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Abstract

We give an informal introduction to zero-knowledge proofs, and survey their role both in the
interface between complexity theory and cryptography and as objects of complexity-theoretic
study in their own right.

1 Introduction

Zero-knowledge proofs are interactive protocols whereby one party, the prover, can convince another,
the verifier, that some assertion is true with the remarkable property that the verifier learns nothing
other than the fact that the assertion being proven is true. In the quarter-century since they were
introduced by Goldwasser, Micali, and Rackoff [GMR], zero-knowledge proofs have played a central
role in the design and study of cryptographic protocols. In addition, they have provided one of
the most fertile grounds for interaction between complexity theory and cryptography, leading to
exciting developments in each area. It is the role of zero knowledge in this interaction that is the
subject of the present survey.

We begin with an informal introduction to zero-knowledge proofs in Section 2, using two classic
examples. In Section 3, we survey how zero-knowledge proofs have provided an avenue for ideas and
techniques to flow in both directions between cryptography and complexity theory. In Section 4, we
survey the way in which zero knowledge has turned out to be interesting as a complexity-theoretic
object of study on its own. We conclude in Section 5 with some directions for further research.

2 Definitions and Examples

In this section, we provide an informal introduction to zero-knowledge proofs. For a more detailed
treatment, we refer the reader to [Vad1, Gol].

∗Written while visiting U.C. Berkeley, supported by the Miller Institute for Basic Research in Science, a Guggen-
heim Fellowship, and NSF grant CNS-0430336.
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Interactive Proofs and Arguments. Before discussing what it means for a proof to be “zero
knowledge,” we need to reconsider what we mean by a “proof.” The classical mathematical notion
of proof is as a static object that can be written down once and for all, and then easily verified by
anyone according to fixed rules. It turns out that the power of such classical proofs can be captured
by the complexity class NP. To make this precise, we consider the assertions to be proven as strings
over some fixed alphabet, and consider a language L that identifies the assertions that are ‘true’.
For example, language SAT contains a string x iff x encodes a boolean formula φ such that the
assertion “φ is satisfiable” is true. Then a proof system for a language L is given by a verification
algorithm V with the following properties:

• (Completeness) True assertions have proofs. That is, if x ∈ L, then there exists π such that
V (x, π) = accept.

• (Soundness) False assertions have no proofs. That is, if x /∈ L, then for all π∗, V (x, π∗) =
reject.

• (Efficiency) V (x, π) runs in time poly(|x|).
It is well-known that NP is exactly the class of languages having classical proof systems as defined
above. (Indeed, NP is now often defined in this way, cf. [Sip].) Thus the P vs. NP question asks
whether proofs actually help in deciding the validity of assertions, or whether deciding validity
without a proof can always be done in time comparable to the time it takes to verify a proof.

Now zero-knowledge proofs are concerned with the question of how much one learns when
verifying a proof. By definition, one learns that the assertion being proven is true. But we typically
think of mathematical proofs as teaching us much more. Indeed, when given a classical NP proof,
one also gains the ability to convince others that the same assertion is true, by copying the same
proof. To get around this obstacle and make it possible to have proofs that leak “zero knowledge,”
Goldwasser, Micali, and Rackoff [GMR] added two ingredients to the classical notion of proof. The
first is randomization — the verification of proofs can be probabilistic, and may err with a small
but controllable error probability. The second ingredient is interaction — the static, written proof
is replaced by a dynamic prover who exchanges messages with the verifier and tries to convince it
to accept.

In more detail, we consider an interactive protocol (P, V ) between a “prover” algorithm P and
a “verifier” algorithm V . P and V are given a common input x, they each may privately toss coins,
and then they exchange up to polynomially many messages (where the next message of each party
is obtained by applying the appropriate algorithm P or V to the common input, the party’s private
coin tosses, and the transcript of messages exchanged so far). At the end of the interaction, the
verifier accepts or rejects. We denote by (P, V )(x) the interaction between P and V on input x.
Analogous to classical proofs, we require the following properties:

• (Completeness) If x ∈ L, then V accepts in (P, V )(x) with probability at least 2/3.

• (Soundness) If x /∈ L, then for “all” P ∗, V accepts in (P ∗, V )(x) with probability at most
1/3.

• (Efficiency) On common input x, V always runs in time poly(|x|).
A consequence of the efficiency condition is that the total length of communication between the
two parties is bounded by a polynomial in |x|. As with randomized algorithms, the constants of
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2/3 and 1/3 in the completeness and soundness probabilities are arbitrary, and can be made be
exponentially close to 1 and 0, respectively, by repeating the protocol many times and having the
verifier rule by majority.

