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Abstract

Assuming the existence of one-way functions, we show that there is no polynomial-time, differen-
tially private algorithm A that takes a database D ∈ ({0, 1}d)n and outputs a “synthetic database” D̂ all
of whose two-way marginals are approximately equal to those ofD. (A two-way marginal is the fraction
of database rows x ∈ {0, 1}d with a given pair of values in a given pair of columns.) This answers a
question of Barak et al. (PODS ‘07), who gave an algorithm running in time poly(n, 2d).

Our proof combines a construction of hard-to-sanitize databases based on digital signatures (by
Dwork et al., STOC ‘09) with PCP-based Levin-reductions from NP search problems to finding ap-
proximate solutions to CSPs.
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1 Introduction

There are many settings in which it is desirable to share information about a database that contains sensitive
information about individuals. For example, doctors may want to share information about health records
with medical researchers, the federal government may want to release census data for public information,
and a company like Netflix may want to provide its movie rental database for a public competition to
develop a better recommendation system. However, it is important to do this in way that preserves the
“privacy” of the individuals whose records are in the database. This privacy problem has been studied by
statisticians and the database security community for a number of years (cf., [1, 13, 19]), and recently the
theoretical computer science community has developed an appealing new approach to the problem, known
as differential privacy. (See the surveys [15, 14].1).

Differential Privacy. A randomized algorithmA is defined to be differentially private [16] if for every two
databases D = (x1, . . . , xn), D′ = (x′1, . . . , x

′
n) that differ on exactly one row, the distributions A(D) and

A(D′) are “close” to each other. Formally, we require that A(D) and A(D′) assign the same probability
mass to every event, up to a multiplicative factor of eε ≈ 1 + ε, where ε is typically taken to be a small
constant. (In addition to this multiplicative factor, it is often allowed to also let the probabilities to differ
by a negligible additive term.) This captures the idea that no individual’s data has a significant influence on
the output of A (provided that data about an individual is confined to one or a few rows of the database).
Differential privacy has several nice properties lacking in previous notions, such as being agnostic to the
adversary’s prior information and degrading smoothly under composition.

With this model of privacy, the goal becomes to design algorithmsA that simultaneously meet the above
privacy guarantee and give “useful” information about the database. For example, we may have a true query
function c in which we’re interested, and the goal is to design A that is differentially private (with ε as small
as possible) and estimates c well (e.g. the error |A(D)−c(D)| is small with high probability). For example,
if c(D) is the fraction of database rows that satisfy some property — a counting query — then it is known
that we can take A(D) to equal c(D) plus random Laplacian noise with standard deviation O(1/(εn)),
where n is the number of rows in the database and ε is the measure of differential privacy [8]. The papers
[11, 18, 8, 16] have provided a very good understanding of differential privacy in an interactive model in
which real-valued queries c are made and answered one at a time. The amount of noise that one needs
when responding to a query c should be based on the sensitivity of c, as well as the total number of queries
answered so far.

However, for many applications, it would be more attractive to do a noninteractive data release, where
we compute and release a single, differentially private “summary” of the database that enables others to
determine accurate answers to a large class of queries. What form should this summary take? The most
appealing form would be a synthetic database, which is a new database D̂ = A(D) whose rows are “fake”,
but come from the same universe as those of D and are guaranteed to share many statistics with those of D
(up to some accuracy). Some advantages of synthetic data are that it can be easily understood by humans,
and statistical software can be run directly on it without modification. For example, these considerations led
the German Institute for Employment Research to adopt synthetic databases for the release of employment
statistics [29].

