversely, suppose that M = γJ + λE for some ‖E‖ ≤ 1. Then for
every vector v orthogonal to u, we have ‖vM‖ = ‖0 + λvE‖ ≤ λ‖v‖,
and thus G has spectral expansion γ.

Intuitively, this lemma says that we can think of a random step
on a graph with spectral expansion γ as being a random step on the
complete graph with probability γ and “not doing damage” with prob-
ability 1 − γ. This intuition would be completely accurate if E were
a stochastic matrix, but it is typically not (e.g., it may have nega-
tive entries). Still, note that the bound given in Theorem 4.17 exactly
matches this intuition: in every step, the probability of remaining in B

is at most γ · µ + λ = µ + λ · (1 − µ).
Now we can return to the proof of the theorem.

Proof of Theorem 4.17. We need a way to express getting stuck in
B linear-algebraically. For that, we define P to be the diagonal matrix
with Pi,i = 1 if i ∈ B and Pi,i = 0 otherwise. Thus, the probability a
distribution π picks a node in B is |πP |1, where | · |1 is the �1 norm,
|x|1 =

∑ |xi| (which in our case is equal to the sum of the components
of the vector, since all values are nonnegative).

Let M be the random-walk matrix of G. The probability distribu-
tion for the first vertex V1 is given by the vector u. Now we can state
the following crucial fact:

Claim 4.20. The probability that the random walk stays entirely
within B is precisely |uP (MP )t−1|1.

Proof of Claim: By induction on �, we show that (uP (MP )�)i is the
probability that the first � + 1 vertices of the random walk are in B and
the (� + 1)st vertex is i. The base case is � = 0. If i ∈ B, (uP )i = 1/N ;
if i /∈ B, (uP )i = 0. Now assume the hypothesis holds up to some �.
Then (uP (MP )�M)i is the probability that the first � + 1 vertices of
the random walk are in B and the (� + 2)nd vertex is i (which may
or may not be in B). Multiplying by P , we zero out all components
for nodes not in B and leave the others unchanged. Thus, we obtain
the probability that the first � + 2 vertices are in B and the (� + 2)nd
vertex is i.
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To get a bound in terms of the spectral expansion, we will now
switch to the �2 norm. The intuition is that multiplying by M shrinks
the component that is perpendicular to u (by expansion) and multi-
plying by P shrinks the component parallel to u (because it zeroes out
some entries). Thus, we should be able to show that the norm ‖MP‖
is strictly less than 1. Actually, to get the best bound, we note that
uP (MP )t−1 = uP (PMP )t−1, because P 2 = P , so we instead bound
‖PMP‖. Specifically:

Claim 4.21. ‖PMP‖ ≤ µ + λ · (1 − µ).

Proof of Claim: Using the Matrix Decomposition Lemma
(Lemma 4.19), we have:

‖PMP‖ = ‖P (γJ + λE)P‖
≤ γ · ‖PJP‖ + λ · ‖PEP‖
≤ γ · ‖PJP‖ + λ

Thus, we only need to analyze the case of J , the random walk on the
complete graph. Given any vector x, let y = xP , so

xPJP = yJP =

(∑
i

yi

)
uP.

Since ‖y‖ ≤ ‖x‖ and y has at most µN nonzero coordinates, we have

‖xPJP‖ ≤
∣∣∣∣∣∑

i

yi

∣∣∣∣∣ · ‖uP‖ ≤
(√

µN · ‖y‖
)
·
√

µ

N
≤ µ · ‖x‖.

Thus,

‖PMP‖ ≤ γ · µ + λ = µ + λ · (1 − µ).

Using Claims 4.20 and 4.21, the probability of never leaving B in a
(t − 1)-step random walk is

|uP (MP )t−1|1 ≤
√

µN · ‖uP (MP )t−1‖
≤
√

µN · ‖uP‖ · ‖PMP‖t−1
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≤
√

µN ·
√

µ

N
· (µ + λ · (1 − µ))t−1

≤ (µ + λ · (1 − µ))t.

The hitting properties described above suffice for reducing the error
of RP algorithms. What about BPP algorithms, which have two-sided
error? They are handled by the following.

Theorem 4.22(Chernoff Bound for Expander Walks). Let G be
a regular digraph with N vertices and spectral expansion 1 − λ, and
let f : [N ]→ [0,1] be any function. Consider a random walk V1, . . . ,Vt

in G from a uniform start vertex V1. Then for any ε > 0

Pr

[∣∣∣∣∣1t ∑
i

f(Vi) − µ(f)

∣∣∣∣∣ ≥ λ + ε

]
≤ 2e−Ω(ε2t).

Note that this is just like the standard Chernoff Bound (Theo-
rem 2.21), except that our additive approximation error increases by
λ = 1 − γ. Thus, unlike the Hitting Property we proved above, this
bound is only useful when λ is sufficiently small (as opposed to bounded
away from 1). This can be achieved by taking the a power of the initial
expander, where edges correspond to walks of length t in the original
expander; this raises the random-walk matrix and λ to the tth power.
However, there is a better Chernoff Bound for Expander Walks, where
λ does not appear in the approximation error, but the exponent in
the probability of error is Ω(γε2t) instead of Ω(ε2t). The bound above
suffices in the common case that a small constant approximation error
can be tolerated, as in error reduction for BPP.

Proof. Let Xi be the random variable f(Vi), and X =
∑

i Xi. Just like
in the standard proof of the Chernoff Bound (Problem 2.7), we show
that the expectation of the moment generating function erX =

∏
i e

rXi

is not much larger than erE[X] and apply Markov’s Inequality, for a
suitable choice of r. However, here the factors erXi are not indepen-
dent, so the expectation does not commute with the product. Instead,
we express E[erX ] linear-algebraically as follows. Define a diagonal
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matrix P whose (i, i)th entry is erf(i). Then, similarly Claim 4.20 in
the proof of the hitting proof above, we observe that

E[erX ] =
∣∣uP (MP )t−1∣∣

1 =
∣∣u(MP )t

∣∣
1 ≤
√

N · ‖u‖ · ‖MP‖t = ‖MP‖t.
To see this, we simply note that each cross-term in the matrix product
uP (MP )t−1 corresponds to exactly one expander walk v1, . . . ,vt, with
a coefficient equal to the probability of this walk times

∏
i e

f(vi). By
the Matrix Decomposition Lemma (Lemma 4.19), we can bound

‖MP‖ ≤ (1 − λ) · ‖JP‖ + λ · ‖EP‖.
Since J simply projects onto the uniform direction, we have

‖JP‖2 =
‖uP‖2
‖u‖2

=
∑

v(e
r·f(v)/N)2∑

v(1/N)2

=
1
N
·
∑

v

e2rf(v)

=
1
N
·
∑

v

(1 + 2rf(v) + O(r2))

= 1 + 2rµ + O(r2)

for r ≤ 1, and thus

‖JP‖ =
√

1 + 2rµ + O(r2) = 1 + rµ + O(r2).

For the error term, we have

‖EP‖ ≤ ‖P‖ ≤ er = 1 + r + O(r2).

Thus,

‖MP‖ ≤ (1 − λ) · (1 + rµ + O(r2)) + λ · (1 + r + O(r2))

≤ 1 + (µ + λ)r + O(r2),

and we have

E[erX ] ≤ (1 + (µ + λ)r + O(r2))t ≤ e(µ+λ)rt+O(r2t).
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By Markov’s Inequality,

Pr[X ≥ (µ + λ + ε) · t] ≤ e−εrt+O(r2t) = e−Ω(ε2t),

if we set r = ε/c for a large enough constant c. By applying the same
analysis to the function 1 − f , we see that Pr[X ≤ (µ − λ − ε)t] =
e−Ω(ε2t), and this establishes the theorem.

We now summarize the properties that expander walks give us for
randomness-efficient error reduction and sampling.