We think of the soundness condition as a “security” property because it protects the verifier
from adversarial behavior by the prover. Like most security properties in cryptography, it has two
commonly used versions:

• (Statistical Soundness) If x /∈ L, then for all, even computationally unbounded, strategies P ∗,
V accepts in (P ∗, V )(x) with probability at most 1/3. This gives rise to interactive proof
systems, the original model of [GMR].

• (Computational Soundness) If x /∈ L, then for all (nonuniform) polynomial-time strategies P ∗,
V accepts in (P ∗, V )(x) with probability at most 1/3. This gives rise to interactive argument
systems, a model proposed by Brassard, Chaum, and Crépeau [BCC].

Note that the honest prover P must have some computational advantage over the verifier to be of
any use. Otherwise, the verifier could simply simulate the prover on its own, implying that the
language L is decidable in probabilistic polynomial time (i.e. in the complexity class BPP). Thus,
typically one either allows the honest prover P to be computationally unbounded or requires P to
be polynomial time but provides it with an NP witness for the membership of x in L. The former
choice is mainly of complexity-theoretic interest, and is usually made only for interactive proof
systems, since they also provide security against computationally unbounded cheating provers.
The latter choice, where the prover is efficient given a witness, is the one most appropriate for
cryptographic applications.

Zero Knowledge. While interactive proofs and arguments are already fascinating notions on
their own (cf., [LFKN, Sha, Kil, Mic]), here we are interested in when such protocols possess
a “zero knowledge” property — where the verifier learns nothing other than the fact that the
assertion being proven is true. Before discussing how zero-knowledge can be defined precisely, we
illustrate the notion with a classic example for Graph Nonisomorphism. Here an instance is
a pair of graphs (G0, G1), and it is a YES instance if G0 and G1 are non-isomorphic (written
G0 6∼= G1), and a NO instance if they are isomorphic (written G0

∼= G1).
The zero-knowledge proof is based on two observations. First, if two graphs are non-isomorphic,

then their sets of isomorphic copies are disjoint. Second, if two graphs are isomorphic, then a random
isomorphic copy of one graph is indistinguishable from a random isomorphic copy of the other
(both have the same distribution). Thus, the proof system, given in Protocol 2.1, tests whether
the (computationally unbounded) prover can distinguish between random isomorphic copies of the
two graphs.

We first verify that this protocol meets the definition of an interactive proof system. If G0 and
G1 are nonisomorphic, then G0

∼= H if and only if b = 0. So the prover strategy specified above
will make the verifier accept with probability 1. Thus completeness is satisfied. On the other hand,
if G0 and G1 are isomorphic, then H has the same distribution when b = 0 as it does when b = 1
Thus, b is independent of H and the prover has at most probability at most 1/2 of guessing b
correctly no matter what strategy it follows. This shows that the protocol is sound.

For zero knowledge, observe that the only information sent from the prover to the verifier is
the guess c for the verifier’s coin toss b. As argued above, when the statement being proven is
true (i.e. G0 6∼= H), this guess is always correct. That is, the prover is sending the verifier a value
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Protocol 2.1: Interactive proof (P, V ) for Graph Nonisomorphism

Common Input: Graphs G0 and G1 on vertex set [n]

1. V : Select a random bit b ∈ {0, 1}. Select a uniformly random permutation π on
[n]. Let H be the graph obtained by permuting the vertices of Gb according to π.
Send H to P .

2. P : If G0
∼= H, let c = 0. Else let c = 1. Send c to V .

3. V : If c = b, accept. Otherwise, reject.

that it already knows. Intuitively, this means that the verifier learns nothing from the protocol.
(Note that this intuition relies on the assumption that the verifier follows the specified protocol,
and actually constructs the graph H by permuting one of the two input graphs.)