1The webpage http://research.microsoft.com/en-us/projects/databaseprivacy/ is also a compre-
hensive reference
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Previous Results on Synthetic Data. The first result on producing differentially private synthetic data
came in the work of Barak et al. [5]. Given a database D consisting of n rows from {0, 1}d, they show
how to construct a differentially private synthetic database D̂, also of n rows from {0, 1}d, in which the full
“contingency table,” consisting of all conjunctive counting queries, is approximately preserved. That is, for
every conjunction c(x1, . . . , xn) = xi1 ∧ xi2 ∧ · · ·xik for i1, . . . , ik ∈ [d], the fraction of rows in D̂ that
satisfy c equals the fraction of rows in D that satisfy p up to an additive error of 2O(d)/n. The running time
of their algorithm is poly(n, 2d), which is feasible for small values of d. They pose as an open problem
whether the running time of their algorithm can be improved for the case where we only want to preserve
the k-way marginals for small k (e.g. k = 2). These are the counting queries corresponding to conjunctions
of up to k literals. Indeed, there are onlyO(d)k such conjunctions, and we can produce differentially private
estimates for all the corresponding counting queries in time poly(n, dk) by just adding noise O(d)k/n to
each one. Moreover, a version of the Barak et al. algorithm [5] can ensure that even these noisy answers are
consistent with a real database.2

A more general and dramatic illustration of the potential expressiveness of synthetic data came in the
work of Blum, Ligett, and Roth [9]. They show that for every class C = {c : {0, 1}d → {0, 1}} of predicates,
there is a differentially private algorithmA that produces a synthetic database D̂ = A(D) such that all count-
ing queries corresponding to predicates in C are preserved to within an accuracy of Õ((d log(|C|)/n)1/3),
with high probability. In particular, with n = poly(d), the synthetic data can provide simultaneous accuracy
for an exponential-sized family of queries (e.g. |C| = 2d). Unfortunately, the running time of the BLR
mechanism is also exponential in d.

Dwork et al. [17] gave evidence that the large running time of the BLR mechanism is inherent. Specif-
ically, assuming the existence of one-way functions, they exhibit an efficiently computable family C of
predicates (e.g. all circuits of size d2) for which it is infeasible to produce a differentially private synthetic
database preserving the counting queries corresponding to C (for databases of any n = poly(d) number
of rows). For non-synthetic data, they show a close connection between the infeasibility of producing a
differentially private summarization and the existence of efficient “traitor-tracing schemes.” However, these
results leave open the possibility that for natural families of counting queries (e.g. those corresponding to
conjunctions), producing a differentially private synthetic database (or non-synthetic summarization) can be
done efficiently. Indeed, one may have gained optimism by analogy with the early days of computational
learning theory, where one-way functions were used to show hardness of learning arbitrary efficiently com-
putable concepts in computational learning theory but natural subclasses (like conjunctions) were found to
be learnable [31].

Our Result. We prove that it is infeasible to produce synthetic databases preserving even very simple
counting queries, such as 2-way marginals:

Theorem 1.1. Assuming the existence of one-way functions, there is a constant γ > 0 such that for every
polynomial p, there is no polynomial-time, differentially private algorithm A that takes a database D ∈
({0, 1}d)p(d) and produces a synthetic database D̂ ∈ ({0, 1}d)∗ such that |c(D)− c(D̂)| ≤ γ for all 2-way
marginals c.

(Recall that a 2-way marginal c(D) computes the fraction of database rows satisfying a conjunction of
two literals, i.e. the fraction of rows xi ∈ {0, 1}d such that xi(j) = b and xi(j′) = b′ for some columns
j, j′ ∈ [d] and values b, b′ ∈ {0, 1}.)

2Technically, this “real database” may assign fractional weight to some rows.
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In fact, our impossibility result extends from conjunctions of 2 literals to any family of constant arity
predicates that contains a function depending on at least two variables.

As mentioned earlier, all 2-way marginals can be easily summarized with non-synthetic data (by just
adding noise to each of the (2d)2 values). Thus, our result shows that requiring a synthetic database may
severely constrain what sorts of differentially private data releases are possible.

Our proof is obtained by combining the hard-to-sanitize databases of Dwork et al. [17] with PCP re-
ductions. They construct a database consisting of valid message-signature pairs (mi, σi) under a digital
signature scheme, and argue that any differentially private sanitizer that preserves accuracy for counting
queries associated with the signature verification predicate can be used to forge valid signatures. We replace
each message-signature pair (mi, σi) with a PCP encoding πi that proves that (mi, σi) satisfies the signature
verification algorithm. We then argue that if accuracy is preserved for a large fraction of the (constant arity)
constraints of the PCP verifier, then we can “decode” the PCP to forge a signature.