For reducing the error of a BPP algorithm from 1/3 to 2−k, we can
apply Theorem 4.22 with λ = ε = 1/12, so that a walk of length t =
O(k) suffices. If the original BPP algorithm used m random bits and
the expander is of constant degree (which is possible with λ = 1/12),
then the number of random bits needed is only m + O(k). Comparing
with previous methods for error reduction, we have:

Number of Number of
Repetitions Random Bits

Independent Repetitions O(k) O(km)
Pairwise Independent Repetitions O(2k) O(k + m)
Expander Walks O(k) m + O(k)

For Sampling, where we are given an oracle to a function
f : {0,1}m→ [0,1] and we want to approximate µ(f) to within an addi-
tive error of ε, we can apply Theorem 4.22 with error ε/2 and λ = ε/2.
The needed expander can be obtained by taking an O(log(1/ε))th
power of a constant-degree expander, yielding the following bounds:

Number of Number of
Samples Random Bits

Truly Random Sample O((1/ε2) · log(1/δ)) O(m · (1/ε2) · log(1/δ))
Pairwise Independent O((1/ε2) · (1/δ)) O(m + log(1/ε) + log(1/δ))

Samples
Expander Walks O((1/ε2) · log(1/δ)) m + O(log(1/δ) · (log(1/ε)/ε2))
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The log(1/ε) factor in the number of random bits comes because we
took an O(log(1/ε))th power of a constant-degree expander and thus
spend O(log(1/ε)) random bits for each step on the expander. This
is actually not necessary and comes from the slightly weaker Chernoff
Bound we proved. In any case, note that expander walks have a much
better dependence on the error probability δ in the number of samples
(as compared to pairwise independence), but have a worse dependence
on the approximation error ε in the number of random bits. Problem 4.5
shows how to combine these two samplers to achieve the best of both.

Similarly to pairwise independence, the sampling algorithm based
on expander walks is actually an averaging sampler in the sense of
Definition 3.29:

Theorem 4.23 (Expander-Walk Sampler). For every m ∈ N and
δ,ε ∈ [0,1], there is a (δ,ε) averaging sampler Samp : {0,1}n→
({0,1}m)t using n = m + O(log(1/δ) · log(1/ε)/ε2) random bits and
t = O((1/ε2) · log(1/δ)) samples.

The sampling algorithm of Problem 4.5 that combines expander
walks and pairwise independence, however, is not an averaging sampler,
and it is an open problem to achieve similar parameters with an explicit
averaging sampler:

Open Problem 4.24. Give an explicit construction of a (δ,ε) averag-
ing sampler Samp : {0,1}n→ ({0,1}m)t that uses n = O(m + log(δ) +
log(1/ε)) random bits and t = O((1/ε2) · log(1/δ)) samples.

Before we end this section, we make an important remark: we have
not actually given an efficient algorithm for randomness-efficient error
reduction (or an explicit averaging sampler)! Our algorithm assumes an
expander graph of exponential size, namely 2m where m is the number
of random bits used by the algorithm. Generating such a graph at ran-
dom would use far too many coins. Even generating it deterministically
would not suffice, since we would have to write down an exponential-
size object. In the following section, we will see how to define an explicit
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expander graph without writing it down in its entirety, and efficiently
do random walks in such a graph.

4.3 Explicit Constructions

As discussed in previous sections, expander graphs have numerous
applications in theoretical computer science. (See also the Chapter
Notes and Exercises.) For some of these applications, it may be accept-
able to simply choose the graph at random, as we know that a random
graph will be a good expander with high probability. For many appli-
cations, however, this simple approach does not suffice. Some reasons
are the following (in increasing order of significance):

• We may not want to tolerate the error probability introduced
by the (unlikely) event that the graph is not an expander.
To deal with this, we could try checking that the graph is
an expander. Computing the expansion of a given graph is
NP-hard for most of the combinatorial measures (e.g., ver-
tex expansion or edge expansion), but the spectral expansion
can be computed to high precision in time polynomial in the
size of the graph (as it is just an eigenvalue computation).
As we saw, spectral expansion does yield estimates on ver-
tex expansion and edge expansion (but cannot give optimal
expansion in these measures).

• Some of the applications of expanders (like the one from the
previous section) are for reducing the amount of randomness
needed for certain tasks. Thus choosing the graph at random
defeats the purpose.

• A number of the applications require exponentially large
expander graphs, and thus we cannot even write down a
randomly chosen expander. For example, for randomness-
efficient error reduction of randomized algorithms, we need
an expander on 2m nodes where m is the number of random
bits used by the algorithm.

From a more philosophical perspective, finding explicit constructions
is a way of developing and measuring our understanding of these
important combinatorial objects.



4.3 Explicit Constructions 103

A couple of alternatives for defining explicit constructions of
expanders on N nodes are:

Mildly Explicit: Construct a complete representation of the graph
in time poly(N).

Fully Explicit: Given a node u ∈ [N ] and i ∈ [D], where D is the
degree of the expander, compute the ith neighbor of u in time
poly(logN).

Consider the randomness-efficient error reduction application discussed
in the previous section, in which we performed a random walk on an
expander graph with exponentially many nodes. Mild explicitness is
insufficient for this application, as the desired expander graph is of
exponential size, and hence cannot be even entirely stored, let alone
constructed. But full explicitness is perfectly suited for efficiently con-
ducting a random walk on a huge graph. So now our goal is the
following:

Goal: Devise a fully explicit construction of an infinite family {Gi}
of D-regular graphs with spectral expansion at least γ, where D and
γ > 0 are constants independent of i.

We remark that we would also like the set {Ni}, where Ni is the
number of vertices in Gi, to be not too sparse, so that the family of
graphs {Gi} has graphs of size close to any desired size.

4.3.1 Algebraic Constructions

Here we mention a few known explicit constructions that are of interest
because of their simple description, the parameters achieved, and/or
the mathematics that goes into their analysis. We will not prove the
expansion properties of any of these constructions (but will rather give
a different explicit construction in the subsequent sections).

Construction 4.25(discrete torus expanders). Let G = (V,E) be
the graph with vertex set V = ZM × ZM , and edges from each node
(x,y) to the nodes (x,y), (x + 1,y), (x,y + 1), (x,x + y), (−y,x), where
all arithmetic is modulo M .
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This is a fully explicit 5-regular digraph with N = M2 nodes and
spectral expansion γ = Ω(1). It can be made undirected by adding
a reverse copy of each edge. We refer to these as “discrete torus”
expanders because Z2

M can be viewed as a discrete version of the real
torus, namely [0,1]2 with arithmetic modulo 1. The expansion of these
graphs was originally proved using group representation theory, but
later proofs for similar discrete-torus expanders were found that only
rely on Fourier analysis over the torus.

Construction 4.26 (p-cycle with inverse chords). This is the
graph G = (V,E) with vertex set V = Zp and edges that connect each
node x with the nodes: x + 1, x − 1, and x−1 (where all arithmetic is
mod p and we define 0−1 to be 0).

This graph is only mildly explicit since we do not know how to con-
struct n-bit primes deterministically in time poly(n) (though Cramér’s
conjecture in Number Theory would imply that we can do so by simply
checking the first poly(n) n-bit numbers). The proof of expansion relies
on the “Selberg 3/16 Theorem” from number theory.

Construction 4.27 (Ramanujan graphs). G = (V,E) is a graph
with vertex set V = Fq ∪ {∞}, the finite field of prime order q s.t.
q ≡ 1 mod 4 plus one extra node representing infinity. The edges in
this graph connect each node z with all z′ of the form:

z′ =
(a0 + ia1)z + (a2 + ia3)

(−a2 + ia3)z + (a0 − ia1)

for a0,a1,a2,a3 ∈ Z such that a2
0 + a2

1 + a2
2 + a2

3 = p, a0 is odd and pos-
itive, and a1,a2,a3 are even, for some fixed prime p �= q such that p ≡ 1
mod 4, q is a square modulo p, and i ∈ Fq such that i2 = −1 mod q.