The notion of zero knowledge is formalized by requiring that the verifier could have simulated
everything it sees in the interaction on its own. That is, there should be a probabilistic polynomial-
time, noninteractive algorithm S, called the simulator, that when given1 “any” verifier strategy V ∗

and any instance x ∈ L, produces an output that is “indistinguishable” from the verifier’s view of
its interaction with the prover on input x (i.e. the transcript of the interaction together with the
verifier’s private coin tosses). Zero knowledge is a security property, protecting the prover from
leaking unnecessary information to an adversarial verifier, and thus comes in both statistical and
computational versions. With statistical zero knowledge, we require that the zero-knowledge con-
dition hold for even computationally unbounded verifier strategies V ∗, and require that the output
of the simulator is statistically close (e.g. in variation distance) to the verifier’s view. With com-
putational zero knowledge, we only require the zero-knowledge condition to hold for (nonuniform)
polynomial-time verifier strategies V ∗ and require that the output of the simulator “computation-
ally indistinguishable” from the verifier’s view of the interaction, which means that no (nonuniform)
polynomial-time algorithm can distinguish the two distributions except with negligible probability.

For the Graph Nonisomorphism protocol above, it is easy to illustrate a simulator that
produces a distribution that is identical to the view of “honest” verifier V , but the protocol does
not appear to be zero knowledge for verifier strategies V ∗ that deviate from the specified protocol.
Thus we refer to the protocol as being honest-verifier statistical zero knowledge (or even honest-
verifier perfect zero knowledge, since the simulation produces exactly the correct distribution).
Honest-verifier zero knowledge is already a very nontrivial and interesting notion, but cryptographic
applications usually require the stronger and more standard notion of zero knowledge against
cheating verifier strategies V ∗. This stronger notion can be achieved for Graph Nonisomorphism
using a more sophisticated protocol [GMW]. Thus we have:

Theorem 2.2 ([GMW]) Graph Nonisomorphism has a statistical zero-knowledge proof system
1In this informal survey, we do not discuss the ways in which the simulator can be ‘given’ a verifier strategy.

One possibility is that the simulator is given the code of the verifier, e.g. as a boolean circuit, which gives rise to
the notion of auxiliary-input zero knowledge [GO]. Another is that the simulator is given the verifier strategy as an
oracle, which gives rise to the notion of black-box zero knowledge [GO].
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(in fact a perfect zero-knowledge proof system).

This provides an example of the power of zero-knowledge proofs (and also of interactive proofs,
since Graph Nonisomorphism is not known to be in NP). An even more striking demonstration,
however, is general construction of zero-knowledge proofs for all of NP, also due to [GMW].

Zero Knowledge for NP. To achieve this, Goldreich, Micali, and Wigderson [GMW] observed
that it suffices to give a zero-knowledge proof for a single NP-complete problem, such as Graph
3-Coloring. A 3-coloring of a graph G = ([n], E) is an assignment C : [n] → {R,G, B} (for
“Red,” “Green,” and “Blue”) such that no pair of adjacent vertices are assigned the same color.
Graph 3-Coloring is the language consisting of graphs G that are 3-colorable.

The zero-knowledge proof for Graph 3-Coloring is based on the observation that the classical
NP proof can be broken into “pieces” and randomized in such a way that (a) the entire proof is
valid if and only if every piece is valid, yet (b) each piece reveals nothing on its own. For Graph
3-Coloring, the classical proof is a three-coloring of the graph, and the pieces are the restriction
of the coloring to the individual edges: (a) An assignment of colors to vertices of the graph is a
proper 3-coloring if and only if the endpoints of every edge have distinct colors, yet (b) if the three
colors are randomly permuted, then the colors assigned to the endpoints of any particular edge are
merely a random pair of distinct colors and hence reveal nothing.

In Protocol 2.3, we show how to use the above observations to obtain a zero-knowledge proof
for Graph 3-Coloring which makes use of “physical” implements — namely opaque, lockable
boxes. The actual proof system will obtained by replacing these boxes with a suitable cryptographic
primitive.

Protocol 2.3: “Physical” Proof System (P, V ) for Graph 3-Coloring

Common Input: A graph G = ([n], E)

1. P : Let C be any 3-coloring of G (either given as an auxiliary input to a polynomial-
time P , or found by exhaustive search in case we allow P to be computationally
unbounded). Let π be a permutation of {R, G, B} selected uniformly at random.
Let C ′ = π ◦ C.

2. P : For every vertex v ∈ [n], place C ′(v) inside a box Bv, lock the box using a key
Kv, and send the box Bv to V .

3. V : Select an edge e = (x, y) ∈ E uniformly at random and send e to P .

4. P : Receive edge e = (x, y) ∈ E, and send the keys Kx and Ky to V .

5. V : Unlock the boxes Bx and By, and accept if the colors inside are different.

We now explain why this protocol works. For completeness, first observe that if C is a proper
3-coloring of G then so is C ′. Thus, no matter which edge (x, y) ∈ E the verifier selects, the colors
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C ′(x) and C ′(y) inside boxes Bx and By will be different. Therefore, the verifier accepts with
probability 1 when G is 3-colorable.

