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1 Summary

My research centers around the interface between computational complexity
theory and cryptography. Complexity theory studies the power and limi-
tations of efficient computation, and cryptography aims to design proto-
cols that withstand adversarial behavior. Within these general areas, I
have focused on the topics of pseudorandomness, the theory of efficiently
generating objects that ‘look random’ despite being constructed with little
or no randomness, and zero-knowledge proofs, which are interactive proofs
that are convincing yet reveal nothing other than the validity of the asser-
tion being proven. My most significant research contribution in the area
of pseudorandomness has been the discovery of the zig-zag graph product
for constructing expander graphs [RVW], which has been used in or in-
spired the solution of several long-standing open questions in theoretical
computer science [RVW, ALW, CRVW, Rei, Din]. In the area of zero-
knowledge proofs, my work began with my Ph.D. thesis [Vadl], which pro-
vided a comprehensive complexity-theoretic understanding of a subclass of
zero-knowledge proofs known as statistical zero-knowledge proofs. In the
last few years, my students and I have returned to this topic, and have
shown that the techniques and results of my thesis have significance far
beyond the scope of statistical zero knowledge. Specifically, in a series of
papers [MV, Vad2, NV, NOV], we have managed to reduce or eliminate
the complexity assumptions used in many fundamental results about zero-
knowledge proofs, resolving at least one long-standing open problem.

2 General Research Areas

Computational Complexity. The goal of computational complexity the-
ory is, broadly speaking, to understand the power of efficient computation.



That is, it asks:

What problems can and cannot be solved
with limited computational resources?

The ‘problems’ studied include not only ones from computer science but ones
from mathematics (factoring integers), economics (finding Nash equilibria),
physics (sampling random configurations of a physical system), communica-
tions (decoding error-correcting codes), operations research (network flow);
and the ‘resources’ studied include time, space/memory, randomness, inter-
action, and quantum mechanics. The above question is partly addressed
by exhibiting algorithms that solve particular problems efficiently (e.g. an
algorithm that factors n-digit numbers in 2V™ steps), but a major objective
of complexity theory is to also understand what cannot be computed effi-
ciently (e.g. prove that there does not exist an algorithm that, no matter
how cleverly designed, factors n-digit numbers in n? steps).

The questions of computational complexity are some of the most basic
in computer science, yet many remain unresolved despite several decades of
effort, particularly those requiring lower bounds on the resources needed to
solve problems. However, computational complexity has been and continues
to be extremely successful in establishing relationships between seemingly
unrelated questions. One of the first examples was the beautiful theory of
NP-completeness [Coo, Lev, Kar], which showed that thousands of natural
problems are computationally equivalent, in that all of them have efficient
algorithms or all of them do not. And surprising new relationships continue
to be discovered; some examples are discussed below in the context of my
work on the theory of pseudorandomness.

In addition to its role in understanding the power and limitations of com-
puter technology, complexity theory provides an illuminating perspective on
questions arising in other fields, explaining why certain problems resist anal-
ysis, and on basic philosophical questions, such as whether finding solutions
to problems is ever harder than verifying their correctness. The latter is
the famous P vs. NP question and amounts to asking to what extent can
the work of mathematicians be automated (posed by Godel in a letter to
von Neumann in 1956). Thus it is also viewed as one of the most impor-
tant open problems in mathematics, and is one of the seven “millennium
prize problems” of the Clay Math Institute. In terms of practical comput-
ing technology, however, the most significant impact of complexity theory
has probably come through its role in the foundations of cryptography, my
other main research area.



Cryptography. The aim of cryptography is to
Design protocols that withstand adversarial behavior.