Our proof has some unusual features among PCP-based hardness results:

• As far as we know, this is the first time that PCPs have been used in conjunction with cryptographic
assumptions for a hardness result. (They have been used together for positive results regarding com-
putationally sound proof systems [25, 26, 6].) It would be interesting to see if such a combination
could be useful in, say, computational learning theory (where PCPs have been used for hardness of
“proper” learning [2, 20] and cryptographic assumptions for hardness of representation-independent
learning [31, 23]).

• While PCP-based inapproximability results are usually stated as Karp reductions, we actually need
them to be Levin reductions — capturing that they are reductions between search problems, and not
just decision problems. (Previously, this property has been used in the same results on computationally
sound proofs mentioned above.)

2 Preliminaries

2.1 Sanitizers

Let a database D ∈ ({0, 1}d)n be a matrix of n rows, x1, . . . , xn, corresponding to people, each of which
contains d binary attributes. A sanitizer A : ({0, 1}d)n → R takes a database and outputs some data
structure in R. In the case where R = ({0, 1}d)n̂ (an n̂-row database) we say that A outputs a synthetic
database.

We would like such sanitizers to be both private and accurate. In particular, the notion of privacy we
are interested in is as follows

Definition 2.1 (Differential Privacy). [16] A sanitizer A : ({0, 1}d)n → R is (ε, δ)-differentially private if
for every two databases D1, D2 ∈ ({0, 1}d)n that differ on exactly one row, and every subset S ⊆ R

Pr[A(D1) ∈ S] ≤ eε Pr[A(D2) ∈ S] + δ

In the case where δ = 0 we say that A is ε-differentially private.

Since a sanitizer that always outputs 0 satisfies Definition 2.1, we also need to define what it means for
a database to be accurate. In this paper we consider accuracy with respect to counting queries. Consider a
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set C of boolean predicates c : {0, 1}d → {0, 1}. Then each predicate c induces a counting query that on
database D = (x1, . . . , xn) ∈ ({0, 1}d)n returns

c(D) =
|{i ∈ [n] | c(xi) = 1}|

|D|

If the output of A is a synthetic database D̂, then c(A(D)) is simply the fraction of rows of D̂ that satisfy
the predicate c. However, if A outputs a data structure that is not a synthetic database, then we require that
there is an efficiently computable function E : R × C → R that estimates c(D) from the output of A(D)
and the description of c. For example, A may output a vector Z = (c(D) + Zc)c∈C where Zc is a random
variable for each c ∈ C. E(Z, c) is the c-th component of Z ∈ R = R|C|. Abusing notation, we will write
c(A(D)) as shorthand for c(E(A(D), c)).

We will say that A that outputs a synthetic database is accurate for the concept class C if the fractional
counts c(A(D)) are close to the fractional counts c(D). Specifically

Definition 2.2 (Accuracy). An output Z of sanitizer A(D) is α-accurate for a concept class C if

∀c ∈ C, |c(Z)− c(D)| ≤ α.

A sanitizer A is (α, β)-accurate for a concept class C if for every database D,

Pr
A′s coins

[∀c ∈ C, |c(A(D))− c(D)| ≤ α] ≥ 1− β

In this paper we use f(n) = negl(n) if f(n) = o(n−c) for every c > 0 and say that f(n) is negligible.

2.2 Hardness of Sanitizing

Differential privacy is a very strong notion of privacy, so it is common to look for hardness results that
rule out weaker notions of privacy. These hardness results show that every sanitizer must be “blatantly
non-private” in some sense. In this paper our notion of blatant non-privacy roughly states that there exists
an efficient adversary who can find a row of the original database using only the output from any efficient
sanitizer. Such definitions are also referred to as “row non-privacy.” We define hardness-of-sanitization
with respect to a particular concept class, and want to exhibit a distribution on databases for which it would
be infeasible for any efficient sanitizer to give accurate output without revealing a row of the database.
Specifically, following [17], we define the following notions

Definition 2.3 (Database Distribution Ensemble). Let D = Dd be an ensemble of distributions on tuples
(D, aux ), where D ∈ ({0, 1}d)n+1 is a d-column databases with n + 1 rows, for n = n(d), and aux ∈
{0, 1}poly(d) is a string of auxiliary information about D. Let (D,D′, i, aux )←R D̃ denote the experiment
in which we choose a tuple (D0, aux ) ←R D and i ∈ [n] uniformly at random, and set D to be the first n
rows of D0 and D′ to be D with the i-th row replaced by the (n+ 1)-st row of D0.

