Learning Treatment Policies in Mobile Health

S.A. Murphy

CHEPS, 10.26.15
The Dream!

“The Continually Learning Mobile Health Intervention”

• Help maintain healthy behaviors
• Help you achieve your health goals
 – Help you better trade off long term benefit with short term momentary pleasure
• The ideal mHealth intervention
 – will be there when you need it and will not intrude when you don’t need it.
 – will adjust to unanticipated life challenges
mHealth

MD2K Smoking Cessation Coach

- Wearable bands measure activity, stress, cigarette smoking, sleep quality……..
- Supportive stress-regulation interventions available on smartphone 24/7
- In which contexts should the wrist band provide supportive “cue” and smartphone activate to highlight associated support?
mHealth

HeartSteps Activity Coach

- Wearable bands measure activity, phone sensors measure busyness of calendar, location, weather, …..

- In which contexts should smartphone ping and deliver activity recommendations?
Data from wearable devices that sense and provide treatments

On each individual:

\[O_1, A_1, Y_2, \ldots, O_t, A_t, Y_{t+1}, \ldots \]

\(O_t \): Observations at \(t^{th} \) decision time (high dimensional)

\(A_t \): Action at \(t^{th} \) decision time (treatment)

\(Y_{t+1} \): Proximal Response (aka: Reward, Cost)
Examples

1) Decision Times (Times at which a treatment can be provided.)
 1) Regular intervals in time (e.g. every 10 minutes)
 2) At user demand

HeartSteps: Approximately every 2-2.5 hours

Smoking Cessation: Every 1 minute during 10 hour day.
Examples

2) Observations, O_t
 1) Passively collected (via sensors)
 2) Actively collected (via self-report)

HeartSteps observations include activity recognition, location, busyness of calendar, usefulness ratings, adherence……..

MD2K smoking cessation observations include stress, smoking detection, mood,……..
Examples

3) Actions, A_t
 1) Treatments that can be provided at decision time
 2) Whether to provide a treatment

HeartSteps: Activity Recommendation
Smoking Cessation: Cue on wrist band
Momentary Activity Recommendation

No Message or
Examples

4) Proximal Response (reward) Y_{t+1}

HeartSteps: Activity (step count) over next 60 minutes.
Smoking Cessation: Stress level over next x minutes
Steps Toward Long Term Goal

1) Develop trial designs/data analytics for assessing if there are effects of the actions on the proximal response. *experimental design*

2) Develop learning algorithms for use with resulting data: assess if there are delayed effects of the actions; assess if the effects vary by context, observations; predict treatment burden. *causal inference*

3) Develop learning algorithms for using a training set to construct a “warm-start” treatment policy. *batch RL*

4) Develop online training algorithms that will result in a Personalized Continually Learning mHealth Intervention *online RL*
Micro-Randomized Trial

Randomize between actions at decision times → Each person may be randomized 100’s or 1000’s of times.

- These are sequential, “full factorial,” designs.
- Design trial to detect main effects.
Why Micro-Randomization?

• Randomization is a gold standard in providing data to assess the effect of an intervention option.

• Sequential randomizations will enhance replicability and effectiveness of treatment policy learned from data.
Micro-Randomized Trial Elements

1. Record outcomes
 – Distal (scientific/clinical goal) & Proximal Response
2. Record context (sensor & self-report data)
3. Randomize among treatment actions at decision points
4. Use data after study ends to assess treatment effects, learn warm-start treatment policy
Micro-Randomized Trial

How to justify the trial costs?

• Address a question that can be stated clearly across disciplinary boundaries and be able to provide guarantees.

• Design trial so that a variety of further interesting questions can be addressed.

First Question to Address: Do the treatment actions impact the proximal response? (aka, is there a signal?)
Micro-Randomized Trial for HeartSteps

• 42 day trial

• Whether to provide an Activity Recommendation? \(A_t \in \{0, 1\} \)

• Randomization in HeartSteps

\[P[A_t = 1] = .4 \quad t = 1, \ldots, T \]
Micro-Randomized Trial

Time varying potentially intensive/intrusive treatment actions → potential for accumulating habituation and burden

→

Allow main effect of the treatment actions on proximal response to vary with time
Availability & the Treatment Effect

• Treatment actions can only be delivered at a decision time if an individual is available.