That is, we wish to construct algorithms and protocols that guarantee pri-
vacy, authenticity, and integrity of data when parties are communicating or
computing in an insecure environment. This subject provides the technol-
ogy that allows us to make on-line purchases without hackers being able to
learn our credit card numbers. Historically, when cryptography was used
mainly for military purposes, it was more of an art than a science, with a
seemingly never-ending cycle of schemes being broken and repaired. Indeed,
Shannon [Sha] explained the lack of mathematically rigorous guarantees in
cryptography, showing that (essentially) no encryption scheme can be “per-
fectly secure.” It was the development of computational complexity theory in
the 1970’s that opened the door to bypassing this barrier [DH]. Specifically,
we could hope to have cryptosystems that provably require an infeasible
amount of computational resources to break. Unfortunately, as mentioned
above, proving strong lower bounds on the resources needed to solve compu-
tational problems (in this case, breaking a cryptosystem) still seems beyond
the reach of current techniques in complexity theory. Indeed, proving the
security of a cryptosystem requires, at a minimum, resolving the P vs. NP
question.

Nevertheless, the language and framework provided by complexity the-
ory has enabled cryptography to flourish over the past three decades, and
develop into a mature science. It has formulated very convincing and pre-
cise definitions of security for a plethora of cryptographic tasks (ranging
from basic primitives such as encryption to complex protocols such as elec-
tronic voting) in a variety of adversarial environments (including coordi-
nated attacks on many concurrently executing protocols). And it has pro-
vided cryptosystems and protocols whose security can be provably reduced
to the intractability of some basic computational problem (e.g. factoring
large integers). The part of cryptography that remains an art is the choice of
these underlying computational problems. Whether we use well-studied and
mathematically ‘clean’ problems such as integer factorization [RSA, Rab] or
man-made constructs such as the Advanced Encryption Standard [AES]
their intractability, and thus the security of our cryptosystems, remains ul-
timately based on conjecture. The reality of this threat is evidenced by
the recent breaks of the widely used cryptographic hash functions MD5
and SHA-0 [WLF*, WY, BCJ*]. Thus a major goal in the foundations of
cryptography is to base cryptography on complexity assumptions that are
as weak and general as possible, so that if one problem turns out to be



easy (e.g. a fast algorithm for integer factorization is discovered), we can
easily replace it with a variety of alternatives. Much of my recent work
on zero-knowledge proofs, described in Section 4, fits within this project of
minimizing the complexity assumptions in cryptography.

The Interface. As described above, complexity theory provides the con-
ceptual framework on which modern cryptography is built, and resolving
the major open questions of complexity theory is necessary to have cryp-
tosystems whose security does not rely on unproven conjectures.! However,
the interaction between complexity theory and cryptography has not been
unidirectional. Rather, questions arising in cryptography have led to the de-
velopment of entirely new areas and have sparked some of the most exciting
developments in complexity theory. This interface has remained extremely
rich and fertile, with continuing benefits for both cryptography and com-
plexity theory. Two of the most active areas of interaction are the topics of
pseudorandomness and zero-knowledge proofs, which are the focuses of my
own research.

3 Pseudorandomness and Expander Graphs

Pseudorandomness is the theory of

Efficiently generating objects that “look random”
despite being constructed using little or no randomness.

The modern form of this theory originated from research in cryptography,
where one often needs to generate a large number of unpredictable bits
(e.g. for encryption or authentication) from a short random key [BM, Yao|.
However, it has also become a major topic within computational complex-
ity theory, because of the insight it gives us into the power of randomness
for efficient computation. In the 70’s and 80’s, it was realized that ran-
domization is extremely useful in the design of algorithms and protocols,
as researchers found randomized solutions to a wide variety of problems for
which no deterministic solutions were known. However, in many cases, it
was not known (and is still not known) to what extent the randomness is re-
ally necessary. Thus an intriguing question, of both theoretical and practical

IThere are certain models in which unconditionally secure cryptosystems can be con-
structed, such as the “bounded-storage model” [Mau, ADR], but if we have a standard
communication channel and measure the adversary’s resources by computation time, then
almost any cryptographic task implies the existence of one-way functions and P # NP.



importance, is whether we can reduce the amount or quality of randomness
required for solving these problems — ideally to full derandomization, where
we eliminate the randomness entirely. Pseudorandomness provides a general
approach for doing this.