Definition 2.4 (Hard-to-sanitize Distribution). Let C be a concept class, α ∈ [0, 1] be a parameter, and
D = Dd be a database distribution ensemble.

The distribution D is (α, C)-hard-to-sanitize if there exists an efficient adversary T such that for any
alleged polynomial-time sanitizer A the following two conditions hold:

1. Whenever A(D) is α-accurate, then T (A(D), aux ) outputs a row of D:

Pr
(D,D′,i,aux)←RD̃
A′s and T ′s coins

[(A(D) is α-accurate for C) ∧ (T (A(D), aux ) ∩D = ∅)] ≤ negl(d).
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2. For every efficient sanitizer A, T cannot extract xi from the database D′:

Pr
(D,D′,i,aux)←RD̃
A′s and T ′s coins

[
T (A(D′), aux ) = xi

]
≤ negl(d)

where xi is the i-th row of D.

In [17], it was shown that every distribution that is (α, C)-hard-to-sanitize in the sense of Definition 2.4,
is also hard to sanitize while achieving even weak differential privacy

Claim 2.5. [17] If a distribution ensemble D = Dd on n(d)-row databases and auxiliary information is
(α, C)-hard-to-sanitize, then for every constant a > 0 and every β = β(d) ≤ 1 − 1/poly(d), no effi-
cient sanitizer that is (α, β)-accurate with respect to C can achieve (a log(n), (1− 8β)/2n1+a)-differential
privacy.

In particular, for all constants ε, β > 0, no polynomial-time sanitizer can achieve (α, β)-accurateness
and (ε, negl(n))-differential privacy.

We could use a weaker definition of hard-to-sanitize distributions, which would still suffice to rule out
differential privacy, that only requires that for every efficient A, there exists an adversary TA that almost
always extracts a row of D from every α-accurate output of A(D). In our definition we require that there
exists a fixed adversary T that almost always extracts a row of D from every α-accurate output of any
efficient A. Reversing the quantifiers in this fashion only makes our negative results stronger.

In this paper we are concerned with sanitizers that output synthetic databases, so we will relax Defini-
tion 2.4 by restricting the quantification over sanitizers to only those sanitizers that output synthetic data.

Definition 2.6 (Hard-to-sanitize Distribution as Synthetic Data). A database distribution ensemble D is
(α, C)-hard-to-sanitize as synthetic data if the conditions of Definition 2.4 hold for every sanitizer A that
outputs a synthetic database.

3 Relationship with Hardness of Approximation

The objective of a privacy-preserving sanitizer is to reveal some properties of the underlying database with-
out giving away enough information to reconstruct that database. This requirement has different implications
for sanitizers that produce synthetic databases and those with arbitrary output.

The SuLQ framework of [8] is a well-studied, efficient technique for achieving (ε, δ)-differential privacy,
with non-synthetic output. To get accurate, private output for a family of counting queries with predicates
in C, we can release a vector of noisy counts (c(D) +Zc)c∈C where the random variables (Zc)c∈C are drawn
independently from a distribution suitable for preserving privacy. (e.g. a Laplace distribution with standard
deviation O(|C| /εn)).

Consider the case of an n-row database D that contains satisfying assignments to a 3CNF formula ϕ,
and suppose our concept class includes all disjunctions on three literals (or, equivalently, all conjunctions
on three literals). Then the technique above releases a set of noisy counts that describes a database in which
every clause of ϕ is satisfied by most of the rows of D. However, sanitizers with synthetic-database output
are required to produce a database that consists of rows that satisfy most of the clauses of ϕ.

