
Estimating Time-Varying Causal Effect Moderation for
Micro-Randomized Trials with Binary Outcomes

Tianchen Qian1, Hyesun Yoo2, Pedrag Klasnja3, Daniel Almirall4, Susan Murphy1

1Department of Statistics, Harvard University. 2Department of Statistics, University of Michigan. 3School of Information, University of Michigan. 4Institute for Social Research,
University of Michigan

Summary
Binary outcome is common in mobile health studies. We focus on esti-
mating the time-varying causal effect moderation for data from micro-
randomized trials with binary outcomes. We give the definition of moder-
ated treatment effect in this setting, and provide two estimation methods.
One estimation method is for the proximal treatment effect conditional
on the entire history, and the estimator is semiparametric locally effi-
cient. The other estimation method, based on weighted and centered
least squares, is for the proximal treatment effect marginal but condi-
tional only on a subset of variables in history. Both estimators are robust
in the sense that they do not require a correct model for the outcome
process. The methods are illustrated by simulation studies.

Notation

Observed data:
•Xt: covariate information prior to t-th decision point
•At: treatment assignment at t-th decision point
•Yt+1: proximal outcome after t-th decision point
Potential outcome:

•Xt(āt−1): potential covariate under treatment history āt−1

•Yt+1(āt): potential covariate under treatment history āt
•Ht(Āt−1) = {X1, A1, Y2(A1), . . . , At−1, Yt(Āt−1), Xt(Āt−1)}

Treatment effect:

•Proximal treatment effect conditional on the entire history:

logE{Yt+1(Āt−1, 1) | Ht(Āt−1)}
E{Yt+1(Āt−1, 0) | Ht(Āt−1)}

. (1)

•Proximal treatment effect conditional on a subset of variables in history:

logE{Yt+1(Āt−1, 1) | St(Āt−1)}
E{Yt+1(Āt−1, 0) | St(Āt−1)}

, (2)

where St is a vector of summary variables chosen from Ht. For example,
St would typically include variables in Ht that may modify the
treatment effect, and it likely also includes deterministic entries such as 1
for the intercept and terms in time, t.

Many mobile health interventions are designed to affect an individual proxi-
mally in time [2]. For example, activity suggestions in HeartSteps encourage
an individual to walk immediately after s/he receives a push notification.
Suppose 0 ∈ A denotes the control, i.e., no intervention delivery. Equation
(1) defines the proximal effect of intervention At = a on Yt+1 given history
Ht. It denotes the log of the relative risk had an individual received the
intervention versus if the individual had not received the intervention at de-
cision point t, conditional on his/her history. In other words, (1) represents
whether (and by how much) delivering intervention at time t is increases
the individual’s response as opposed to no intervention, given an individ-
ual’s current context. Suppose the intervention is intended to increase the
probability of Yt+1 = 1, then testing for a positive (1) tells us whether the
intervention achieves its intended effect.
Equation (2) is different from (1) in that the conditioning is only over a
subset of variables St in history Ht. Scientifically, this is of interest in
primary analyses, for example, where the treatment effect is marginal over
alla variables in Ht (i.e., setting St = ∅).

Causal Assumptions

To express the proximal treatment effect in terms of the observed data, we
make the following assumptions:

1 Consistency. The observed data equals the potential outcome under
observed treatment assignment. In particular, Y2 = Y2(A1),
X2 = X2(A1), A2 = A2(A1), and for each subsequent t ≤ T ,
Yt = Yt(Āt−1), Xt = Xt(Āt−1), At = At(Āt−1), and lastly,
YT+1 = YT+1(ĀT ).

2 Positivity. If Pr(Ht = ht) > 0, then Pr(At = a | Ht = ht) > 0 for all
a ∈ A.

3 Sequential ignorability. For 1 ≤ t ≤ T , the potential outcomes
{Yt+1(āt), Xt+1(āt), At+1(āt), . . . , YT+1(āT )} is independent of At

conditional on Ht.

In an MRT, because the treatment is sequentially randomized and there is
always some exploration of different treatment options under each context,
Assumptions 2 and 3 always hold by design. Assumption 1 may fail to hold
if there are interactions between individuals; for example, in mobile health
interventions with social media components, one individual’s treatment can
impact another individual’s outcome. In practice it is critical to ensure
these assumptions by a proper design.
Under these assumptions, the treatment effects in (1) and (2) can be rewrit-
ten in terms of the observed data:

logE{Yt+1(Āt−1, 1) | Ht(Āt−1)}
E{Yt+1(Āt−1, 0) | Ht(Āt−1)}

= logE{Yt+1 | Ht, At = 1}
E{Yt+1 | Ht, At = 0}

.

and

logE{Yt+1(Āt−1, 1) | St(Āt−1)}
E{Yt+1(Āt−1, 0) | St(Āt−1)}

= logE[E{Yt+1 | Ht, At = 1} | St]
E[E{Yt+1 | Ht, At = 0} | St]

.