Through two decades of research, pseudorandomness has proved to be a
fundamental concept in theoretical computer science, finding applications in
areas such as cryptography, computational complexity, learning theory, and
algorithm design. In recent years, however, our understanding of this area
has increased dramatically. Specifically, through the work of myself and
others (notably Trevisan [Tre]), a number of previously distinct research
directions were unified. We discovered that four fundamental and heavily
studied objects — pseudorandom generators, randomness extractors, ex-
pander graphs, and error-correcting codes — are all essentially equivalent.
It was the exciting potential of this unified viewpoint that prompted me to
make pseudorandomness my main research area during my first few years
at Harvard.

My most significant contribution in this topic was the discovery, with
Reingold and Wigderson [RVW], of the zig-zag graph product for construct-
ing expander graphs. Expander graphs are networks that are sparse yet very
highly connected. Expanders have a wide variety of applications in com-
puter science, ranging from network design to coding theory to data storage,
and thus there is a long and celebrated body of work on constructions of
expander graphs. We introduced the zig-zag product as a new tool for con-
structing expanders, based on the connection between expander graphs and
randomness extractors mentioned above. Since then, it has found a vari-
ety of applications, in some cases to resolving long-standing open problems.
Examples include:

e In our original paper [RVW], we showed how to use the zig-zag product
to obtain a simple, combinatorial construction of expanders, achieving
a goal that had eluded researchers for decades. (Previous constructions
were algebraic and provided little control over or intuition for the
expansion property.)

e The zig-zag product was a crucial component of Reingold’s break-
through logarithmic-space algorithm for connectivity in undirected
graphs [Rei], which resolved the space complexity of one of the most
basic problems in computer science.

e The uses of the zig-zag product in [RVW, Rei| inspired Dinur’s beau-
tiful new combinatorial proof of the celebrated PCP Theorem [Din)].



(The PCP Theorem shows that mathematical proofs can be encoded in
such a way that one needs to read only a constant number of randomly
chosen bits of the proof to verify correctness with high confidence; it
has many applications to understanding the complexity of approxima-
tion problems.)

e With Capalbo, Reingold, and Wigderson [CRVW], I used a variant of
the zig-zag product to give the first explicit construction of constant-
degree expanders with near-optimal expansion, bypassing a barrier
of previous methods (“eigenvalue methods”) and thereby enabling a
number of the applications of expanders to be efficiently realized.

e Alon, Lubotzky, and Wigderson [ALW] used the zig-zag product to
disprove a group-theoretic conjecture of Lubotzky and Weiss [LW].

I have done a substantial amount of additional work on other aspects of
pseudorandomness and its applications; I mention a few highlights here:

e With Lu, Reingold, and Wigderson [LRVW], I gave the first construc-
tion of randomness extractors that are “optimal up to constant fac-
tors,” reaching a milestone in a decade of work on the subject. (Ran-
domness extractors are algorithms for extracting almost-uniform bits
from sources of biased and correlated bits, and have many applications
beyond their original purpose of simulating randomized algorithms
with weak random sources.)

e With Sudan and Trevisan [STV, TV2], I established essentially opti-
mal relationships between the worst-case complexity and average-case
complexity of exponential time (EXP), first for circuit complexity
and then for uniform complexity. Such relationships are the starting
point for pseudorandom generator constructions. These works also es-
tablished a link between pseudorandom generators and list-decodable
error-correcting codes, which has played an important role in subse-
quent developments in the area.

e With graduate students Healy and Viola [HVV], I have obtained the
strongest known results on amplifying the average-case complexity of
NP (rather than EXP), going beyond barriers that were proven to
hold for previous approaches.

e With Trevisan, Zuckerman, Kamp, and Rao [TV1, TVZ, KRVZ], I
developed a theory of randomness extraction (and data compression)



from samplable sources, which are random sources generated by an
(unknown) efficient algorithm. The advantage of the restriction to
samplable sources is that randomness extractors for such sources do
not require a ‘seed’ and thus can be used to purify randomness when
one cannot afford to choose the seed uniformly at random or enumerate
over all choices, e.g. when purifying a physical source of randomness
for use in cryptography.

e With Barak and then-undergraduate Ong [BOV], I gave the first appli-
cations of “Nisan—Wigderson-type” pseudorandom generators in cryp-
tography. In particular, we give the first construction of one-message
witness-indistinguishable proofs for NP. (Witness-indistinguishable proofs
are a natural weakening of zero-knowledge proofs that suffice for many
applications.) With Barak and Lindell [BLV], I used these same tech-
niques to give some of the first lower bounds on the round complex-
ity of general zero-knowledge proofs (as opposed to “black-box zero
knowledge,” a restriction needed by previous lower bounds.)