For soundness, consider the colors inside the boxes sent by the prover in Step 2 as assigning
a color to each vertex of G. If G is not 3-colorable, then it must be the case that for some edge
(x, y) ∈ E, Bx and By contain the same color. So the verifier will reject with probability at least
1/|E|. By repeating the protocol |E| + 1 times, the probability that the verifier accepts on a
non-3-colorable graph G will be reduced to (1− 1/|E|)|E|+1 < 1/3.

To argue that Protocol 2.3 is “zero knowledge,” let’s consider what a verifier “sees” in an
execution of the protocol (when the graph is 3-colorable). The verifier sees n boxes {Bv}, all of
which are locked and opaque, except for a pair Bx, By corresponding to an edge in G. For that
pair, the keys Kx and Ky are given and the colors C ′(x) and C ′(y) are revealed. Of all this,
only C ′(x) and C ′(y) can potentially leak knowledge to the verifier. However, since the coloring is
randomly permuted by π, C ′(x) and C ′(y) are simply a (uniformly) random pair of distinct colors
from {R, G,B}, and clearly this is something the verifier can generate on its own.

In this intuitive argument, we have reasoned as if the verifier selects the edge (x, y) in advance,
or at least independently of the permutation π. This would of course be true if the verifier follows
the specified protocol and selects the edge randomly, but the definition of zero knowledge requires
that we also consider cheating verifier strategies whose edge selection may depend on the messages
previously received from the prover (i.e., the collection of boxes). However, the perfect opaqueness
of the boxes guarantees that the verifier has no information about their contents, so we can indeed
view (x, y) as being selected in advance by the verifier, prior to receiving any messages from the
prover.

What is left is to describe how to implement the physical boxes algorithmically. This is done
with a cryptographic primitive known as a commitment scheme. It is a two-stage interactive
protocol between a pair of probabilistic polynomial-time parties, called the sender and the receiver.
In the first stage, the sender “commits” to a string m, corresponding to locking an object in the
box, as done in Step 2 of Protocol 2.3. In the second stage, the sender “reveals” m to the receiver,
corresponding to opening the box, as done in Steps 4 and 5 of Protocol 2.3.

Like zero-knowledge protocols, commitment schemes have two security properties. Informally,
hiding says that a cheating receiver should not be able to learn anything about m during the commit
stage, and binding says that a cheating sender should not be able to reveal two different messages
after the commit stage. Again, each of these properties can be statistical (holding against com-
putationally unbounded cheating strategies, except with negligible probability) or computational
(holding against polynomial-time cheating strategies, except with negligible probability). Thus we
again get four flavors of commitment schemes, but it is easily seen to be impossible to simultane-
ously achieve statistical security for both hiding and binding. However, as long as we allow one of
the security properties to be computational, it seems likely that commitment schemes exist. Indeed,
commitment schemes with either statistical binding or statistical hiding can be constructed from
any one-way function (a function that is easy to compute, but hard to invert even on random out-
puts) [HILL, Nao, NOV, HR], and the existence of one-way functions is the most basic assumption
of complexity-based cryptography [DH, IL]. Thus, we conclude:

Theorem 2.4 If one-way functions exist, then every language in NP has both a computational
zero-knowledge proof system and a statistical zero-knowledge argument system.

We note that the first construction of statistical zero-knowledge argument systems was given
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by Brassard, Chaum, and Crépeau [BCC], in a work independent of [GMW], but was based on
stronger cryptographic primitives than just statistically hiding commitment schemes.

3 Zero Knowledge as an Interface

In this section, we survey the way in which zero-knowledge proofs have provided an avenue for
ideas and techniques to be transported between complexity theory and cryptography.

The concept of zero-knowledge proofs originated with efforts to formalize problems arising in the
design of cryptographic protocols (such as [LMR]), where it is often the case that one party needs to
convince another of some fact without revealing too much information. However, as evidenced even
by the title of their paper “The Knowledge Complexity of Interactive Proof Systems,” Goldwasser,
Micali, and Rackoff [GMR] seemed to recognize the significance of the new notions for complexity
theory as well. Indeed, interactive proof systems (as well as the Arthur–Merlin games independently
introduced by Babai [Bab], which turned out to be equivalent in power [GS]), soon became a central
concept in complexity theory. Their power was completely characterized in the remarkable works
of Lund, Fortnow, Karloff, and Nisan [LFKN] and Shamir [Sha], which showed that IP, the class of
languages having interactive proofs, equals PSPACE, the class of languages decidable in polynomial
space. Since PSPACE is believed to be much larger than NP, this result shows that interactive
proofs are much more powerful than classical written proofs.