Semiparametric Locally Efficient Estimator for
Treatment Effect (1)

For simplicity, suppose a linear model for 1 ≤ t ≤ T :

logE(Yt+1 | Ht, At = 1)
E(Yt+1 | Ht, At = 0)

= STt β
∗, (3)

where β∗ is the true value of a p-dimensional parameter β.
Suppose gt(Ht)Tα is a working model for logE(Yt+1 | Ht, At = 0). The
estimating equation for (α, β) is as follows:

m1(α, β) :=
T∑
t=1

e−AtS
T
t β(Yt+1 − egt(Ht)Tα+AtS

T
t β)

(1− egt(Ht)Tα)pt + (e−STt β − egt(Ht)Tα)(1− pt)

×
 gt(Ht)
(At − pt)St

 . (4)

Asymptotic result. Suppose pt = Pr(At = 1 | Ht) is known. Let
ṁ1 be the derivative of m1(α, β) with respect to (α, β). The solutions
to the estimating equation Pnm1(α, β) = 0 yields an estimator (α̂, β̂) for
which

√
n(β̂ − β∗) is asymptotically normal with mean zero and variance-

covariance matrix consistently estimated by the lower block diagonal (p×p)
entry of the matrix (Pnṁ1(α̂, β̂))−1Pnm1(α̂, β̂)⊗2(Pnṁ1(α̂, β̂))−1T .
Remark. The estimating functionm1(α, β) is related to the multiplicative
structural nested mean model by Robins [4]. The estimator β̂ is consistent
under misspecified E(Yt+1 | Ht, At = 0). When exp{g(Ht)Tα} is a correct
model for E[Yt+1(Āt−1, 0) | Ht], β̂ achieves the semiparametric efficiency
lower bound.

Weighted and Centered Least Squares Estimator
for Treatment Effect (2)

There are settings where (3) doesn’t hold. For example, a primary analysis
of MRT data may focus on the treatment effect that is marginal over all
variables inHt (i.e., setting St = ∅). In such settings, we make the following
assumption on the marginalized treatment effect. For 1 ≤ t ≤ T , suppose

logE[E{Yt+1 | Ht, At = 1} | St]
E[E{Yt+1 | Ht, At = 0} | St]

= STt β
∗. (5)

To estimate β in (5), we use the following estimating equation

m2(α, β) =
T∑
t=1
e−AtS

T
t β{Yt+1 − egt(Ht)Tα+AtS

T
t β}

× p̃t(At | St)
pt(At | Ht)

 gt(Ht)
{At − p̃t(1 | St)}St

 , (6)

where pt(At | Ht) = Pr(At | Ht) is the true randomization probability and
p̃t(At | St) is an arbitrary probability as long as it depends on Ht only via
St. gt(Ht) is a vector of features constructed from Ht, and exp{gt(Ht)Tα}
is a working model for E(Yt+1 | Ht, At = 0).
Asymptotic result. Suppose pt = Pr(At = 1 | Ht) is known. Let
ṁ2 be the derivative of m2(α, β) with respect to (α, β). The solutions
to the estimating equation Pnm2(α, β) = 0 yields an estimator (α̂, β̂) for
which

√
n(β̂ − β∗) is asymptotically normal with mean zero and variance-

covariance matrix consistently estimated by the lower block diagonal (p×p)
entry of the matrix (Pnṁ2(α̂, β̂))−1Pnm2(α̂, β̂)⊗2(Pnṁ2(α̂, β̂))−1T .
Remark. The estimating function m2(α, β) generalizes the weighted and
centered least squares method in Boruvka et al. [1] to binary outcome. The
estimator β̂ is consistent under misspecified E(Yt+1 | Ht, At = 0), and the
choice of p̃t doesn’t affect its consistency as long as it depends on Ht only
through St. Such robustness is due to the use of weighting (by Jt) and
centering (by p̃t). When the randomization probability pt is constant, one
can set p̃t = pt and Jt ≡ 1.

Standard Error and Small Sample Correction

When sample size is small, the sandwich estimators for the variance in
previous sections can be anti-conservative. To address this, we adopt the
small sample correction technique in Mancl and DeRouen [3] to modify the
term Pnm(α̂, β̂)⊗2 in the variance estimator. In particular, we premultiply
the vector of each individual’s residuals, {Yt+1 − egt(Ht)T α̂+AtS

T
t β̂}1≤t≤T , by

the inverse of the identity matrix minus the leverage for this individual.
Also, as in [1], we use critical values from a t distribution. In particular,
for a known p-dimensional vector c, to test the null hypothesis cTβ = 0 or
to form confidence intervals, we use the critical value t−1

n−p−q(1− ξ), where
p, q are the dimensions of β, α, respectively, and ξ is the significance level.
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Simulation Study

Let “Eff” denote the semiparametric locally efficient estimator for treat-
ment effect (1), and let “WCLS” denote the weighted and centered least
squares estimator for treatment effect (2).
Generative model. We consider a covariate Xt that takes three values
0, 1, 2 with equal probability. The treatment indicator At is binary with
randomization probability η, where η is a constant (i.e., randomization
probability doesn’t depend on history). The outcome Yt+1 is generated
from Bernoulli distribution with mean

E(Yt+1 | Ht, At) = E(Yt+1 | Ht, At = 0) exp{At(β0 + β1Xt)},
where E(Yt+1 | Ht, At = 0) = γ01(Xt = 0) + γ11(Xt = 1) + γ21(Xt = 2).
We choose the true parameter values to be η = 0.2, γ0 = 0.2, γ1 = 0.5,
γ2 = 0.4, β0 = 0.1, β1 = 0.3.
Simulation study 1. We set St = ∅ in the analysis model for treatment
effect, and we impose the working model exp{gt(Ht)Tα} = exp(α0 +α1Xt)
for E(Yt+1 | Ht, At = 0). The generative model implies that

logE(Yt+1 | Ht, At = 1)
E(Yt+1 | Ht, At = 0)

= β0 + β1Xt.