• The effect of treatment at a decision time is the difference in proximal response between available individuals assigned an activity recommendation and available individuals who are not assigned an activity recommendation.
Availability

• A_t is only delivered if the individual is available at decision time t.

• Set $I_t = 1$ if the individual is available at decision time t, otherwise $I_t = 0$
Treatment Effect

• The Main Effect at time j is

$$\beta(t) = E[Y_{t+1} | I_t = 1, A_t = 1] - E[Y_{t+1} | I_t = 1, A_t = 0]$$

• What does this main effect $\beta(t)$ mean?
Sample Size Calculation

• We calculate the number of subjects to test H_0: no effect of the action, i.e.,

$$H_0 : \beta(t) = 0, t = 1, 2, \ldots, T$$

• Size to detect a low dimensional, smooth alternate H_1.
 – Example: H_1: $\beta(t)$ quadratic with intercept, β_0, linear term, β_1, and quadratic term β_2 and test

$$\beta_0 = \beta_1 = \beta_2 = 0$$
Sample Size Calculation

• Our test statistic uses estimators from a “generalization” of linear regression.

• The test statistic is quadratic in the estimators of the β terms.

• Given a specified power to detect the smooth alternative, H_1, a false-positive error prob., and the desired detectable signal to noise ratio, we use standard statistics to derive the sample size.
Sample Size Calculation

Alternative hypothesis is low dimensional → assessment of the effect of the activity recommendation uses contrasts of between subject responses + contrasts of within subject responses.

--The required number of subjects will be small.
<table>
<thead>
<tr>
<th>Standardized Average Main Effect over 42 Days</th>
<th>Sample Size For 70% availability or 50% availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06 standard deviations</td>
<td>81 or 112</td>
</tr>
<tr>
<td>0.08 standard deviations</td>
<td>48 or 65</td>
</tr>
<tr>
<td>0.10 standard deviations</td>
<td>33 or 43</td>
</tr>
</tbody>
</table>
The micro-randomized trial is a sequential factorial trial with multiple factors, e.g.

Factor 1: Activity recommendation is randomized 5 times per day

Factor 2: Daily activity planning is randomized each evening
Experimental Design Challenges

Micro-randomized trials are a new type of factorial design

i. Time varying factors \rightarrow time varying main effects, time-varying two-way interactions, different delayed effects

ii. Randomization that depends on an outcome of past actions

iii. Design studies specifically to detect interactions between factors.
Steps Toward Long Term Goal

1) Develop trial designs/data analytics for assessing if there are effects of the actions on the proximal response. *experimental design*

2) Develop learning algorithms for use with resulting data: assess if there are delayed effects of the actions; assess if the effects vary by context, observations; predict treatment burden. *causal inference*

3) Develop learning algorithms for using a training set to construct a “warm-start” treatment policy. *batch RL*

4) Develop online training algorithms that will result in a Personalized Continually Learning mHealth Intervention *online RL*
Treatment policies

- Most current treatment policies are constructed using behavioral theory, clinical experience, observational data analyses and expert opinion.

- We aim to develop algorithms for use with data in constructing treatment policies.
 -- treatment policy should be interpretable.
 -- treatment policy can act as a “warm-start” in future implementation of an online algorithm.
Stochastic Treatment Policy

Construct a parameterized policy, $\pi_\theta(a|s)$

- Ensure $\pi_\theta(a|s)$ probabilities bounded away from 0 and 1: variation in actions can help retard habituation and maintain engagement.
- Parameterized $\pi_\theta(a|s)$ can be interpreted/vetted by domain experts
Setup

1) On each of \(n \) individuals, data set contains:

\[S_1, A_1, Y_2, \ldots, S_T, A_T, Y_{T+1} \]

-- \(S_t \) is a summary of \(O_1, A_1, Y_2, \ldots, Y_t, O_t \) that permits the Markovian property; this is a modeling assumption.