4 Zero-Knowledge Proofs

Zero-knowledge proofs are interactive protocols whereby a “prover” can con-
vince a “verifier” that some assertion is true, with the remarkable property
that

The verifier learns nothing other than the fact
that the assertion being proven is true.

Since their introduction two decades ago [GMR], zero-knowledge proofs have
taken on a central role in the design and study of cryptographic protocols.
They provide a powerful building block for secure protocols, because they
can be used in any situation where one participant needs to convince another
of some fact (e.g. that it has not deviated from the specified protocol)
without revealing its secret information (e.g. encryption keys) [GMW]. In
addition, they are the most common testbed for studying new issues in
cryptographic protocols, such as composability and concurrency.

In addition to their role in cryptography, however, zero-knowledge proofs
have also provided one of the main avenues of interaction between complexity
theory and cryptography. This stems in part from the central role that the
“efficiently verifiable proofs” play in complexity theory (e.g. they are the
subject of the P vs. NP question); zero knowledge enriches this study
with such fascinating ingredients as interaction, randomness, knowledge,



and secrecy. Indeed, the study of zero knowledge has led to some of the
most exciting developments in complexity theory, such as the construction
of probabilistically checkable proofs (proofs that can be verified by reading
just a constant number of random locations), which in turn revolutionized
our understanding of the complexity of finding approximate solutions to
NP-complete optimization problems.

My work in this area has aimed to use complexity-theoretic methods to
understand the power and limitations of zero-knowledge proofs. In particu-
lar, I have sought to characterize the classes of assertions that can be proven
with various types of zero-knowledge proofs, to prove general theorems about
zero knowledge, and to minimize or eliminate complexity-theoretic assump-
tions used in the study of zero knowledge. (Recall from Section 2 that one
of the major goals in the foundations of cryptography is to base crypto-
graphic tasks on assumptions that are as weak and general as possible.)
In my Ph.D. thesis [Vadl], I carried out such a study for statistical zero-
knowledge proofs, which are zero-knowledge proofs where all of the security
conditions are information-theoretic. That is, even a computationally un-
bounded prover cannot convince the verifier of a false assertion and even a
computationally unbounded verifier cannot learn anything other than the
fact that the assertion being proven is true. In a series of papers by myself
and others, we gained a very thorough understanding of the class SZK of
problems possessing statistical zero-knowledge proofs. We characterized the
class SZK via natural complete problems [SV, GV], proved that SZK is
closed under various operations (e.g. complementation [Oka]) and proved
numerous general theorems about this class (e.g. showing how to effectively
eliminate the verifier’s ability to gain knowledge by deviating from the pro-
tocol [GSV]). Moreover, all of these results were unconditional, in that they
did not rely on any unproven complexity assumptions such as the existence
of one-way functions. However, while SZK turned out to be very interest-
ing and useful from both a complexity-theoretic and cryptographic point of
view, it still represents a small subclass of the notions of zero knowledge
considered in the literature. In particular, in many cryptographic applica-
tions, one can afford to use zero-knowledge proofs whose security conditions
are only computational, that is only hold with respect to computationally
feasible (i.e. polynomial time) adversarial strategies. In my Ph.D. thesis,
I suggested that the work on statistical zero knowledge could be a useful
stepping stone to understanding zero knowledge in general, but carrying
out this idea seemed beyond reach at the time.

