Micro-randomized Trials in Mobile Health

S.A. Murphy
CSML, Princeton
mHealth

MD2K Smoking Cessation Coach

- Wearable wrist/chest bands measure activity, stress, cigarette smoking…; phone records location, burden,…..
- Supportive stress-regulation interventions available on smartphone 24/7
- In which contexts should the wrist band provide supportive “cue” and smartphone activate to highlight associated support?
mHealth

HeartSteps Activity Coach

- Wearable bands measure activity and sleep quality; phone sensors measure busyness of calendar, location, weather, ….

- In which contexts should smartphone ping and deliver activity ideas?
Data from wearable devices that sense and provide treatments

On each individual:

\[O_1, A_1, Y_2, \ldots, O_t, A_t, Y_{t+1}, \ldots \]

\(O_t\): Observations at \(t^{th}\) decision time (high dimensional)

\(A_t\): Action at \(t^{th}\) decision time (treatment)

\(Y_{t+1}\): Proximal Response (aka: Reward, Utility, Cost)
Examples

1) Decision Times (Times at which a treatment can be provided.)
 1) Regular intervals in time (e.g. every 10 minutes)
 2) At user demand

HeartSteps: Approximately every 2-2.5 hours

Smoking Cessation: Every 1 minute during 10 hour day.
Examples

2) Observations O_t
 1) Passively collected (via sensors)
 2) Actively collected (via self-report)

HeartSteps: activity recognition, location, step count, busyness of calendar, usefulness ratings, adherence……..

Smoking Cessation: stress, smoking detection, mood, driving,….
Examples

3) Actions A_t
 1) Treatments that can be provided at a decision time
 2) Whether to provide a treatment

HeartSteps: Activity recommendation on phone
Smoking Cessation: Cue on wrist band
Activity Recommendation

No Message or
Examples

4) Proximal Response (reward) Y_{t+1}

HeartSteps: Activity (step count) over next 60 minutes.
Smoking Cessation: Stress level over next x minutes
Continually Learning Mobile Health Intervention

1) Trial Designs: Are there effects of the actions on the proximal response? *experimental design*

2) Data Analysis Methods for use with trial data: Are there delayed effects of the actions? Do effects vary by context, observations; predict treatment burden? *causal inference*

3) Learning algorithms for use with trial data: Construct a “warm-start” treatment policy. *batch RL*

4) Online training algorithms that will result in a Personalized Continually Learning mHealth Intervention. *online RL*
Experimental Design: “Micro-Randomized Trial”

Randomize between actions at decision times Each person may be randomized 100’s or 1000’s of times.

• These are sequential, “full factorial,” designs.

• Design trial to detect main effects.
Why Micro-Randomization?

• Treatment actions are often designed to have a near-time, proximal effect.
 – Randomization is the gold standard for providing data to assess the causal effect of a treatment

• Sequential randomization will enhance quality of many interesting subsequent data analyses.
Micro-Randomized Trial Elements

1. **Record** outcomes
 - Distal (scientific/clinical goal) & Proximal Response
2. **Record** context (sensor & self-report data)
3. **Randomize among** treatment actions at decision points
4. **Use** data after study ends to assess treatment effects, learn warm-start treatment policy
Micro-Randomized Trial

How to justify the trial costs?

• Address a question that can be stated clearly across disciplinary boundaries and be able to provide guarantees.

• Design trial so that a variety of further interesting questions can be addressed.

First Question to Address: Do the treatment actions impact the proximal response? (aka, is there a main effect?)
Micro-Randomized Trial for HeartSteps

• 42 day trial
• Whether to provide an Activity recommendation? $A_t \in \{0, 1\}$
• Test for main effects on proximal response
• Randomization in HeartSteps

$$P[A_t = 1] = .4 \quad t = 1, \ldots, T$$
Time-varying Main Effects

Time varying potentially intensive/intrusive treatment actions \rightarrow potential for accumulating habituation and burden

\rightarrow

In the test statistic allow the main effect of the treatment actions on proximal response to vary with time
Availability & the Treatment Effect

• Treatment actions can only be delivered at a decision time if an individual is available.