Because of the noise added to the output, the requirement of a synthetic database does not strictly force
the sanitizer to find a satisfying assignment for the given 3CNF. However, it is known to be NP-hard
to find even approximate satisfying assignments for many constraint satisfaction problems. In our main
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result, Theorem 4.4, we will show that there exists a distribution over databases that is hard-to-sanitize with
respect to synthetic data for any concept class that is sufficient to express a hard-to-approximate constraint
satisfaction problem.

3.1 Hard to Approximate CSPs

We define a constraint satisfaction problem to be the following.

Definition 3.1 (Constraint Satisfaction Problem (CSP)). A family of CSPs, denoted Γ, is a set of boolean
predicates on q variables. For every d ≥ q, let C(d)

Γ be the class consisting of all predicates c : {0, 1}d → R
of the form c(u1, . . . , ud) = γ(ui1 , . . . , uiq). We call CΓ = ∪∞d=qC

(d)
Γ the class of constraints of Γ. Finally,

we say a multiset ϕ ⊆ C(d)
Γ is a d-variable instance of CΓ and each ϕi ∈ ϕ is a constraint of ϕ.

We say that an assignment x satisfies the constraint ϕi if ϕi(u) = 1. For ϕ = {ϕ1, . . . , ϕm}, define

val(ϕ, u) =
∑m

i=1 ϕi(u)
m

and val(ϕ) = max
u∈{0,1}d

val(ϕ, u).

For our hardness result, we will need to consider a strong notion of hard constraint satisfaction problems,
which is related to probabilistically checkable proofs. First we recall the standard notion of hardness of
approximation under Karp reductions. (stated for additive, rather than multiplicative approximation error)

Definition 3.2 (inapproximability under Karp reductions). A family of CSPs Γ is α-hard-to-approximate
under Karp reductions if there exists γ ∈ [0, 1 − α], and a polynomial-time computable function R such
that for every C with input size d, if we set ϕC = R(C) ⊆ CΓ, then

1. if C is satisfiable, then val(ϕC) ≥ γ, and

2. if C is unsatisfiable, then val(ϕC) < γ − α.

For our hardness result, we will need a stronger notion of inapproximability, which says that we can
efficiently transform satisfying assignments of C into solutions to ϕC of high value, and vice-versa.

Definition 3.3 (inapproximability under Levin reductions). A family of CSPs Γ is α-hard-to-approximate
under Levin reductions if there exists γ ∈ [0, 1−α] and polynomial-time computable functionsR,Enc,Dec
such that for every C with input of size d if we set ϕC = R(C) ⊆ CΓ then

1. for every u ∈ {0, 1}d such that C(u) = 1, val(ϕC ,Enc(u,C)) ≥ γ,

2. and for every π ∈ {0, 1}d such that val(ϕC , π) ≥ γ − α, C(Dec(π,C)) = 1,

3. and for every u ∈ {0, 1}d, Dec(Enc(u,C)) = u

The notation Enc,Dec reflects the fact that we think of the set of assignments π such that val(ϕC , π) ≥
γ as a sort of error-correcting code on the satisfying assignments to C. Any π′ with value close to γ can be
decoded to a valid satisfying assignment.

Levin reductions are a stronger notion of reduction than Karp reductions. To see this, let Γ be α-hard-to-
approximate under Levin reductions, and let R,Enc,Dec be the functions described in Definition 3.3. We
now argue that for every circuit C, the formula ϕC = R(C) satisfies conditions 1 and 2 of Definition 3.2.
Specifically, if there exists an assignment u ∈ {0, 1}d that satisfies C, then Enc(u,C) satisfies at least a γ
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fraction of the constraints of ϕC . Conversely if any assignment π ∈ {0, 1}d satisfies at least a γ−α fraction
of the constraints of ϕC , then Dec(π,C) is a satisfying assignment of C.

It follows from the PCP Theorem that essentially every class of CSP is hard-to-approximate in this sense.
We restrict to CSP’s that are closed under complement as it suffices for our application.

Theorem 3.4. For every family of CSPs Γ that is closed under negation and contains a function that depends
on at least two variables, there is a constant α = α(Γ) such that either Γ is α-hard to approximate under
Levin reductions.