Therefore, setting St = ∅ implies that the treatment effect model (3) for
Eff is wrong, and it is expected to be inconsistent in this case. For WCLS,
the marginal treatment effect model (5) is correct. Hence, we expect the
WCLS estimator to be consistent. For log-linear GEE, since its consistency
requires a correct model for E(Yt+1 | Ht, At) but our working model for
E(Yt+1 | Ht, At = 0) is wrong (the true model is not linear in Xt), we
expect the estimator to be inconsistent. These conjectures are supported
by the following table.

Table 1: Comparison of three estimators of the marginal treatment effect (St = ∅), when
the treatment effect conditional on the full history depends on Xt.

Estimator Sample size Bias SD RMSE CP (unadj) CP (adj)
30 0.047 0.070 0.084 0.92 0.94
50 0.047 0.057 0.073 0.88 0.89Eff
100 0.051 0.040 0.064 0.78 0.79
30 0.000 0.072 0.072 0.95 0.96
50 -0.001 0.058 0.058 0.93 0.94WCLS
100 0.002 0.041 0.041 0.94 0.94
30 0.040 0.068 0.080 0.90 0.92
50 0.040 0.055 0.068 0.87 0.88GEE
100 0.043 0.039 0.058 0.77 0.78

True parameter value is 0.477. The three estimators are Eff (locally efficient estimator), WCLS (weighted
and centered least squares), GEE (log linear GEE). SD: standard deviation. RMSE: root mean squared
error. CP: 95% confidence interval coverage probability, before (unadj) and after (adj) small sample

correction. Boldface indicates whether Bias or CP are significantly different, at the 5% level, from 0 or
0.95, respectively.

Simulation study 2. Here we focus on the treatment effect modification
by setting St = Xt. With such choice of St, the analysis model of the
treatment effect is correct for Eff, WCLS and BRM, because the generative
model implies that

logE(Yt+1 | Ht, At = 1)
E(Yt+1 | Ht, At = 0)

= logE{E(Yt+1 | Ht, At = 1) | St}
E{E(Yt+1 | Ht, At = 0) | St}

= β0 + β1St.

Therefore, we expect both estimators to be consistent for β0 = 0.1 and
β1 = 0.3. The working model for E(Yt+1 | Ht, At = 0) we use is again
exp(α0 + α1Xt), which is misspecified. Regarding the relative efficiency
between Eff and WCLS, although Eff only achieves the semiparametric
efficiency bound when the working model forE(Yt+1 | Ht, At = 0) is correct,
we may still expect it to be more efficient than WCLS here. The log-linear
GEE estimator is expected to be inconsistent for the same reason as in the
first simulation. These conjectures are supported by the following table.

Table 2: Comparison of the four estimators of the treatment effect modification (St = Xt),
when the treatment effect conditional on the full history is correctly specified.

β0 β1

Estimator Sample size Bias RMSE SD CP (unadj) CP (adj) Bias RMSE SD CP (unadj) CP (adj)
30 0.00 0.19 0.19 0.95 0.96 0.00 0.12 0.12 0.92 0.93
50 0.00 0.14 0.14 0.96 0.96 0.00 0.09 0.09 0.93 0.94Eff
100 0.00 0.11 0.11 0.95 0.95 0.00 0.07 0.07 0.92 0.93
30 -0.01 0.21 0.21 0.95 0.96 0.01 0.14 0.14 0.94 0.95
50 -0.01 0.16 0.16 0.95 0.96 0.01 0.10 0.10 0.96 0.96WCLS
100 0.00 0.12 0.12 0.95 0.95 0.00 0.08 0.08 0.94 0.95
30 -0.01 0.18 0.18 0.96 0.96 0.01 0.12 0.12 0.96 0.96
50 0.00 0.14 0.14 0.95 0.96 0.00 0.09 0.09 0.96 0.96GEE
100 0.15 0.17 0.09 0.56 0.56 -0.12 0.13 0.05 0.32 0.33

True parameter value is β0 = 0.1, β1 = 0.3. The four estimators are Eff (locally efficient estimator), WCLS
(weighted and centered least squares), GEE (log linear GEE). SD: standard deviation. RMSE: root mean

squared error. CP: 95% confidence interval coverage probability, before (unadj) and after (adj) small
sample correction. Boldface indicates whether Bias or CP are significantly different, at the 5% level, from 0

or 0.95, respectively.
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