In the other direction, we have already seen how a powerful concept from complexity theory,
namely NP-completeness, was leveraged in the study zero-knowledge proofs, namely, Theorem 2.4.
Traditionally, we think of NP-completeness as being used for negative purposes, to give evidence
that a problem is hard, but here it has been used in a positive way — zero-knowledge proofs were
obtained for an entire class by constructing them for a single complete problem. This discovery of
zero-knowledge proofs for all of NP played a crucial role in striking general results of [Yao, GMW]
about secure computation, where several parties engage in a protocol to jointly compute a function
on their private inputs in such a way that no party learns anything other than the output of
the protocol. These landmark results of [Yao, GMW] say that every polynomial-time computable
function can be computed securely in this sense. Zero knowledge plays a crucial role, enabling the
parties to convince each other that they are following the specified protocol, without revealing their
private input.

In the study of secure computation, researchers realized that the use of complexity assumptions
(e.g. the existence of one-way functions) could be removed by working in a model with private com-
munication channels [CCD, BGW]. Similarly, Ben-Or, Goldwasser, Kilian, and Wigderson [BGKW]
to introduced the multiprover model for interactive proofs, where two or more noncommunicating
provers try to convince the verifier of an assertion, and the verifier can interrogate with each prover
on a private channel that is inaccessible to the other prover(s) (similarly to how detectives inter-
rogate suspects). The main motivation of [BGKW] was to find a model in which zero-knowledge
protocols for all of NP could be obtained without any complexity assumption (in contrast to The-
orem 2.4). However, multiprover interactive proofs turned out to be even more significant for
complexity theory than interactive proofs were. Following the proof that IP = PSPACE mentioned
above, Babai, Fortnow, and Lund [BFL] showed that the class MIP of languages having multiprover
interactive proofs equals NEXP, nondeterministic exponential time, a class that is provably larger
than NP (by diagonalization). Multiprover interactive proofs also turned out to be equivalent in
power to probabilistically checkable proofs (PCPs) [FRS]. PCPs are static strings, like classical
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NP proofs, but can be verified probabilistically by a verifier that reads only a small portion of
the proof. Scaling down the proof that MIP = NEXP and incorporating a number of new ideas
led to the celebrated PCP Theorem[BFLS, FGL+, AS, ALM+], showing that membership in any
NP language can be proven using PCPs that can be verified by reading only a constant number
of bits of the proof. The significance of the PCP Theorem was magnified by a surprising con-
nection between PCP constructions for NP and showing that NP-complete optimization problems
are hard to approximate [FGL+, ALM+], the latter being an open question from the early days of
NP-completeness. A long line of subsequent work (beyond the scope of this survey) has optimized
PCP constructions in order to get tight inapproximability results for a variety of NP-complete
optimization problems.

The PCP Theorem provided returns to zero knowledge and cryptography through the work
of Kilian [Kil], who used it to construct zero-knowledge argument systems for NP in which the
verifier’s computation time depends only polylogarithmically (rather than polynomially) on the
length of the statement being proven. A generalization of Kilian’s work, due to Micali [Mic],
was used in [CGH] to obtain negative results about realizing the “random oracle model,” which
is an idealized model sometimes used in the design of cryptographic protocols. This technique
of [CGH] was an inspiration for Barak’s breakthrough work on “non-black-box simulation” zero
knowledge [Bar1]. In this work, Barak showed how to exploit the actual code of the adversarial
verifier’s strategy to simulate a zero knowledge protocol (rather than merely treating the verifier
as a black-box subroutine). Using this method, Barak obtained a zero-knowledge argument system
with properties that were known to be impossible with black-box simulation [GK1]. Subsequently,
non-black-box use of the adversary’s code has proved to be useful in the solution of a number of
other cryptographic problems, particularly ones concerned with maintaining security when several
protocols are being executed concurrently [Bar2, PR1, Lin, Pas, PR2, BS].