Proof sketch. Hardness under Karp reductions follows directly from the classification theorems of Creignou [10]
and Khanna et al. [24]. These theorems show that all CSPs are either α-hard under Karp reductions for some
constant α > 0 or can be solved optimally in polynomial time. By inspection, the only CSPs that fall into the
polynomial-time cases (0-valid, 1-valid, and 2-monotone) and are closed under negation are those containing
only dictatorships and constant functions.

The fact that standard PCPs actually yield Levin reductions has been explicitly discussed and formalized
by Barak and Goldreich [6] in the terminology of PCPs rather than reductions (the function Enc is called
“relatively efficient oracle-construction” and the function Dec is called “a proof-of-knowledge property”).
They verify that these properties hold for the PCP construction of Babai et al. [4], whereas we need it
for PCPs of constant query complexity. While the properties probably holds for most (if not all) existing
PCP constructions, the existence of the efficient “decoding” function g requires some verification. We
observe that it follows as a black box from the PCPs of Proximity of [7, 12]. There, a prefix of the PCP
(the “implicit input oracle”) can be taken to the encoding of a satisfying assignment of the circuit C in
an efficiently decodable error-correcting code. If the PCP verifier accepts with higher probability than the
soundness error s, then it is guaranteed that the prefix is close to a valid codeword, which in turn can be
decoded to a satisfying assignment. By the correspondence between PCPs and CSPs [3], this yields a CSP
(with constraints of constant arity) that is α-hard to approximate under Levin reductions for some constant
α > 0 (and γ = 1). The sequence of approximation-preserving reductions from arbitrary CSPs to MAX-
CUT [28] can be verified to preserve efficiency of decoding (indeed, the correctness of the reductions is
proven by specifying how to encode and decode). Finally, the reductions of [24] from MAX-CUT to any
other CSP all involve constant-sized “gadgets” that allow encoding and decoding to be done locally and very
efficiently.

It seems likely that optimized PCP/inapproximability results (like [22]) are also Levin reductions, which
would yield fairly large values for α for natural CSPs (e.g. α = 1/8 − ε if Γ contains all conjunctions of
3-literals, because then CΓ contains MAX 3-SAT.)

4 Hard-to-Sanitize Distributions from Hard CSPs

In this section we prove that to efficiently produce a synthetic database that is accurate for the constraints
of a CSP that is hard-to-approximate under Levin reductions, we must pay constant error in the worst
case. Following [17], we start with a digital signature scheme, and a database of valid message-signature
pairs. There is a verifying circuit Cvk and valid message-signature pairs are satisfying assignments to that
circuit. Now we encode each row of database using the function Enc, described in Definition 3.3, that maps
satisfying assignments to Cvk to assignments of the CSP instance ϕCvk = R(Cvk) with value at least γ.
Then, any assignment to the CSP instance that satisfies a γ − α fraction of clauses can be decoded to a
valid message-signature pair. The database of encoded message-signature pairs is what we will use as our
hard-to-sanitize distribution.
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4.1 Super-Secure Digital Signature Schemes

Before proving our main result, we will formally define a super-secure digital signature scheme. These
digital signature schemes have the property that it is infeasible under chosen-message attack to find a new
message-signature pair that is different from all obtained during the attack, even a new signature for an old
message. First we formally define digital signature schemes

Definition 4.1 (Digital signature scheme). A digital signature scheme is a tuple of three probabilistic poly-
nomial time algorithms Π = (Gen,Sign,Ver) such that

1. Gen takes as input the security parameter 1κ and outputs a key pair (sk, vk)←R Gen(1κ).

2. Sign takes sk and a message m ∈ {0, 1}∗ as input and outputs σ ←R Signsk(m).

3. Ver takes vk and pair (m,σ) and deterministically outputs a bit b ∈ {0, 1}, such that for every
(sk, vk) in the range of Gen , and every message m, we have Vervk(m,Signsk(m)) = 1.

We define the security of a digital signature scheme with respect to the following game.