The degree of the graph is the number of solutions to the equa-
tion a2

0 + a2
1 + a2

2 + a2
3 = p, which turns out to be D = p + 1, and it

has λ(G) ≤ 2
√

D − 1/D, so it is an optimal spectral expander. (See
Theorems 4.11 and 4.12, and note that this bound is even better than
we know for random graphs, which have an additive O(1) term in the
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spectral expansion.) These graphs are also only mildly explicit, again
due to the need to find the prime q.

These are called Ramanujan Graphs because the proof of their
spectral expansion relies on results in number theory concerning the
“Ramanujan Conjectures.” Subsequently, the term Ramanujan graphs
came to refer to any infinite family of graphs with optimal spectral
expansion γ ≥ 1 − 2

√
D − 1/D.

4.3.2 Graph Operations

The explicit construction of expanders given in the next section will
be an iterative one, where we start with a “constant size” expander H

and repeatedly apply graph operations to get bigger expanders. The
operations that we apply should increase the number of nodes in the
graph, while keeping the degree and the second eigenvalue λ bounded.
We’ll see three operations, each improving one property while paying a
price on the others; however, combined together, they yield the desired
expander. It turns out that this approach for constructing expanders
will also be useful in derandomizing the logspace algorithm for Undi-

rected S-T Connectivity, as we will see in Section 4.4.
The following concise notation will be useful to keep track of each

of the parameters:

Definition 4.28. An (N,D,γ)-graph is a D-regular digraph on N ver-
tices with spectral expansion γ.

4.3.2.1 Squaring

Definition 4.29(Squaring of Graphs). If G = (V,E) is a D-regular
digraph, then G2 = (V,E′) is a D2-regular digraph on the same vertex
set, where the (i, j)th neighbor of a vertex x is the jth neighbor of the
ith neighbor of x. In particular, a random step on G2 consists of two
random steps on G.
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Lemma 4.30. If G is a (N,D,1 − λ)-graph, then G2 is a (N,D2,1 −
λ2)-graph.

Namely, the degree deteriorates by squaring, while the spectral
expansion is improved from γ = 1 − λ to γ′ = 1 − λ2 = 2γ − γ2.

Proof. The effect of squaring on the number of nodes N and the degree
D is immediate from the definition. For the spectral expansion, note
that if M is the random-walk matrix for G, then M2 is the random-walk
matrix for G2. So for any vector x ⊥ u,

‖xM2‖ ≤ λ · ‖xM‖ ≤ λ2 · ‖x‖.

4.3.2.2 Tensoring

The next operation we consider increases the size of the graph at the
price of increasing the degree.

Definition 4.31 (Tensor Product of Graphs). Let G1 = (V1,E1)
be D1-regular and G2 = (V2,E2) be D2-regular. Then their tensor
product is the D1D2-regular graph G1 ⊗ G2 = (V1 × V2,E), where the
(i1, i2)th neighbor of a vertex (x1,x2) is (y1,y2), where yb is the ibth
neighbor of xb in Gb. That is, a random step on G1 ⊗ G2 consists of a
random step on G1 in the first component and a random step on G2 in
the second component.

Often this operation is simply called the “product” of G1 and G2,
but we use “tensor product” to avoid confusion with squaring and
to reflect its connection with the standard tensor products in linear
algebra:

Definition 4.32 (Tensor Products of Vectors and Matrices).
Let x ∈ RN1 ,y ∈ RN2 , then their tensor product is the vector z =
x ⊗ y ∈ RN1N2 where zij = xiyj .
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Similarly, for matrices A = (aij) ∈ RN1×N1 ,B = (bij) ∈ RN2×N2 ,
their tensor product is the matrix C = A ⊗ B ∈ RN1N2×N1N2 where
C = (cij,i′j′) for cij,i′j′ = aii′bjj′ .

A few comments on the tensor operation:

• A random walk on a tensor graph G1 ⊗ G2 is equivalent to
taking two independent random walks on G1 and G2.
• For vectors x ∈ RN1 ,y ∈ RN2 that are probability distribu-

tions (i.e., nonnegative vectors with �1 norm 1), their tensor
product x ⊗ y is a probability distribution on [N1] × [N2]
where the two components are independently distributed
according to x and y, respectively.

• (x ⊗ y)(A ⊗ B) = (xA) ⊗ (yB) for every x ∈ RN1 ,y ∈ RN2 ,
and in fact A ⊗ B is the unique matrix with this property.
• Not all vectors z ∈ RN1N2 are decomposable as x ⊗ y for x ∈

RN1 and y ∈ RN2 . Nevertheless, the set of all decomposable
tensors x ⊗ y spans RN1N2 .

• If M1,M2 are the random-walk matrices for graphs G1,G2

respectively, then the random-walk matrix for the graph
G1 ⊗ G2 is

M1 ⊗M2 = (IN1 ⊗M2)(M1 ⊗ IN2) = (M1 ⊗ IN2)(IN1 ⊗M2),

where IN denotes the N × N identity matrix. That is, we
can view a random step on G1 ⊗ G2 as being a random step
on the G1 component followed by one on the G2 component
or vice-versa.

The effect of tensoring on expanders is given by the following:

Lemma 4.33. If G1 is an (N1,D1,γ1)-graph and G2 is an (N2,D2,γ2)-
graph, then G1 ⊗ G2 is an (N1N2,D1D2,min{γ1,γ2})-graph.

In particular, if G1 = G2, then the number of nodes improves, the
degree deteriorates, and the spectral expansion remains unchanged.
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Proof. As usual, we write γ1 = 1 − λ1, γ2 = 1 − λ2; then our goal is to
show that G1 ⊗ G2 has spectral expansion 1 − max{λ1,λ2}. The intu-
ition is as follows. We can think of the vertices of G1 ⊗ G2 as being par-
titioned into N1 “clouds,” each consisting of N2 vertices, where cloud
v1 contains all vertices of the form (v1, ·). Thus, any probability dis-
tribution (V1,V2) on the vertices (v1,v2) of G1 ⊗ G2 can be thought of
as picking a cloud v1 according to the marginal distribution2 V1 and
then picking the vertex v2 within the cloud v1 according to the con-
ditional distribution V2|V1=v1 . If the overall distribution on pairs is far
from uniform, then either

(1) The marginal distribution V1 on the clouds must be far from
uniform, or

(2) the conditional distributions V2|V1=v1 within the clouds must
be far from uniform.

When we take a random step, the expansion of G1 will bring us closer
to uniform in Case 1 and the expansion of G2 will bring us closer to
uniform in Case 2.

One way to prove the bound in the case of undirected graphs is
to use the fact that the eigenvalues of M1 ⊗M2 are all the products
of eigenvalues of M1 and M2, so the largest magnitude is 1 · 1 and
the next largest is bounded by either λ1 · 1 or 1 · λ2. Instead, we use
the Vector Decomposition Method to give a proof that matches the
intuition more closely and is a good warm-up for the analysis of the
zig-zag product in the next section. Given any vector x ∈ RN1N2 that is
orthogonal to uN1N2 , we can decompose x as x = x‖ + x⊥, where x‖ is
a multiple of uN2 on each cloud of size N2 and x⊥ is orthogonal to uN2

on each cloud. Note that x‖ = y ⊗ uN2 , where y ∈ RN1 is orthogonal to
uN1 (because x‖ = x − x⊥ is orthogonal to uN1N2). If we think of x as
the nonuniform component of a probability distribution, then x‖ and
x⊥ correspond to the two cases in the intuition above.

For the first case, we have

x‖M = (y ⊗ uN2)(M1 ⊗M2) = (yM1) ⊗ uN2 .