4 Zero Knowledge as an Object of Study

We now turn zero knowledge as a complexity-theoretic object of study in itself. By this, we refer to
the study of the complexity classes consisting of the languages that have zero-knowledge protocols
of various types. We have already seen in the previous section that the classes IP and MIP arising
from interactive proofs and their multiprover variant turned out to be very interesting and useful
for complexity theory, and we might hope for the same to occur when we impose the zero knowledge
constraint. From a philosophical point of view, it seems interesting to understand to what extent
the requirement that we do not leak knowledge restricts the kinds of assertions we can prove. For
cryptography, the complexity-theoretic study of zero knowledge can illuminate the limits of what
can be achieved with zero-knowledge protocols, yield new techniques useful for other cryptographic
problems, and help understand the relation of zero knowledge to other primitives in cryptography.

Recall that zero-knowledge protocols have two security conditions—soundness and zero knowledge—
and these each come in both statistical and computational versions. Thus we obtain four main
flavors of zero knowledge protocols, and thus four complexity classes consisting of the languages
that zero-knowledge protocols of a particular type. We denote these classes SZKP, CZKP, SZKA,
and CZKA, with the prefix of S or C indicating statistical or computational zero knowledge and
the suffix of P or A denoting interactive proofs (statistical soundness) or arguments (computational
soundness). The main goals are to characterize these classes, for example via complete problems
or establishing relations with other, better-understand complexity classes; to establish properties
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of these classes (eg closure under various operations); and to obtain general results about zero-
knowledge protocols. The first result along these lines was Theorem 2.4, which showed that the
zero-knowledge classes involving computational security (namely, CZKP, SZKA, and CZKA) con-
tain all of NP if one-way functions exist. Aside from this initial result and a follow-up that we will
discuss later [IY, BGG+], much of the complexity-theoretic study of zero knowledge was developed
first for SZKP.

4.1 Statistical Security: SZKP

From a security point of view, statistical zero-knowledge proofs are of course the most attractive of
the four types of zero-knowledge protocols we are discussing, since their security properties hold re-
gardless of the computational power of the adversary. So the first question is whether this high level
of security is achievable for nontrivial languages (i.e. ones that cannot be decided in probabilistic
polynomial time). We have already seen one candidate, Graph Nonisomorphism, and in fact
SZKP is known to contain a number of other specific problems believed to be hard, such as Graph
Isomorphism [GMW], Quadratic Residuosity and Quadratic Nonresiduosity [GMR], a
problem equivalent to the Discrete Log [GK2], approximate versions of the Shortest Vector
Problem and Closest Vector Problem in high-dimensional lattices [GG], and various group-
theoretic problems [AD]. On the other hand, recall that the general construction of zero-knowledge
protocols for NP (Theorem 2.4) does not yield SZKP protocols, because (because there do not exist
commitment schemes that are simultaneously statistically hiding and statistically binding). This
phenomenon was explained in the work of Fortnow, Aiello, and H̊astad [For, AH], who made the
first progress towards a complexity-theoretic characterization of SZKP. Specifically, they showed
that SZKP is contained in AM ∩ coAM, where the complexity class AM is a randomized analogue
of NP, and consequently deduced that SZKP is unlikely to contain NP-hard problems. Indeed
an NP-hard problem in SZKP ⊆ AM ∩ coAM implies that AM = coAM, which seems unlikely
for the same reason that NP = co-NP seems unlikely — there is no reason that a efficient prov-
ability of statements (x ∈ L) should imply efficient provability of their negations (x /∈ L). (Like
NP = co-NP, AM = coAM also implies the collapse of the polynomial-time hierarchy, which is
commonly conjectured to be infinite.)

The next major steps in our understanding of SZKP came in the work of Okamoto [Oka],
who proved that (a) SZKP is closed under complement, and (b) every language in SZKP has a
statistical zero-knowledge proof system that is public coin, meaning that the verifier’s messages
consist only of random coin tosses (a property that holds for the Graph 3-Coloring protocol in
the previous section, but not the Graph Nonisomorphism protocol).2 The first result, closure
under complement, was particularly surprising, because as mentioned above, there is no reason to
believe that the existence of proofs for certain statements should imply anything about the negations
of those statements. However, it was the second result that proved most useful in subsequent work,
because public-coin protocols are much easier to analyze and manipulate than general, private-
coin protocol. (Indeed, the equivalence of private coins and public coins for (non-zero-knowledge)
interactive proofs [GS], found numerous applications, e.g. [BM, GS, BHZ, FGM+].)