Definition 4.2 (Weak forgery game). For any signature scheme Π = (Gen,Sign,Ver) and probabilistic
polynomial time adversary F , WeakForge(F ,Π, κ) is the following probabilistic experiment.

1. (sk, vk)←R Gen(1κ).

2. F is given vk and oracle access to Signsk. The adversary adaptively queries Signsk on a set of
messages Q ⊂ {0, 1}∗, receives a set of message-signature pairs A ⊂ {0, 1}∗ and outputs (m∗, σ∗).

3. The output of the game is 1 if and only if (1) Vervk(m∗, σ∗) = 1, and (2) (m∗, σ∗) 6∈ A.

The weak forgery game is easier for the adversary to win than the standard forgery game because the
final condition requires that the signature output by F be different from all pairs (m,σ) ∈ A, but allows for
the possibility that m∗ ∈ Q. In the standard definition, the final condition would be replaced by m∗ 6∈ Q.
Thus the adversary has more possible outputs that would result in a “win” under this definition than under
the standard definition.

Definition 4.3 (Super-secure digital signature scheme). A digital signature scheme Π = (Gen,Sign,Ver)
is super-secure under adaptive chosen-message attack if for every probabilistic polynomial time adversary,
F , Pr[WeakForge(F ,Π, κ) = 1] ≤ negl(κ).

Although the above definition is stronger than the usual definition of existentially unforgeable digital
signatures, in [21] it is shown how to modify known constructions [27, 30] to obtain a super-secure digital
signature scheme from any one-way function.

4.2 Main Hardness Result

We are now ready to now state and prove our hardness result. Let Γ be a family of CSPs and let CΓ =
∪∞d=1C

(d)
Γ be the class of constraints of Γ, which was constructed in Definition 3.1. We now state our

hardness result.

Theorem 4.4. For every CSP Γ such that Γ ∪ ¬Γ is α-hard-to-approximate under Levin reductions, and
every polynomial n(d), there exists a distribution ensembleD = Dd on n(d)-row databases that is (α, C(d)

Γ )-
hard-to-sanitize as synthetic data.
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Proof. Let Π = (Gen,Sign,Ver) be a super-secure digital signature scheme and let Γ be a family of CSPs
that is α-hard-to-approximate under Levin reductions. Let R,Enc,Dec be the polynomial-time functions
and γ ∈ [0, 1− α] be the constant from Definition 3.3. Let κ = dτ for a constant τ > 0 to be defined later.

Let n = n(d) = poly(d) and use `(s1) to denote the length of the string s1, US to denote the uniform
distribution over the set S, and s1‖s2 to denote the concatenation of s1 and s2. We define the database
distribution ensemble D = Dd to generate n+ 1 random message-signature pairs and then encode them as
PCP witnesses with respect to the signature-verification algorithm:

Database Distribution Ensemble D = Dd:
(sk, vk)←R Gen(1κ)
(m1, . . . ,mn+1)←R U({0,1}κ)n+1

for i = 1 to n+ 1 do
x′i := Enc(mi‖Signsk(mi), Cvk)
xi := x′i ‖ 0d−`(x

′
i)

end for
D0 := (x1, . . . , xn+1)
return (D0, vk)

Since `(x′i) = poly(κ) = poly(dτ ), we can choose the constant τ > 0 to be small enough so that
`(x′i) < d, and the above is well-defined.

Every valid pair (m,Signsk(m)) is a satisfying assignment of the circuit Cvk, hence every row of D0

constructed in this way will satisfy at least a γ fraction of the clauses of the formula ϕCvk = R(Cvk).
We now prove the following two lemmas that will establish that D is hard-to-sanitize:

Lemma 4.5. There exists an adversary T such that for every polynomial time sanitizer A,

Pr
(D,D′,i,aux)←RD̃
A′s and T ′s coins

[
(A(D) is α-accurate for C(d)

Γ ) ∧ (T (A(D), aux ) ∩D = ∅)
]
≤ negl(d) (1)

Proof. Our privacy adversary tries to find a row of the original database by trying to PCP-decode each row
of the “sanitized” database and then re-encoding it. Formally, we define the privacy adversary by means of
a subroutine that tries to PCP-decode each row of the input database:

Subroutine T0(D̂, vk):
(x̂1, . . . , x̂n̂) := D̂
ϕCvk = R(Cvk)
for i = 1 to n̂ do

if val(ϕCvk , x̂i) ≥ γ − α then
return Dec(x̂i, Cvk)

end if
end for
return ⊥

Privacy Adversary T (D̂, vk):
return Enc(T0(D̂, vk), Cvk)

Let A be a polynomial-time sanitizer, we will show that Inequality (1) holds.
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Claim 4.6. If D̂ = A(D) is α-accurate for C(d)
Γ , then T0(D̂, vk) outputs a pair (m,σ) s.t. Cvk(m,σ) = 1.

Proof. First we show that if D̂ is α-accurate, then T0(D̂, vk) 6= ⊥. Since every (mi,Signsk(mi)) pair is
a satisfying assignment to Cvk, the definition of Enc (Definition 3.3) implies that each row xi of D has
val(ϕCvk , xi) ≥ γ. Thus if ϕCvk = {ϕ1, . . . , ϕm}, then

1
m

m∑
j=1

ϕj(D) =
1
m

m∑
j=1

(
1
n

n∑
i=1

ϕj(xi)

)
=

1
n

n∑
i=1

val(ϕCvk , xi) ≥ γ.

Since D̂ is α-accurate, then for every constraint ϕj ∈ ϕCvk , we have ϕj(D̂) ≥ ϕj(D)− α. Thus

1
n̂

n̂∑
i=1

val(ϕCvk , x̂i) =
1
m

m∑
j=1

ϕj(D̂) ≥ 1
m

m∑
j=1

ϕj(D)− α ≥ γ − α.

So for at least one row x̂ ∈ D̂ it must be the case that val(ϕCvk , x̂) ≥ γ − α. The definition of Dec
(Definition 3.3) implies Cvk(Dec(x̂, Cvk)) = 1.

Now notice if T0(A(D, vk)) outputs a valid message-signature pair but T (A(D), vk)∩D = ∅, then this
means T0(A(D), vk) is forging a new signature not among those used to generate D, violating the security
of the digital signature scheme. Formally, we construct a forger as follows:

Forger F(vk) with oracle access to Signsk:
Use the oracle Signsk to generate an n-row database D just as in the definition of Dd (consisting of PCP
encodings valid message-signature pairs).
D̂ := A(D)
return x̂∗ := T0(D̂, vk)

Notice that running F in the weak forgery game is equivalent to running T in the experiment of inequal-
ity (1), except that F does not re-encode the output of T0(A(D), vk). By the super-security of the signature
scheme, if the x̂∗ output by F is a valid message-signature pair (as holds if A(D) is α-accurate for C(d)

Γ ,
by Claim 4.6), then it must be one of the message-signature pairs used to construct D (except with proba-
bility negl(κ) = negl(d)). This implies that T (A(D), vk) = Enc(x̂∗, Cvk) ∈ D (except with negligible
probability). Thus, we have

Pr
(D,D′,i,aux)←RD̃
A′s coins

[A(D) is α-accurate for C(d)
Γ ⇒ T (A(D), vk) ∈ D] ≥ 1− negl(d),

which is equivalent to the statement of the lemma.

Lemma 4.7.
Pr

(D,D′,i,aux)←RD̃
A′s and T ′s coins

[
T (A(D′), aux ) = xi

]
≤ negl(d)

Proof. Since the messages mi used in D0 are drawn independently, D′ contains no information about the
message mi, thus no adversary can, on input A(D′) output the target row xi except with probability 2−κ =
negl(d).

These two claims suffice to establish that D is (α, CΓ)-hard-to-sanitize.
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One remark about our proof is that the construction of our signature-forging adversary works even if
the sanitizer A gets the verification key as auxiliary input. This extra generality makes our negative result
stronger, but auxiliary input was omitted from the definition of the sanitizer to maintain consistency with the
standard definition of differential privacy.

Theorem 1.1 in the introduction follows by combining Theorems 3.4 and 4.4.
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