2 For two jointly distributed random variables (X,Y ), the marginal distribution of X is
simply the distribution of X alone, ignoring information about Y .
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The expansion of G1 tells us that M1 shrinks y by a factor of λ1, and
thus ‖x‖M‖ ≤ λ1 · ‖x‖‖. For the second case, we write

x⊥M = x⊥(IN1 ⊗M2)(M1 ⊗ IN2).

The expansion of G2 tells us that M2 will shrink x⊥ by a factor of λ2 on
each cloud, and thus IN1 ⊗M2 will shrink x⊥ by the same factor. The
subsequent application of M1 ⊗ IN2 cannot increase the length (being
the random-walk matrix for a regular graph, albeit a disconnected one).
Thus, ‖x⊥M‖ ≤ λ2‖x⊥‖.

Finally, we argue that x‖M and x⊥M are orthogonal. Note that
x‖M = (yM1) ⊗ uN2 is a multiple of uN2 on every cloud. Thus it suffices
to argue that x⊥ remains orthogonal to uN2 on every cloud after we
apply M . Applying (IN1 ⊗M2) retains this property (because applying
M2 preserves orthogonality to uN2 , by regularity of G2) and applying
(M1 ⊗ IN2) retains this property because it assigns each cloud a linear
combination of several other clouds (and a linear combination of vectors
orthogonal to uN2 is also orthogonal to uN2).

Thus,

‖xM‖2 = ‖x‖M‖2 + ‖x⊥M‖2

≤ λ2
1 · ‖x‖‖2 + λ2

2 · ‖x⊥‖2

≤ max{λ1,λ2}2 · (‖x‖‖2 + ‖x⊥‖2)
= max{λ1,λ2}2 · ‖x‖2,

as desired.

4.3.2.3 The Zig–Zag Product

Of the two operations we have seen, one (squaring) improves expan-
sion and one (tensoring) increases size, but both have the deleterious
effect of increasing the degree. Now we will see a third operation that
decreases the degree, without losing too much in the expansion. By
repeatedly applying these three operations, we will be able to con-
struct arbitrarily large expanders while keeping both the degree and
expansion constant.
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Let G be an (N1,D1,γ1) expander and H be a (D1,D2,γ2) expander.
The zig–zag product of G and H, denoted G©z H, will be defined as
follows. The nodes of G©z H are the pairs (u,i) where u ∈ V (G) and
i ∈ V (H). The edges of G©z H will be defined so that a random step
on G©z H corresponds to a step on G, but using a random step on H

to choose the edge in G. (This is the reason why we require the number
of vertices in H to be equal to the degree of G.) A step in G©z H will
therefore involve a step to a random neighbor in H and then a step
in G to a neighbor whose index is equal to the label of the current
node in H. Intuitively, a random walk on a “good” expander graph
H should generate choices that are sufficiently random to produce a
“good’ random walk on G. One problem with this definition is that it
is not symmetric. That is, the fact that you can go from (u,i) to (v,j)
does not mean that you can go from (v,j) to (u,i). We correct this by
adding another step in H after the step in G. In addition to allowing
us to construct undirected expander graphs, this extra step will also
turn out to be important for the expansion of G©z H.

More formally,

Definition 4.34 (Zig–Zag Product). Let G be an D1-regular
digraph on N1 vertices, and H a D2-regular digraph on D1 vertices.
Then G©z H is a graph whose vertices are pairs (u,i) ∈ [N1] × [D1].
For a,b ∈ [D2], the (a,b)th neighbor of a vertex (u,i) is the vertex (v,j)
computed as follows:

(1) Let i′ be the ath neighbor of i in H.
(2) Let v be the i′th neighbor of u in G, so e = (u,v) is the i′th

edge leaving u. Let j′ be such that e is the j′th edge entering
v in G. (In an undirected graph, this simply means that u is
the j′’th neighbor of v.)

(3) Let j be the b’th neighbor of j′ in H.

Note that the graph G©z H depends on how the edges leaving and
entering each vertex of G are numbered. Thus it is best thought of
as an operation on labelled graphs. (This is made more explicit in
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Section 4.3.3 via the notion of an “edge-rotation map.”) Nevertheless,
the bound we will prove on expansion holds regardless of the labelling:

Theorem 4.35. If G is a (N1,D1,γ1)-graph, and H is a (D1,D2,γ2)-
graph then G©z H is a (N1D1,D

2
2,γ = γ1 · γ2

2)-graph. In particular, if
γ1 = 1 − λ1 and γ2 = 1 − λ2, then γ = 1 − λ for λ ≤ λ1 + 2λ2.

G should be thought of as a big graph and H as a small graph, where
D1 is a large constant and D2 is a small constant. Note that the number
of nodes D1 in H is required to equal the degree of G. Observe that
when D1 > D2

2 the degree is reduced by the zig-zag product.
There are two different intuitions underlying the expansion of the

zig–zag product:

• Given an initial distribution (U,I) on the vertices of G1©z G2

that is far from uniform, there are two extreme cases, just as
in the intuition for the tensor product.3 Either

(1) All the (conditional) distributions I|U=u within the
clouds are far from uniform, or

(2) All the (conditional) distributions I|U=u within the
clouds of size D1 are uniform (in which case the
marginal distribution U on the clouds must be far
from uniform).

In Case 1, the first H-step (U,I) �→ (U,I ′) already brings us
closer to the uniform distribution, and the other two steps
cannot hurt (as they are steps on regular graphs). In Case 2,
the first H-step has no effect, but the G-step (U,I ′) �→ (V,J ′)
has the effect of making the marginal distribution on clouds
closer to uniform, that is, V is closer to uniform than U .
But note that the joint distribution (V,J ′) isn’t actually any
closer to the uniform distribution on the vertices of G1©z G2

because the G-step is a permutation. Still, if the marginal

3 Here we follow our convention of using capital letters to denote random variables corre-
sponding to the lower-case values in Definition 4.34.
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distribution V on clouds is closer to uniform, then the con-
ditional distributions within the clouds J ′|V =v must have
become further from uniform, and thus the second H-step
(V,J ′) �→ (V,J) brings us closer to uniform. This leads to a
proof by Vector Decomposition, where we decompose any vec-
tor x that is orthogonal to uniform into components x‖ and
x⊥, where x‖ is uniform on each cloud, and x⊥ is orthogonal
to uniform on each cloud. This approach gives the best known
bounds on the spectral expansion of the zig–zag product, but
it can be a bit messy since the two components generally do
not remain orthogonal after the steps of the zig–zag product
(unlike the case of the tensor product, where we were able to
show that x‖M is orthogonal to x⊥M).

• The second intuition is to think of the expander H as behav-
ing “similarly” to the complete graph on D1 vertices (with
self-loops). In the case that H equals the complete graph,
then it is easy to see that G©z H = G ⊗ H. Thus it is natu-
ral to apply Matrix Decomposition, writing the random-walk
matrix for an arbitrary expander H as a convex combination
of the random-walk matrix for the complete graph and an
error matrix. This gives a very clean analysis, but slightly
worse bounds than the Vector Decomposition Method.

We now proceed with the formal proof, following the Matrix Decom-
position approach.

Proof of Theorem 4.35. Let A, B, and M be the random-walk matri-
ces for G1, G2, and G1©z G2, respectively. We decompose M into the
product of three matrices, corresponding to the three steps in the def-
inition of G1©z G2s edges. Let B̃ be the transition matrix for taking
a random G2-step on the second component of [N1] × [D1], that is,
B̃ = IN1 ⊗ B, where IN1 is the N1 × N1 identity matrix. Let Â be the
permutation matrix corresponding to the G1-step. That is, Â(u,i),(v,j)
is 1 iff (u,v) is the ith edge leaving u and the jth edge entering v. By
the definition of G1©z G2, we have M = B̃ÂB̃.

By the Matrix Decomposition Lemma (Lemma 4.19), B = γ2J +
(1 − γ2)E, where every entry of J equals 1/D1 and E has norm at
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most 1. Then B̃ = γ2J̃ + (1 − γ2)Ẽ, where J̃ = IN1 ⊗ J and Ẽ = IN1 ⊗
E has norm at most 1.