-- known randomization

\[P[A_t = a | S_t = s] = \mu(a | s) \]

2) Optimality criterion to maximize: Average Reward resulting from use of policy \(\pi_\theta \)
Markov Decision Process

Markovian Assumptions

\[P[S_{j+1} = s' | S_1, A_1, \ldots, S_j, A_j] = P[S_{j+1} = s' | S_j, A_j] \]

and

\[P[Y_{j+1} = r | S_1, A_1, \ldots, S_j, A_j] = P[Y_{j+1} = r | S_j, A_j] \]

Stationarity Assumptions

\[P[S_{j+1} = s' | S_j = s, A_j = a] = p(s' | s, a) \]

and

\[E[Y_{j+1} | S_j = s, A_j = a] = r(s, a) \]
Optimality Criterion (to maximize)

Average Reward, η_{θ}, for policy π_{θ}:

$$
\eta_{\theta} = \lim_{T \to \infty} \frac{1}{T} E_{\theta} \left[\sum_{t=0}^{T-1} Y_{t+1} \bigg| S_0 = s_0 \right]
$$

$$
= \sum_s d_{\theta}(s) \sum_a \pi_{\theta}(a|s)r(s,a)
$$

E_{θ} denotes expectation under the stationary distribution, d_{θ}, associated with π_{θ}.

Background: Differential Value

V_θ is the Differential Value

$$V_\theta(s) = \lim_{T \to \infty} E_\theta \left[\sum_{t=0}^{T} \left(Y_{t+1} - \eta_\theta \right) \bigg| S_0 = s \right].$$

$V_\theta(s) - V_\theta(s')$ reflects the difference in sum of centered responses accrued when starting in state s as opposed to state s'.

(η_θ is the average reward)
Background: Bellman Equation

Oracle Temporal Difference:

\[\delta_t = Y_{t+1} - \eta \theta + V_\theta(S_{t+1}) - V_\theta(S_t) \]

Bellman Equation:

\[E_\theta \left[\delta_t \left| S_t \right. \right] = 0 \]

\(S_t, A_t, Y_{t+1}, S_{t+1} \)
Bellman’s equation implies that

\[E \left[\frac{\pi_\theta(A_t|S_t)}{\mu(A_t|S_t)} \left(Y_{t+1} - \eta + V(S_{t+1}) - V(S_t) \right) \left(\frac{1}{f(S_t)} \right) \right] \]

will be, for all \(t \), for any vector, \(f(.) \), of appropriately integrable functions, and expectation over data generating distribution, \(E \), equal to 0 if \(\eta = \eta_\theta \), \(V = V_\theta \)
Estimating Function

• Construct a flexible model for, $V_\theta(s)$, say $f(s)^T v_\theta$ for $f(s)$ a p by 1 vector of basis functions evaluated at s (p is large)

• Solve

$$\mathbb{P}_n \left[\sum_{t=1}^{T} \frac{\pi_\theta(A_t|S_t)}{\mu(A_t|S_t)} \left(Y_{t+1} - \eta + f(S_{t+1})^T v - f(S_t)^T v \right) \left(\begin{array}{c} 1 \\ f(S_t) \end{array} \right) \right] = 0 \text{ for } \hat{\eta}_\theta, \hat{v}_\theta$$

36
Overview of Algorithm

• The resulting η and ν are functions of θ, denote by $\hat{\eta}_\theta$, $\hat{\nu}_\theta$
 • $\hat{\eta}_\theta$, $\hat{\nu}_\theta$ are the output of the Critic
• The Actor maximizes $\hat{\eta}_\theta$ over θ to obtain $\hat{\theta}$.
 • this will require repeated calls to the Critic
• $\hat{\theta}$ is the output of the Actor
Actor

- The objective function for the actor is given by

\[
\hat{\eta}_\theta = \mathbb{P}_n \left[\sum_{t=1}^{T} \frac{\pi_\theta(A_t|S_t)}{\mu(A_t|S_t)} \left(Y_{t+1} + f(S_{t+1})^T \hat{\nu}_\theta - f(S_t)^T \hat{\nu}_\theta \right) \right]
\]

- We want to construct a policy, \(\pi_\theta \) that is bounded away from 0, 1.