• The effect of treatment at a decision time is the difference in proximal response between available individuals assigned an activity recommendation and available individuals who are not assigned an activity recommendation.
Availability

- Treatment actions can only be delivered at a decision time if an individual is available

- Set $I_t = 1$ if the individual is available at decision time t, otherwise, $I_t = 0$
Potential Outcomes

- Define
 \[\bar{A}_t = \{A_1, A_2, \ldots, A_t\}, \quad \bar{a}_t = \{a_1, a_2, \ldots, a_t\} \]

- Define \(Y_{t+1}(\bar{a}_t) \) to be the observed response,
 \(Y_{t+1} \) if \(\bar{A}_t = \bar{a}_t \), e.g., \(Y_{t+1} = Y_{t+1}(\bar{A}_t) \)

- Define \(I_t(\bar{a}_{t-1}) \) to be the observed “available for treatment” indicator if \(\bar{A}_{t-1} = \bar{a}_{t-1} \)
Main Effect

• Define the Main Effect at time t as

$$E[Y_{t+1}(\bar{A}_{t-1}, 1) - Y_{t+1}(\bar{A}_{t-1}, 0) | I_t(\bar{A}_{t-1}) = 1]$$

• What does this estimand mean?
Main Effect

• The randomization implies that

\[
E[Y_{t+1}(\bar{A}_{t-1}, 1) - Y_{t+1}(\bar{A}_{t-1}, 0) | I_t(\bar{A}_{t-1}) = 1] = \\
E[Y_{t+1} | I_t = 1, A_t = 1] - E[Y_{t+1} | I_t = 1, A_t = 0]
\]

• Put

\[
\beta(t) = E[Y_{t+1} | I_t = 1, A_t = 1] - E[Y_{t+1} | I_t = 1, A_t = 0]
\]
Proposal

Design and size micro-randomized trial to detect main effect of treatment on proximal response

The main effect is a time-varying main effect $\beta(t), \ t=1,\ldots,T$

The main effect is a causal effect!
Sample Size Calculation

• We calculate the number of subjects to test H_0 : no effect of the action, i.e.,

\[H_0 : \beta(t) = 0, \ t = 1, 2, \ldots, T \]

• Size to detect a low dimensional, smooth alternate H_1.
 – Example: H_1 : $\beta(t)$ quadratic with intercept, β_0, linear term, β_1, and quadratic term β_2 and test

\[\beta_0 = \beta_1 = \beta_2 = 0 \]
Overview

• Our test statistic uses estimators from a “generalization” of linear regression.

• The test statistic is quadratic in the estimators of the β terms.

• Given a specified power to detect the smooth alternative, H_1, a false-positive error prob., and the desired detectable signal to noise ratio, we use standard statistics to derive the sample size.
Sample Size Calculation

Alternative hypothesis is low dimensional → assessment of the effect of the activity recommendation uses contrasts of between subject responses + contrasts of within subject responses.

--The required number of subjects will be small.
Test Statistic for Sample Size Calculation

• Test statistic based on fit of model:

\[E[Y_{t+1} | I_t = 1, A_t] = \gamma(t) + \beta(t)(A_t - q_t) \]

where \(q_t \) is the randomization probability

• \(q_t = 0.4 \) in HeartSteps
Test Statistic for Sample Size Calculation

• Test statistic is based on least squares fit of

\[E[Y_{t+1}|I_t = 1, A_t] = \gamma(t) + \beta(t)(A_t - q_t) \]

HeartSteps:

\[\beta(t) = \beta_0 + \beta_1 \left\lfloor \frac{t-1}{5} \right\rfloor + \beta_2 \left(\frac{t-1}{5} \right)^2 \]

• You select parameterization of \(\gamma(t) \)
Alternative for Sample Size Calculation

• One calculates a sample size to detect a given alternative with a given power.

• Alternative:
 \[H_1 : \beta_i = d_i \bar{\sigma}, \ i = 0, 1, 2 \]
where \(\bar{\sigma}^2 \) is the average conditional variance.
Alternative for Sample Size Calculation

- Average conditional variance is

\[
\bar{\sigma}^2 = \frac{1}{T} \sum_{t=1}^{T} E[VAR(Y_{t+1}|I_t = 1, A_t)]
\]
Specify Alternative for Sample Size Calculation

• Scientist indirectly specifies standardized d_i’s
 – initial proximal treatment effect: d_0,
 – average proximal effect over trial duration:
 $\frac{1}{T} \sum_{t=1}^{T} \left(d_0 + d_1 \left\lfloor \frac{t-1}{5} \right\rfloor + d_2 \left\lfloor \frac{t-1}{5} \right\rfloor^2 \right)$,
 – and day of maximal proximal effect: $- \frac{d_1}{2d_2}$
• We solve for d_0, d_1, d_2
Test Statistic for Sample Size Calculation

- Put $Y_i = (Y_{i2}, \ldots, Y_{iT+1})^T$ for i^{th} subject

p is the total number of parameters ($p > 3$);

X_i is the associated design matrix (T by p)

N is sample size

Last 3 columns of X_i contain row entries:

$$I_{it}(A_{it} - q_t), I_{it}(A_{it} - q_t)\left[\frac{t-1}{5}\right], I_{it}(A_{it} - q_t)\left[\frac{t-1}{5}\right]^2$$
Test Statistic for Sample Size Calculation

• “GEE” test statistic is

\[N \hat{\beta}^T (K \hat{\Sigma} K^T)^{-1} \hat{\beta} = N \hat{\beta}^T (\hat{\Sigma}_{\beta})^{-1} \hat{\beta} \]

where \(\hat{\Sigma} \) is the usual sandwich estimator of the variance-covariance and \(K \) is 3 by \(3+q \) matrix picking out columns associated with coefficients \(\beta \)
Working Assumptions for Sample Size Calculation

1) $\mathbb{E}(\epsilon_{it}\epsilon_{it'} \mid I_{it} = 1, I_{it'} = 1, A_{it}, A_{it'})$ is constant.