This gives

M = (γ2J̃ + (1 − γ2)Ẽ)Â(γ2J̃ + (1 − γ2)Ẽ) = γ2
2 J̃ÂJ̃ + (1 − γ2

2)F,

where we take (1 − γ2
2)F to be the sum of the three terms involving

Ẽ; noting that their norms sum to at most (1 − γ2
2), we see that F has

norm at most 1. Now, the key observation is that J̃ÂJ̃ = A ⊗ J.

Thus,

M = γ2
2 · A ⊗ J + (1 − γ2

2)F,

and thus

λ(M) ≤ γ2
2 · λ(A ⊗ J) + (1 − γ2

2)

≤ γ2
2 · (1 − γ1) + (1 − γ2

2)

= 1 − γ1γ
2
2 ,

as desired.

4.3.3 The Expander Construction

As a first attempt for constructing a family of expanders, we construct
an infinite family G1,G2, ... of graphs utilizing only the squaring and
the zig–zag operations:

Construction 4.36 (Mildly Explicit Expanders). Let H be a
(D4,D,7/8)-graph (e.g., as constructed in Problem 4.8), and define:

G1 = H2

Gt+1 = G2
t ©z H

Proposition 4.37. For all t, Gt is a (D4t,D2,1/2)-graph.

Proof. By induction on t.
Base Case: by the definition of H and Lemma 4.30, G1 = H2 is a

(D4,D2,1 − λ2
0)-graph and λ2

0 ≤ 1/2.
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Induction Step: First note that G2
t ©z H is well-defined because

deg(G2
t ) = deg(Gt)2 = (D2)2 = #nodes(H). Then,

deg(Gt+1) = deg(H)2 = D2

#nodes(Gt+1) = #nodes(G2
t ) ·#nodes(H) = Nt ·D4 =D4tD4 =D4(t+1)

λ(Gt+1) ≤ λ(Gt)2 + 2λ(H) ≤ (1/2)2 + 2 · (1/8) = 1/2

Now, we recursively bound the time to compute neighbors in Gt.
Actually, due to the way the G-step in the zig–zag product is defined,
we bound the time to compute the edge-rotation map (u,i) �→ (v,j),
where the ith edge leaving u equals the jth edge entering v. Denote
by time(Gt) the time required for one evaluation of the edge-rotation
map for Gt. This requires two evaluations of the edge-rotation map for
Gt−1 (the squaring requires two applications, while the zig–zag part
does not increase the number of applications), plus time poly(logNt)
for manipulating strings of length O(logNt). Therefore,

time(Gt) = 2 · time(Gt−1) + poly(logNt)

= 2t · poly(logNt)

= N
Θ(1)
t ,

where the last equality holds because Nt = D4t for a constant D. Thus,
this construction is only mildly explicit.

We remedy the above difficulty by using tensoring to make the sizes
of the graphs grow more quickly:

Construction 4.38 (Fully Explicit Expanders). Let H be a
(D8,D,7/8)-graph, and define:

G1 = H2

Gt+1 = (Gt ⊗ Gt)2©z H

In this family of graphs, the number of nodes grows doubly exponen-
tially Nt ≈ c2t

, while the computation time grows only exponentially
as before. Namely,

time(Gt) = 4t · poly(logNt) = poly(logNt).
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We remark that the above family is rather sparse, so the numbers
in {Nt} are far apart. To overcome this shortcoming, we can amend
the above definition to have

Gt = (G	t/2
 ⊗ Gt/2�)2©z H.

Now Nt = D8t, so given a number N , we can find a graph Gt in
the family whose size is at most D8·N = O(N). Moreover, the con-
struction remains fully explicit because time(Gt) = O(time(G	t/2
) +
time(Gt/2�)) = poly(t). Thus we have established:

Theorem 4.39. There is a constant D ∈ N such that for every t ∈ N,
there is a fully explicit expander graph Gt with degree D, spectral
expansion 1/2, and Nt = D4t nodes.

Consequently, the randomness-efficient error-reduction and averag-
ing sampler based on expander walks can be made explicit:

Corollary 4.40. If a language L has a BPP algorithm with error
probability at most 1/3 that uses m(n) random bits on inputs of length
n, then for every polynomial k(n), L has a BPP algorithm with error
probability at most 2−k(n) that uses m(n) + O(k(n)) random bits.

Corollary 4.41. There is an explicit averaging sampler achieving the
parameters of Theorem 4.23.

4.3.4 Open Problems

As we have seen, spectral expanders such as those in Theorem 4.39
are also vertex expanders (Theorem 4.6 and Corollary 4.10) and edge
expanders (Theorem 4.14), but these equivalences do not extend to
optimizing the various expansion measures.

As mentioned in Section 4.3.1, there are known explicit construc-
tions of optimal spectral expanders, namely Ramanujan graphs. How-
ever, unlike the expanders of Theorem 4.39, those constructions rely
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on deep results in number theory. The lack of a more elementary con-
struction seems to signify a limitation in our understanding of expander
graphs.

Open Problem 4.42. Give an explicit “combinatorial” construction
of constant-degree expander graphs G with λ(G) ≤ 2

√
D − 1/D (or

even λ(G) = O(1/
√

D), where D is the degree.

For vertex expansion, it is known how to construct bipartite (or
directed) expanders with constant left-degree (or out-degree) D and
expansion (1 − ε) · D for an arbitrarily small constant ε (see Section 6),
but achieving the optimal expansion of D − O(1) (cf., Theorem 4.4) or
constructing undirected vertex expanders with high expansion remains
open.

Open Problem 4.43. For an arbitrarily large constant D, give an
explicit construction of bipartite (Ω(N),D − c) vertex expanders with
N vertices on each side and left-degree D, where c is a universal con-
stant independent of D.

Open Problem 4.44. For an arbitrarily small constant ε > 0, give an
explicit construction of undirected (Ω(N),(1 − ε)D) vertex expanders
with N vertices and constant degree D that depends only on ε.

We remark that while Open Problem 4.43 refers to balanced bipar-
tite graphs (i.e., ones with the same number of vertices on each side),
the imbalanced case is also interesting and important. (See Prob-
lems 4.10, 5.5 and Open Problems 5.36, 6.35.)

4.4 Undirected S-T Connectivity in Deterministic Logspace

Recall the Undirected S-T Connectivity problem: Given an undi-
rected graph G and two vertices s, t, decide whether there is a path from
s to t. In Section 2.4, we saw that this problem can be solved in random-
ized logspace (RL). Here we will see how we can use expanders and the
operations above to solve this problem in deterministic logspace (L).
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The algorithm is based on the following two ideas:

• Undirected S-T Connectivity can be solved in logspace
on constant-degree expander graphs. More precisely, it is easy
on constant-degree graphs where every connected compo-
nent is promised to be an expander (i.e., has spectral expan-
sion bounded away from 1): we can try all paths of length
O(logN) from s in logarithmic space; this works because
expanders have logarithmic diameter. (See Problem 4.2.)

• The same operations we used to construct an infinite
expander family above can also be used to turn any graph
into an expander (in logarithmic space). Above, we started
with a constant-sized expander and used various operations
to build larger and larger expanders. There, the goal was
to increase the size of the graph (which was accomplished
by tensoring and/or zig–zag), while preserving the degree
and the expansion (which was accomplished by zig–zag and
squaring, which made up for losses in these parameters).
Here, we want to improve the expansion (which will be
accomplished by squaring), while preserving the degree (as
will be handled by zig–zag) and ensuring the graph remains
of polynomial size (so we will not use tensoring).

Specifically, the algorithm is as follows.

Algorithm 4.45 (Undirected S-T Connectivity in L).
Input: An undirected graph G with N edges and vertices s and t.