Binary action: \(\pi_\theta(a|s) = \frac{e^{\theta^T g(s) a}}{1 + e^{\theta^T g(s)}} \)
Actor

Chance constraint on θ:

$$\min_a P^* \left[p_0 \leq \pi_\theta(a|S) \leq 1 - p_0 \right] \geq 1 - \alpha$$

given α, p_0 and P^*, a reference distribution over states, S.

This constraint is nonconvex; we relax via Markov inequality.
Write

\[
\mathbb{P}_n \left[\sum_{t=1}^{T} \frac{\pi_t(A_t|S_t)}{\mu(A_t|S_t)} \left(Y_{t+1} - \eta + f(S_{t+1})^T v - f(S_t)^T v \right) \left(\begin{array}{c} 1 \\ f(S_t) \end{array} \right) \right] \\
= \hat{A}_\theta \begin{pmatrix} \eta \\ v \end{pmatrix} - \hat{b}_\theta
\]

The critic minimizes

\[
\| \hat{A}_\theta \begin{pmatrix} \eta \\ v \end{pmatrix} - \hat{b}_\theta \|^2 + \lambda_c \|v\|^2
\]

to obtain

\[
\hat{\eta}_\theta, \ \hat{v}_\theta
\]
The actor obtains $\hat{\theta}$ by maximizing

$$\hat{\eta}_\theta = \mathbb{P}_n \left[\sum_{t=1}^T \frac{\pi_\theta(A_t|S_t)}{\mu(A_t|S_t)} \left(Y_{t+1} + f(S_{t+1})^T \hat{v}_\theta - f(S_t)^T \hat{v}_\theta \right) \right]$$

subject to the constraint, $\theta^T \Sigma_g \theta \leq k_{max}$

$$\Sigma_g = T^{-1} \sum_{t=1}^T E^* [g(S_t)g(S_t)^T]$$
BASICS Mobile

• Smartphone-based intervention to curb heavy drinking and smoking in college students
 – 14 day study
 – Self-report 3x/day (morning, afternoon, evening)
 – Intervention 2x/day (afternoon, evening)
 • Mindfulness-based intervention \(A_t = I \) vs general health information \(A_t = 0 \)
• Question: Should a mindfulness-based intervention (vs general health info) be provided when there is an increase in need to self-regulate?
BASICS Mobile

- n subjects = 27, T decision points = 28
- Availability: To be available to receive a treatment, the student must complete self-report questions (I_t = 1). If the student is available then the student is provided a treatment with probability 2/3.
- Reward is (-)smoking rate
BASICS Mobile

- S_t is 8 dimensional composed of 5 discrete and 3 continuous valued features.
- Differential value approximated by B-splines and two way products of B-splines constructed from entries in S_t.
- Parameterized policy:

$$\pi_\theta(1|s) = I_t \frac{e^{\theta_0 + \theta_1 g_1 + \theta_2 g_2}}{1 + e^{\theta_0 + \theta_1 g_1 + \theta_2 g_2}}$$
BASICS Mobile

- g_1 is indicator for an increase in self-control demands (1 if yes, 0 if no)
- g_2 is indicator for no burden (1 if yes, 0 if no)
- $\hat{\theta}_0 = .74$, $\hat{\theta}_1 = - .95$, $\hat{\theta}_2 = 2.26 \rightarrow$ An available student with no increase in self-control demands and who is not indicating burden is recommended treatment with probability 0.85

$$\pi_{\theta}(1|s) = It \frac{e^{\theta_0 + \theta_1 g_1 + \theta_2 g_2}}{1 + e^{\theta_0 + \theta_1 g_1 + \theta_2 g_2}}$$
Challenges

• Bandit vs Average Reward vs Discounted Reward?
 – Burden → disengagement raises the need to pay attention to future.
 – In batch setting and/or online setting?

• Any method should provide confidence intervals/permit scientists to test hypotheses.

• Computational problems…….
General Challenges

• How to reduce the amount of self-report data (How might you do this?)

• How to accommodate/utilize the vast amount of missing data, some of which will be informative…….

• Measuring burden without causing burden.

• How to best incorporate burden into learning?

• Incorporating delayed rewards
Collaborators