2) $\mathbb{E}(\epsilon_{it} \mid I_{it} = 1, A_{it}) = 0$

3) $\text{Var}(\epsilon_{i,t} \mid I_{it} = 1, A_{it})$ is constant.

$$\epsilon_{it} = Y_{i,t+1} - \left(\gamma(t) + \beta(t)(A_{it} - q_t) \right)$$
Sample Size Calculation

- Under the working assumptions, Σ_β only depends on polynomials in $\left\lfloor \frac{t-1}{5} \right\rfloor$, the marginal distribution of I_t and on the randomization probabilities.

- Σ_β does not depend on the form of $\gamma(t)$
Sample Size Calculation

• Under standard moment assumptions, the asymptotic distribution of the “GEE test statistic” is a Chi-Squared on 3 degrees of freedom with non-centrality parameter:

\[Nd^T (\Sigma \beta)^{-1} d \]

• Instead of a Chi-Squared on 3 degrees we use

\[\frac{3(N-q-1)}{N-q-3} F_{3,N-q-3} \]

with the same non-centrality parameter.
HeartSteps Example

• Standardized d_i’s
 – initial proximal effect: $d_0=0$
 – output average proximal effect
 – day of maximal proximal effect: $-\frac{d_1}{2d_2} = 28$

• Model for test statistic:

$$\gamma(t) + \beta(t)(A_{it} - .4), \; t = 1, \ldots, 210$$

where

$$\gamma(t) = \gamma_0 + \gamma_1 \left\lfloor \frac{t-1}{5} \right\rfloor + \gamma_2 \left\lfloor \frac{t-1}{5} \right\rfloor^2$$
HeartSteps Sample Sizes

Power= .80, False-positive error= .05

<table>
<thead>
<tr>
<th>Standardized Average Main Effect over 42 Days</th>
<th>Sample Size For 70% availability or 50% availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06 standard deviations</td>
<td>81 or 112</td>
</tr>
<tr>
<td>0.08 standard deviations</td>
<td>48 or 65</td>
</tr>
<tr>
<td>0.10 standard deviations</td>
<td>33 or 43</td>
</tr>
</tbody>
</table>
Same Test Statistic for Analysis

- “GEE” test statistic is
 \[N \hat{\beta}^T (K\hat{\Sigma}K^T)^{-1} \hat{\beta} \]
 where \(K \) is 3 by 3\(+q\) matrix picking out columns associated with \(\beta \) coefficients
- No working assumptions
Small Sample Adjustment

- \hat{e}_{it} is the i^{th} subject, t^{th} time point residual and
 $\hat{e}_i = (\hat{e}_{i1}, \ldots, \hat{e}_{iT})^T$

- Adjusted sandwich estimator:
 $\hat{\Sigma} = \hat{\sigma}^2 N \left(\sum_{i=1}^{N} X_i^T X_i \right)^{-1} \left\{ \sum_{i=1}^{N} X_i^T B_i \hat{e}_i \hat{e}_i^T B_i X_i \right\} \left(\sum_{i=1}^{N} X_i^T X_i \right)^{-1}$
 $B_i = (I - H_{ii})^{-1}$
Simulation Results

Type 2 Error Rate (2000 data sets)

<table>
<thead>
<tr>
<th>Average Proximal Effect (Sample Size)</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05(115)</td>
<td>0.790</td>
</tr>
<tr>
<td>0.06(81)</td>
<td>0.794</td>
</tr>
<tr>
<td>0.07(61)</td>
<td>0.800</td>
</tr>
<tr>
<td>0.08(48)</td>
<td>0.801</td>
</tr>
<tr>
<td>0.09(39)</td>
<td>0.798</td>
</tr>
<tr>
<td>0.10(33)</td>
<td>0.803</td>
</tr>
</tbody>
</table>
Discussion

The micro-randomized trial is a sequential factorial trial with multiple factors, e.g. in HeartSteps:

Factor 1: Activity recommendation is randomized 5 times per day (yes/no)

Factor 2: Daily activity planning is randomized each evening (yes/no)
Experimental Design Challenges

Micro-randomized trials are a new type of factorial design

i. Time varying factors \rightarrow time varying main effects, time-varying two-way interactions, different delayed effects

ii. Better trial designs?

iii. Design studies specifically to detect interactions between factors or delayed effects.
Collaborators!

samurphy@umich.edu