(1) Let H be a fixed (D4,D,3/4) graph for some constant D.
(2) Reduce (G,s,t) to (G0,s0, t0), where G0 is a D2-regular graph

in which every connected component is nonbipartite and s0

and t0 are connected in G0 iff s and t are connected in G.
(3) For k = 1, . . . , � = O(logN), define:

(a) Let Gk = G2
k−1©z H

(b) Let sk and tk be any two vertices in the “clouds”
of Gk corresponding to sk−1 and tk−1, respectively.
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(Note that if sk and tk are connected in Gk, then
sk−1 and tk−1 are connected in Gk−1.)

(4) Try all paths of length O(logN) in G� from s� and accept if
any of them visit t�.

We will discuss how to implement this algorithm in logspace later,
and first analyze its correctness. Let Ck be the connected component
of Gk containing sk. Observe that Ck is a connected component of
C2

k−1©z H; below we will show that C2
k−1©z H is connected and hence

Ck = C2
k−1©z H. Since C0 is undirected, connected, and nonbipartite,

we have γ(C0) ≥ 1/poly(N) by Theorem 2.53. We will argue that in
each iteration the spectral gap increases by a constant factor, and thus
after O(logN) iterations we have an expander.

By Lemma 4.30, we have

γ(C2
k−1) ≥ 2 · γ(Ck−1) · (1 − γ(Ck−1)/2) ≈ 2γ(Ck)

for small γ(Ck−1). By Theorem 4.35, we have

γ(C2
k−1©z H) ≥ γ(H)2 · γ(C2

k−1)

≥
(

3
4

)2

· 2 · γ(Ck−1) · (1 − γ(Ck−1)/2)

≥ min
{

35
32
· γ(Ck−1),

1
18

}
,

where the last inequality is obtained by considering whether γ(Ck−1) ≤
1/18 or γ(Ck−1) > 1/18. In particular, C2

k−1©z H is connected, so we
have Ck = C2

k−1©z H and

γ(Ck) ≥ min
{

35
32
· γ(Ck−1),

1
18

}
.

Thus, after � = O(logN) iterations, we must have γ(C�) ≥ 1/18. More-
over, observe that the number of vertices N� in G� is at most N0 ·
(D4)� = poly(N), so considering paths of length O(logN) will suffice
to decide s-t connectivity in G�.
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To show that the algorithm can be implemented in logarithmic
space, we argue that the edge-rotation map of each Gk can be com-
puted with only O(1) more space than the edge-rotation map of Gk−1,
so that G� requires space O(logN) + O(�) = O(logN). Since the induc-
tive claim here refers to sublogarithmic differences of space (indeed
O(1) space) and sublogarithmic space is model-dependent (even keep-
ing a pointer into the input requires logarithmic space), we will refer
to a specific model of computation in establishing it. (The final result,
that Undirected S-T Connectivity is in L, is, however, model-
independent because logspace computations in any reasonable com-
putational model can be simulated by logspace computations in any
other reasonable model.) Formally, let space(Gk) denote the workspace
needed to compute the edge-rotation map of Gk on a multi-tape Turing
machine with the following input/output conventions:

• Input Description:

— Tape 1 (read-only): Contains the initial input graph
G, with the head at the leftmost position of the tape.

— Tape 2 (read–write): Contains the input pair (v, i),
where v is a vertex of Gi and i ∈ [D2] is an index of
the a neighbor on a read–write tape, with the head at
the rightmost position of i. The rest of the tape may
contain additional data.

— Tapes 3+ (read-write): Blank worktapes with the
head at the leftmost position.

• Output Description:

— Tape 1: The head should be returned to the leftmost
position.

— Tape 2: In place of (v, i), it should contain the output
(w,j) where w is the ith neighbor of v and v is the
jth neighbor of w. The head should be at the right-
most position of j and the rest of the tape should
remain unchanged from its state at the beginning of
the computation.
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— Tapes 3+ (read–write): Are returned to the blank
state with the heads at the leftmost position.

With these conventions, it is not difficult to argue that space(G0) =
O(logN), and space(Gk) = space(Gk−1) + O(1). For the latter, we
first argue that space(G2

k−1) = space(Gk−1) + O(1), and then that
space(G2

k−1©z H) = space(G2
k−1) + O(1). For G2

k−1, we are given a
triple (v,(i1, i2)) on tape 2, with the head on the rightmost position
of i2, and both i1 and i2 are elements of [D2] (and thus of constant
size). We move the head left to the rightmost position of i1, compute
the edge-rotation map of Gk−1 on (v, i1) so that tape 2 now contains
(w,j1, i2). Then we swap j1 and i2, and run the edge-rotation map of
Gk−1 on (w,i2) to get (w,j2, j1), and move the head to the rightmost
position of j1, completing the rotation. For G2

k−1©z H, we are given a
tuple ((v, i),(a1,a2)), where v is a vertex of G2

k−1, i is a vertex of H

(equivalently, an edge-label for G2
k−1), and a1,a2 are edge labels for H.

Evaluating the rotation map requires two evaluations of the rotation
map for H (both of which are “constant-size” operations) and one eval-
uation of the rotation map of G2

k−1.
Thus we have proven:

Theorem 4.46. Undirected S-T Connectivity is in L.

We remark that proving RL = L in general remains open. The
best deterministic simulation known for RL is essentially L3/2 =
DSPACE(log3/2 n), which makes beautiful use of known pseudoran-
dom generators for logspace computation. (Unfortunately, we do not
have space to cover this line of work in this survey.) Historically,
improved derandomizations for Undirected S-T Connectivity

have inspired improved derandomizations of RL (and vice-versa). Since
Theorem 4.46 is still quite recent (2005), there is a good chance that
we have not yet exhausted the ideas in it.

Open Problem 4.47. Show that RL ⊂ Lc for some constant c < 3/2.

Another open problem is the construction of universal traversal
sequences — fixed walks of polynomial length that are guaranteed to
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visit all vertices in any connected undirected regular graph of a given
size. (See Example 3.8 and Open Problem 3.9.) Using the ideas from
the algorithm above, it is possible to obtain logspace-constructible,
polynomial-length universal traversal sequences for all regular graphs
that are consistently labelled in the sense that no pair of distinct vertices
have the same i’th neighbor for any i ∈ [D]. For general labellings, the
best known universal traversal sequences are of length NO(logN) (and
are constructible in space O(log2 N)).

Open Problem 4.48 (Open Problem 3.9, restated). Give an
explicit construction of universal traversal sequences of polynomial
length for arbitrarily labelled undirected graphs (or even for an arbi-
trary labelling of the complete graph).

We remark that handling general labellings (for “pseudorandom
walk generators” rather than universal traversal sequences) seems to
be the main obstacle in extending the techniques of Theorem 4.46 to
prove RL = L. (See the Chapter Notes and References.)

4.5 Exercises

Problem 4.1(Bipartite Versus Nonbipartite Expanders). Show
that constructing bipartite expanders is equivalent to constructing
(standard, nonbipartite) expanders. That is, show how given an explicit
construction of one of the following, you can obtain an explicit construc-
tion of the other:

(1) D-regular (αN,A) expanders on N vertices for infinitely
many N , where α > 0, A > 1, and D are constants indepen-
dent of N .

(2) D-regular (on both sides) (αN,A) bipartite expanders with
N vertices on each side for infinitely many N , where α > 0,
A > 1, and D are constants independent of N .

(Your transformations need not preserve the constants.)
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Problem 4.2 (More Combinatorial Consequences of Spectral
Expansion). Let G be a graph on N vertices with spectral expansion
γ = 1 − λ. Prove that:

(1) The independence number α(G) is at most (λ/(1 + λ))N ,
where α(G) is defined to be the size of the largest indepen-
dent set, i.e., subset S of vertices s.t. there are no edges with
both endpoints in S.

(2) The chromatic number χ(G) is at least (1 + λ)/λ, where
χ(G) is defined to be the smallest number of colors for which
the vertices of G can be colored s.t. all pairs of adjacent ver-
tices have different colors.