After spending my first few years at Harvard focused almost entirely
on pseudorandomness, I started to return to zero knowledge, because I saw



an opportunity to extend the study begun in my thesis work far beyond
the confines of SZK. Indeed, in a series of papers done mostly in col-
laboration with my Ph.D. students [MV, Vad2, NV, NOV, OV], we have
demonstrated that the theory of statistical zero knowledge could be lever-
aged to understand zero-knowledge proofs in general, even those incorpo-
rating computational security conditions. Specifically, we have obtained a
characterization of the class ZK of problems possessing general, computa-
tional zero-knowledge proofs (and even “arguments”) in terms of the class
SZK [Vad2, OV]. This has allowed us to translate most of the general
theorems known about SZK to all of ZK. The resulting theorems are un-
conditional, in contrast to most previous works on ZK, which rely on the
assumption that one-way functions exist. As part of this effort, we have
obtained a result that is new for SZK, too — showing that, for problems in
NP, we can transform any zero-knowledge proof in which the honest prover
strategy is computationally unbounded into one where the prover runs in
polynomial time (given an NP witness) [NV]. This closes a significant gap
between the complexity-theoretic study of zero knowledge (which often al-
lows computationally unbounded prover strategies) and the cryptographic
applications of zero knowledge (which require polynomial-time prover strate-
gies). Finally, the methods we developed in [NV] enabled us in [NOV] to
resolve a long-standing open problem posed in [NOVY]| — that every lan-
guage in NP has a statistical zero-knowledge “argument system” assuming
only the existence of one-way functions. (Here we do not expect an uncon-
ditional result; indeed, work of Ostrovsky and Wigderson [Ost, OW] shows
that one-way functions are essentially the minimal assumption possible.)

5 Other Research Highlights

In addition to my work on pseudorandomness and zero knowledge, two other
highlights of my research are the following:

e With Barak et al. [BGIT], I initiated a theoretical study of program ob-
fuscation, which aims to make programs unintelligible while preserving
their functionality. There are many heuristics for obfuscation and it is
widely used in practice, but prior to our work, it had never received a
formal cryptographic treatment. Our main result is a negative one —
for a natural but weak formulation of the security goal, it is impossible
to have a general-purpose obfuscator that works for all programs. The
impact of this work has been to guide further work on obfuscation
(both theory and practice) in more fruitful directions, e.g. by restrict-



ing the class of programs considered or by seeking alternative notions
of security.

e With undergraduate Saurabh Sangvhi [SV], I obtained the first non-
constant and tight lower bound on the number of rounds needed for
two mutually distrusting parties to generate a random n-bit string such
that even if one party deviates arbitrarily from the protocol, the out-
come will still not be too “biased”. Specifically, we show that ©(log™ n)
rounds are both necessary and sufficient. Such random selection proto-
cols are a basic building block for solving other tasks in cryptography
and distributed computation. Recently, we have obtained similar re-
sults for the multiparty random selection protocols where a majority of
participants are dishonest [GVZ], and are currently exploring the pos-
sibility of obtaining lower bounds for the case of an honest majority,
which is a longstanding open problem in the literature on “collective
coin-flipping” and “leader election.”

6 Future Directions

Ultimately, my goal as a researcher is can be described simply.
I aim to understand the nature of efficient computation.

I am motivated in this effort both by the illuminating lens it provides on
the universe in which we live and by its potential impact on technology and
society. For me, computational complexity and cryptography provide rich
domains in which to pursue this goal, and I expect to continue working in
these areas in the forseeable future, while remaining open to new opportu-
nities. Below are just a few examples to illustrate the kinds of problems I
expect to pursue in the coming years.

Randomness vs. Space. Despite the apparent usefulness of random-
ization in algorithm design, the theory of pseudorandomness has provided
strong evidence that actually every randomized algorithm can be deran-
domized with only a small loss in efficiency, in the sense that other widely
believed conjectures in complexity theory are known to imply derandom-
ization. However, for the case where efficiency is measured by space (i.e.
memory), then there is hope for an unconditional proof that randomness
saves at most a constant factor (RL = L). Indeed, there was substantial
progress on this problem in the early 90’s [Nis, SZ], but then progress stalled
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for a decade. In a breakthrough last year, Reingold [Rei] used our earlier
work on expander graphs and the zig-zag product [RVW] to fully derandom-
ize the classic example of a space-efficient randomized algorithm, namely
the random-walk algorithm for connectivity in undirected graphs. Given
this development as well as our overall improved understanding of pseudo-
randomness, there is hope that we now might be able to derandomize all
space-bounded algorithms. Indeed, with Reingold and Trevisan [RTV], we
have made progress, reducing the gap between Reingold’s specific result and
the general RL vs. L problem to just a single “technical condition” in one
theorem. While this technical condition may prove to be a major obstacle,
I am optimistic that some significant progress can be made on the problem.