Using Okamoto’s result as a starting point, SZKP was characterized exactly by two natural
2Okamoto’s results were actually proven for honest-verifier statistical zero knowledge, but, as mentioned below, it

was subsequently shown that every honest-verifier statistical zero-knowledge proof can be transformed into one that
tolerates cheating verifiers [GSV1].
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complete problems.3 The first was Statistical Difference [SV], which amounts to the problem
of approximating the statistical difference (i.e. variation distance) between two efficiently sam-
plable distributions (specified by boolean circuits that sample from the distributions). The second
problem, Entropy Difference [GV], amounts to approximating the difference in the entropies of
two efficiently samplable distributions (which is computationally equivalent to approximating the
entropy of a single efficiently samplable distributions). In addition to providing a simple charac-
terization of SZKP (as the class of problems that reduce to either of the complete problems), these
complete problems show that the class SZKP is of interest beyond the study of zero-knowledge
proofs. Indeed, estimating statistical properties of efficiently samplable distributions is a natural
algorithmic task, and now we see that its complexity is captured by the class SZKP.

Using Okamoto’s results and the complete problems, other general results about statistical zero
knowledge were obtained, including more closure properties [DDPY, SV], an equivalence between
honest-verifier SZKP and general, cheating-verifier SZKP [DGW, GSV1], an equivalence between
efficient-prover SZKP and unbounded-prover SZKP for problems in NP [MV, NV], and relations
between SZKP and other models of zero-knowledge protocols [GSV2, DSY, BG2]. There have also
been studies of the relation between SZKP and quantum computation, including both the question
of whether every problem in SZKP has a polynomial-time quantum algorithm [Aar, AT] and a
complexity-theoretic study of the quantum analogue of SZKP [Wat]

4.2 Computational Security: CZKP, SZKA, and CZKA

Perhaps one reason that the complexity theory of SZKP developed more rapidly than that of the
classes involving computational security is that early results seemed to indicate the latter were
completely understood. Indeed, Theorem 2.4 says that under standard complexity assumptions,
all of the classes CZKP, SZKA, and CZKA are very powerful, in that they contain all of NP.
Soon afterwards, this result was strengthened was extended to give zero-knowledge proofs for all
of IP [IY, BGG+], again under the assumption that one-way functions exist. (This result allows
for the honest prover to be computationally unbounded. For efficient honest provers, IP should
be replaced by MA, which is a slight generalization of NP in which the verifier is a randomized
algorithm.)

In cryptography, the assumption that one-way functions exist is standard; indeed, most of mod-
ern cryptography would not be able to get off the ground without it. However, from a complexity-
theoretic perspective, there is a significant difference between results that make an unproven as-
sumption and those that are unconditional. So a natural question is whether the assumption that
one-way functions is really necessary to prove Theorem 2.4 and to characterize the power of zero
knowledge with computational security.

Partial converses to Theorem 2.4, suggesting that one-way functions are necessary, were given
by Ostrovsky and Wigderson [OW], building on an earlier work of Ostrovsky [Ost] about SZKP.
Ostrovsky and Wigderson first proved that if there is a zero-knowledge protocol (even with both
security properties computational) for a “hard-on-average” language, then one-way functions exist.
Thus, we get a “gap theorem” for zero knowledge: either one-way functions exist and zero knowledge
is very powerful, or one-way functions do not exist, and zero knowledge is relatively weak. They

3The complete problems for SZKP, as well as some of the other problems mentioned to be in SZKP are not
actually languages, but rather promise problems. In a promise problem, some strings are YES instances, some strings
are NO instances, and the rest are excluded (i.e. we are promised that the input is either a YES instance or a NO
instance). Languages correspond to the special case where there are no excluded inputs.
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also proved that if there is a zero-knowledge protocol for a language not in BPP (probabilistic
polynomial time), then a “weak form” of one-way functions exist. (Note that we do not expect
to deduce anything for languages in BPP, since every language in BPP has a trivial perfect zero
knowledge proof, in which the prover sends nothing and the verifier decides membership on its
own.)