(3) The diameter of G is O(log1/λ N).

Recall that computing α(G) and χ(G) exactly are NP-complete prob-
lems. However, the above shows that for expanders, nontrivial bounds
on these quantities can be computed in polynomial time.

Problem 4.3 (Limits on Vertex Expansion). This problem and
the next one give limits on the vertex and spectral expansion that can
be achieved as a function of the degree D. Both bounds are proved by
relating the expansion of an arbitrary D-regular graph G by that of
the infinite D-regular tree TD (where every vertex has one parent and
D − 1 children), which is in some sense the “best possible” D-regular
expander.

(1) Show that if a D-regular digraph G is a (K,A) expander,
then TD is a (K,A) expander.

(2) Show that for every D ∈ N, there are infinitely many K ∈ N
such that TD is not a (K,D − 1 + 2/K) expander.

(3) Deduce that for constant D ∈ N and α > 0, if a D-regular,
N -vertex digraph G is an (αN,A) vertex expander, then A ≤
D − 1 + O(1), where the O(1) term vanishes as N →∞ (and
D, α are held constant).
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Problem 4.4 (Limits on Spectral Expansion). Let G be a D-
regular undirected graph and TD be the infinite D-regular tree (as
in Problem 4.3). For a graph H and � ∈ N, let p�(H) denote the proba-
bility that if we choose a random vertex v in H and do a random walk
of length 2�, we end back at vertex v.

(1) Show that p�(G) ≥ p�(TD) ≥ C� · (D − 1)�/D2�, where C� is
the �th Catalan number, which equals the number of properly
parenthesized strings in {(,)}2� — strings where no prefix has
more)s than (s.

(2) Show that N · p�(G) ≤ 1 + (N − 1) · λ(G)2�. (Hint: use the
fact that the trace of a matrix equals the sum of its eigen-
values.)

(3) Using the fact that C� =
(2�

�

)
/(� + 1), prove that

λ(G) ≥ 2
√

D − 1
D

− O(1),

where the O(1) term vanishes as N →∞ (and D is held
constant).

Problem 4.5 (Near-Optimal Sampling).

(1) Describe an algorithm for Sampling that tosses O(m +
log(1/ε) + log(1/δ)) coins, makes O((1/ε2) · log(1/δ))
queries to a function f : {0,1}m→ [0,1], and estimates
µ(f) to within ±ε with probability at least 1 − δ. (Hint:
use expander walks to generate several sequences of coin
tosses for the pairwise-independent averaging sampler, and
compute the answer via a “median of averages.”)

(2) Give an explicit (δ,ε) hitting sampler (see Prob-
lem 3.9) Samp : {0,1}n→ ({0,1}m)t that tosses
n = O(m + log(1/ε) + log(1/δ)) coins and generates
t = O((1/ε) · log(1/δ)) samples.
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It turns out that these bounds on the randomness and query/sample
complexities are each optimal up to constant factors (for most param-
eter settings of interest).

Problem 4.6(Error Reduction For Free*). Show that if a problem
has a BPP algorithm with constant error probability, then it has a
BPP algorithm with error probability 1/n that uses exactly the same
number of random bits.

Problem 4.7 (Vertex Expanders versus Hitting Samplers).
Here we will see that hitting samplers (defined in Problem 3.9) are
equivalent to a variant of vertex expanders, where we only require that
for (left-)sets S of size exactly K, there are at least A · K neighbors.
We call such graphs (= K,A) vertex expanders and will revisit them in
the next section (Definition 5.32).

Given a bipartite multigraph with neighbor function Γ : [N ] ×
[D]→ [M ], we can obtain a sampler Samp : [N ]→ [M ]D by setting
Samp(x)y = Γ(x,y). Conversely, every such sampler gives rise to a
bipartite multigraph. Prove that Samp is a (δ,ε) hitting sampler if
and only if Γ is an (= K,A) vertex expander for K = �δN� + 1 and
A = (1 − ε)M/K.

Thus, bipartite vertex expanders and hitting samplers are equiva-
lent. However, the typical settings of parameters for the two objects are
very different. For example, in vertex expanders, a primary goal is usu-
ally to maximize the expansion factor A, but A · K may be significantly
smaller than M . In samplers, AK = (1 − ε)M is usually taken to be
very close to M , but A = (1 − ε)M/δN may even be smaller than 1.
Similarly, the most common setting of expanders takes K/N ≈ δ to be a
constant, whereas in samplers it is often thought of as vanishingly small.

Problem 4.8 (A “Constant-Sized” Expander).

(1) Let F be a finite field. Consider a graph G with vertex set F2

and edge set {((a,b),(c,d)) : ac = b + d}. That is, we connect
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vertex (a,b) to all points on the line y = ax − b. Prove that
G is |F|-regular and λ(G) ≤ 1/

√|F|. (Hint: consider G2.)
(2) Show that if |F| is sufficiently large (but still constant),

then by applying appropriate operations to G, we can
obtain a base graph for the expander construction given in
Section 4.3.3, i.e., a (D8,D,7/8) graph for some constant D.

Problem 4.9 (The Replacement Product). Given a D1-regular
graph G1 on N1 vertices and a D2-regular graph G2 on D1 vertices,
consider the following graph G1©r G2 on vertex set [N1] × [D1]: vertex
(u,i) is connected to (v,j) iff (a) u = v and (i, j) is an edge in G2, or
(b) v is the i’th neighbor of u in G1 and u is the jth neighbor of v. That
is, we “replace” each vertex v in G1 with a copy of G2, associating each
edge incident to v with one vertex of G2.

(1) Prove that there is a function g such that if G1 has spec-
tral expansion γ1 > 0 and G2 has spectral expansion γ2 > 0
(and both graphs are undirected), then G1©r G2 has spectral
expansion g(γ1,γ2,D2) > 0. (Hint: Note that (G1©r G2)3 has
G1©z G2 as a subgraph.)

(2) Show how to convert an explicit construction of constant-
degree (spectral) expanders into an explicit construction of
degree 3 (spectral) expanders.

(3) Without using Theorem 4.14, prove an analogue of Part 1 for
edge expansion. That is, there is a function h such that if G1

is an (N1/2,ε1) edge expander and G2 is a (D1/2,ε2) edge
expander, then G1©r G2 is a (N1D1/2,h(ε1,ε2,D2)) edge
expander, where h(ε1,ε2,D2) > 0 if ε1,ε2 > 0. (Hint: given
any set S of vertices of G1©r G2, partition S into the clouds
that are more than “half-full” and those that are not.)

(4) Prove that the functions g(γ1,γ2,D2) and h(ε1,ε2,D2) must
depend on D2, by showing that G1©r G2 cannot be a
(N1D1/2,ε) edge expander if ε > 1/(D2 + 1) and N1 ≥ 2.
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Problem 4.10(Unbalanced Vertex Expanders and Data Struc-
tures). Consider a (K,(1 − ε)D) bipartite vertex expander G with N

left vertices, M right vertices, and left degree D.

(1) For a set S of left vertices, a y ∈ N(S) is called a unique
neighbor of S if y is incident to exactly one edge from S.
Prove that every left-set S of size at most K has at least
(1 − 2ε)D|S| unique neighbors.

(2) For a set S of size at most K/2, prove that at most |S|/2
vertices outside S have at least δD neighbors in N(S), for
δ = O(ε).

Now we’ll see a beautiful application of such expanders to data
structures. Suppose we want to store a small subset S of a large universe
[N ] such that we can test membership in S by probing just 1 bit of our
data structure. A trivial way to achieve this is to store the characteristic
vector of S, but this requires N bits of storage. The hashing-based data
structures mentioned in Section 3.5.3 only require storing O(|S|) words,
each of O(logN) bits, but testing membership requires reading an entire
word (rather than just one bit.)