Complexity between P and NP. The magnificent theory of

NP-completeness [Coo, Lev, Kar] has provided a powerful tool for show-
ing that a computational problem is likely to be intractable. Namely, if
we can prove a problem to be NP-complete, then we know it is computa-
tionally equivalent to the thousands of other NP-complete problems that
have resisted attempts at finding efficient algorithms, and thus is unlikely
to have an efficient algorithm itself. However, not all intractable computa-
tional problems are NP-complete (or even NP-hard). Indeed, it is known
that there are computational problems in NP that are neither NP-complete
nor solvable efficiently (assuming P # NP) [Lad]. Unfortunately, complex-
ity theory has not made much progress in classifying problems in this re-
gion, even though numerous important problems seem to lie here, such as
FACTORING and GRAPH [SOMORPHISM. Ideally, we would like a theory of
completeness for some class whose complexity seems to be strictly between
P and NP; this would allow us to provide evidence of intractability for
problems that are unlikely to be NP-complete. Some beautiful progress has
recently been made for problems involving equilibria and fixed points, such
as NASH EQUILIBRIUM, as these have been shown to be complete for a class
called PPAD [GP, DGP, CD]. However, this class does not seem to be the
right one to capture problems such as GRAPH ISOMORPHISM, FACTORING,
as well as numerous other problems of cryptographic significance. The class
SZK of problems having statistical zero-knowledge proofs seems to have
potential for playing this role instead. In my Ph.D. work, I gave a start by
showing that two natural problems about estimating statistical properties
of probability distributions are complete for SZK [SV, GV]. Just recently,
I have started to develop an approach to showing SZK-completeness for
other types of problems. Regardless of whether my approach works, under-
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standing complexity between P and NP is an important goal that is likely
to remain an interest of mine in the future.

The Assumptions for Cryptography. As discussed earlier, the aspect
of cryptography that remains more of an art than a science is the identi-
fication of underlying hard problems on which to build cryptosystems. Of
course, one way to resolve this is to develop techniques for directly proving
lower bounds on the complexity of such problems. While lower bounds are
extremely difficult and having ones strong enough for cryptography requires
resolving the famous P vs. NP question, they are at the very core of un-
derstanding efficient computation, and thus it is important that researchers
continue to work on them (as I might do one day, if I see an opportunity
to make a significant contribution). In the meantime, however, we might
at least look for ways to relate the assumptions needed for cryptography
on better-understood questions in complexity theory. There has been sub-
stantial effort to base cryptography on NP-completeness, and unfortunately
most of the evidence so far has been negative. An alternative, however, is
to base cryptography on completeness for some class between P and NP, as
discussed in the previous paragraph. In particular, if an approximate ver-
sion of the SHORTEST VECTOR problem in high-dimensional integer lattices
could be shown to be SZK-complete, then by work of Ajtai [Ajt], we could
base cryptography on the (worst-case) intractability of SZK.

Branching Out. While I continue to focus on my core interests in com-
plexity theory and cryptography, I am always looking out for good oppor-
tunities to branch out, whether motivated by scientific, philosophical, so-
cietal, or technological reasons. For example, through my involvement in
the DEAS Center for Research on Computation and Society (CRCS), I am
developing an interest in privacy — finding mathematical formulations for
what it means for an individual’s privacy to be compromised (through use
of data such as in medical databases) and designing algorithms that ensure
that such compromises cannot occur. I have also am starting to explore the
interface of computer science with economics and game theory. This area
has significance for complexity theory because it gives rise to computational
problems, such as NAsH EQUILIBRIUM, that lie in the area between P and
NP described above. And it has significance for cryptography because it
may be possible to design better protocols if we combine the rational behav-
ior model typically used in economics with the honest/malicious behavior
model typically used in cryptography. I have been exploring this possibility
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in collaboration with Prof. David Parkes and CRCS postdoc Alon Rosen.
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