While it was a major step in our understanding of zero knowledge, the Ostrovsky–Wigderson
Theorems [OW] do not provide a complete characterization of the classes CZKA, CZKP, and SZKA.
The reason is that for languages that are neither hard on average nor in BPP, we only get the “weak
form” of one-way functions of their second result, which do not seem to suffice for constructing com-
mitment schemes and hence zero-knowledge protocols. Exact characterizations were obtained more
recently, using a variant of the Ostrovsky–Wigderson approach [Vad2, OV]. Instead of doing a case
analysis based on whether a language is in BPP or not, we consider whether a language is in SZKP
or not, and thus are able to replace the “weak form” of one-way functions with something much
closer to the standard notion of one-way functions. Specifically, it was shown that every language
L in CZKA can be “decomposed” into a problem4 in SZKP together with a set I of instances from
which (finite analogues of) one-way functions can be constructed. Conversely, every problem in
NP having such a decomposition is in CZKA. A similar characterization is obtained for CZKP by
additionally requiring that I contains only strings in L, and for SZKA by requiring that I contain
only strings not in L. These results, referred to as the SZKP–OWF Characterizations, reduce
the study of the computational forms of zero knowledge to the study of SZKP together with the
consequences of one-way functions, both of which are well-understood. Indeed, using these charac-
terizations, a variety of unconditional general results were proven about the classes CZKP, SZKA,
and CZKA, such as closure properties, the equivalence of honest-verifier zero knowledge and gen-
eral, cheating-verifier zero knowledge, and the equivalence of efficient-prover and unbounded-prover
zero knowledge [Vad2, NV, OV]. Moreover, ideas developed in this line of work on unconditional
results, such as [NV], turned out to be helpful also for conditional results, specifically the con-
struction of statistically hiding commitments from arbitrary one-way functions [NOV, HR], which
resolved a long-standing open problem in the foundations of cryptography (previously, statistically
hiding commitments were only known from stronger complexity assumptions, such as the existence
of one-way permutations [NOVY]).

5 Future Directions

Recall that our discussion of zero knowledge as an interface between complexity and cryptography
in Section 3 ended with the non-black-box zero-knowledge protocol of Barak [Bar1], which found a
variety of other applications in cryptography. It seems likely that the Barak’s work will also have an
impact on complexity theory as well. In particular, it points to the potential power of “non-black-
box reductions” between computational problems. Typically, when we say that computational
problem A “reduces” to computational problem B, we mean that we can efficiently solve A given
access to a black box that solves problem B. We interpret such a reduction as saying that A is
no harder than B. In particular, if B can be solved efficiently, so can A. However, it is possible
to establish implications of the latter form without exhibiting a (black-box) reduction in the usual
sense, because it may be possible to exploit an efficient algorithm for B in ways that we cannot
exploit a black-box for B (e.g. by directly using the code of the algorithm in some way). While

4Again, the SZKP problems referred to by the SZKP–OWF Characterizations are actually promise problems.

11



we have had examples of “non-black-box reductions” in complexity theory for a long time (such as
the collapse of the entire polynomial hierarchy to P if P = NP), Barak’s work has begun to inspire
complexity theorists to reexamine whether known limitations of black-box reductions (such as for
worst-case/average-case connections [BT]) can be bypassed with various types of non-black-box
reductions [GT].

In terms of the complexity-theoretic study of SZKP, one intriguing open problem is to find
a combinatorial or number-theoretic complete problem. The known complete problems [SV, GV]
can be argued to be “natural,” but they still make an explicit reference to computation (since the
input distributions are specified by boolean circuits). Finding a combinatorial or number-theoretic
complete problem would likely further illuminate the class SZKP, and would also provide strong
evidence that the particular problem is intractable. We are currently lacking in ways to provide
evidence that problems are intractable short of showing them to be NP-hard. The recent sequence
of results showing that Nash Equilibrium is complete for the class PPAD [DGP, CD] is one of
the few exceptions. Approximate versions of lattice problems (see [GG, MV]) seem to be promising
candidates for SZKP-completeness.

Another direction for further work is to carry out complexity-theoretic investigations, similar to
those described in Section 4, for common variants of zero-knowledge protocols. These include nonin-
teractive zero knowledge (for which there has been some progress [DDPY, GSV2, BG2, PS], mainly
for the case of statistical security), proofs and arguments of knowledge (where the prover demon-
strates that it “knows” a witness of membership), and witness-indistinguishable protocols (where
the particular witness used by the prover remains hidden from the verifier, but other knowledge
may be leaked). Also, we currently have a rather incomplete complexity-theoretic understanding of
argument systems with sublinear communication, such as [Kil, Mic, BG1], not to mention their zero
knowledge variants. The current constructions of such argument systems rely on collision-resistant
hash functions, but we do not even know if one-way functions are necessary (cf., [Wee]).
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knowledge. Journal of Computer and System Sciences, 37(2):156–189, 1988.
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