Our data structure will consist of M bits, which we think of as a
{0,1}-assignment to the right vertices of our expander. This assignment
will have the following property.

Property Π: For all left vertices x, all but a δ = O(ε) fraction of the
neighbors of x are assigned the value χS(x) (where χS(x) = 1
iff x ∈ S).

(3) Show that if we store an assignment satisfying Property Π,
then we can probabilistically test membership in S with error
probability δ by reading just one bit of the data structure.

(4) Show that an assignment satisfying Property Π exists pro-
vided |S| ≤K/2. (Hint: first assign 1 to all of Ss neighbors
and 0 to all its nonneighbors, then try to correct the errors.)

It turns out that the needed expanders exist with M = O(K logN)
(for any constant ε), so the size of this data structure matches the
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hashing-based scheme while admitting (randomized) 1-bit probes. How-
ever, note that such bipartite vertex expanders do not follow from
explicit spectral expanders as given in Theorem 4.39, because the latter
do not provide vertex expansion beyond D/2 nor do they yield highly
imbalanced expanders (with M  N) as needed here. But in Section 5,
we will see how to explicitly construct expanders that are quite good
for this application (specifically, with M = K1.01 · polylogN).

4.6 Chapter Notes and References

A detailed coverage of expander graphs and their applications in theo-
retical computer science is given by Hoory, Linial, and Wigderson [207].
Applications in pure mathematics are surveyed by Lubotzky [276].

The first papers on expander graphs appeared in conferences on
telephone networks. Specifically, Pinsker [309] proved that random
graphs are good expanders, and used these to demonstrate the existence
of graphs called “concentrators.” Bassalygo [52] improved Pinsker’s
results, in particular giving the general tradeoff between the degree D,
expansion factor A, and set density α mentioned after Theorem 4.4.
The first computer science application of expanders (and “supercon-
centrators”) came in an approach by Valiant [403] to proving circuit
lower bounds. An early and striking algorithmic application was the
O(logn)-depth sorting network by Ajtai, Komlós, and Szemerédi [10],
which also illustrated the usefulness of expanders for derandomization.
An exciting recent application of expanders is Dinur’s new proof of the
PCP Theorem [118].

The fact that spectral expansion implies vertex expansion and edge
expansion was shown by Tanner [385] (for vertex expansion) and Alon
and Milman [23] (for edge expansion). The converses are discrete ana-
logues of Cheeger’s Inequality for Riemannian manifolds [94], and var-
ious forms of these were proven by Alon [15] (for vertex expansion),
Jerrum and Sinclair [219] (for edge expansion in undirected graphs
and, more generally, conductance in reversible Markov chains), and
Mihail [286] (for edge expansion in regular digraphs and conductance
in nonreversible Markov chains).
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The “Ramanujan” upper bound on spectral expansion given by
Theorem 4.11 was proven by Alon and Boppana (see [15, 297]). Theo-
rem 4.12, stating that random graphs are asymptotically Ramanujan,
was conjectured by Alon [15], but was only proven recently by
Friedman [143]. Kahale [228] proved that Ramanujan graphs have
vertex expansion roughly D/2 for small sets.

Forms of the Expander Mixing Lemma date back to Alon and
Chung [18], who considered the number of edges between a set and
its complement (i.e., T = V \S). The converse to the Expander Mix-
ing Lemma (Theorem 4.16) is due to Bilu and Linial [68]. For more
on quasirandomness, see [25, 104] for the case of dense graphs and
[100, 101] for sparse graphs.

The sampling properties of random walks on expanders were ana-
lyzed in a series of works starting with Ajtai, Komlós, and Sze-
merédi [11]. The hitting bound of Theorem 4.17 is due to Kahale [228],
and the Chernoff Bound for expander walks (cf., Theorem 4.22) is due
to Gillman [153]. Our proof of the Chernoff Bound is inspired by that
of Healy [203], who also provides some other variants and generaliza-
tions. The RP version of Problem 4.6 is due to Karp, Pippenger, and
Sipser [234], who initiated the study of randomness-efficient error reduc-
tion of randomized algorithms. It was generalized to BPP in [107]. The
equivalence of hitting samplers and bipartite vertex expanders from
Problem 4.7 is due to Sipser [365]. Problem 4.5 is due to Bellare, Gol-
dreich, and Goldwasser [55]; matching lower bounds for sampling were
given by Canetti, Even, and Goldreich [91]. Open Problem 4.24 was
posed by Bellare and Rompel [57].

Construction 4.25 is due to Margulis [283], and was the first explicit
construction of constant-degree expanders. Gabber and Galil [146] (see
also [221]) gave a much more elementary proof of expansion for sim-
ilar expanders, which also provided a specific bound on the spectral
expansion (unlike Margulis’ proof). Construction 4.26 is variant of
a construction of Lubotzky, Phillips, and Sarnak. (See [275, Thm.
4.42], from which the expansion of Construction 4.26 can be deduced.)
Ramanujan graphs (Construction 4.27) were constructed independently
by Lubotzky, Phillips, and Sarnak [277] and Margulis [284]. For more



4.6 Chapter Notes and References 129

on Ramanujan graphs and the mathematical machinery that goes into
their analysis, see the books [112, 348, 275].

The zig–zag product and the expander constructions of Section 4.3.3
are due to Reingold, Vadhan, and Wigderson [333]. Our analysis of
the zig–zag product is from [331], which in turn builds on [338], who
used matrix decomposition (Lemma 4.19) for analyzing other graph
products. Earlier uses of graph products in constructing expanders
include the use of the tensor product in [385]. Problem 4.9, on the
replacement product, is from [331, 333], and can be used in place
of the zig–zag product in both the expander constructions and the
Undirected S-T Connectivity algorithm (Algorithm 4.45). Inde-
pendently of [333], Martin and Randall [285] proved a “decomposition
theorem” for Markov chains that implies a better bound on the spectral
expansion of the replacement product.

There has been substantial progress on giving a combinatorial
construction of Ramanujan graphs (Open Problem 4.42). Bilu and
Linial [68] give a mildly explicit construction achieving λ(G) = Õ(

√
D),

Ben-Aroya and Ta-Shma [58] give a fully explicit construction achiev-
ing λ(G) = D1/2+o(1), and Batson, Spielman, and Srivastava [53] give
a mildly explicit construction of a weighted graph achieving λ(G) =
O(
√

D).
Constant-degree bipartite expanders with expansion (1 − ε)·D have

been constructed by Capalbo et al. [92], based on a variant of the zig–
zag product for “randomness condensers.” (See Section 6.3.5.) Alon and
Capalbo [17] have made progress on Open Problem 4.44 by giving an
explicit construction of undirected constant-degree “unique-neighbor”
expanders (see Problem 4.10).

The deterministic logspace algorithm for Undirected S-T Con-

nectivity (Algorithm 4.45) is due to Reingold [327]. The result
that RL ⊂ L3/2 is due to Saks and Zhou [344], with an important
ingredient being Nisan’s pseudorandom generator for space-bounded
computation [299]. Based on Algorithm 4.45, explicit polynomial-
length universal traversal sequences for “consistently labelled” regular
digraphs, as well as “pseudorandom walk generators” for such graphs,
were constructed in [327, 331]. (See also [338].) In [331], it is shown
that pseudorandom walk generators for arbitrarily labelled regular
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digraphs would imply RL = L. The best known explicit construction
of a full-fledged universal traversal sequence is due to Nisan [299], has
length nO(logn), and can be constructed in time nO(logn) and space
O(log2 n). (See Section 8.2.1 for more on the derandomization of RL.)

Problem 4.8, Part 1 is a variant of a construction of Alon [16];
Part 4.8 is from [333]. The results of Problem 4.2 are from [23, 103,
205, 268]. The result of Problem 4.10, on bit-probe data structures for
set membership, is due to Buhrman, Miltersen, Radhakrishnan, and
Venkatesan [87].


