Challenges in Developing Learning Algorithms to Personalize Treatment in Real Time

Susan A Murphy
10.30.18
Outline

- mHealth
- Micro-Randomized Trials
- Challenges to RL
- HeartSteps V1, V2
- A Butchered Bandit
- Open Question
mHealth Science Goals

• Promote behavior change and maintenance of this change
 – Assist user in achieving long term goals
 • Recovery from addictions; avoid heart attacks; maintain independence
 – Manage chronic illness

• Test, evaluate, develop causal behavioral science
Mobile Health Treatments
Outline

• mHealth
• Micro-Randomized Trials
• Challenges to RL
• HeartSteps V1, V2
• A Butchered Bandit
• Open Question
Micro-randomized Trial

- Micro-randomized trial = combination of factorial experimental design with a sequential experimentation strategy
- Sequential experimentation may use online forecasting and reinforcement learning
- Multiple treatment factors occurring at different time scales and which target different outcomes/rewards
- Probabilistic budgets on # of treatment pushes to manage habituation/burden
- Design permits causal inference analyses at study end
BariFit MRT to Promote Weight Maintenance Among People Who Received Bariatric Surgery

Prior to the study
Each participant randomized 2x at baseline

Each day of study

Set Goals
Use 60th percentile of daily step counts over 10 prior days as goal

Set Goals
Use variable percentiles of daily step counts over 10 prior days as goal

Observations
- step count (sensor)
- whether participant tracks food (sensor)
- interaction with app (sensor)
- weight (self report)
- food intake (self report)

Start Intervention
Tailored text message to become physically active

No intervention

Proximal Outcome
Physical activity
(steps taken)

Intervention
t-dependence

- weather
- time of day
- day of week

Following day

Start Intervention
Remind participant to track food

Proximal Outcome
Did participant complete food log?

Distal Outcome
Growth in step count

PI: P Klasnja
Location & Funding: Kaiser Permanente
Sense²Stop

Sense²Stop MRT for Stress Management in Newly Abstinent Smokers

Every minute of every day starting with quit date

For two hours after intervention is delivered

Measured via EMA and puffMarker over 10 days

Observations
- stress (via AutoSense sensor suit)
- motion (via accelerometer)
- smoking (via self report)

Available? NO

is stressed? YES

R

Prompt use of stress-management exercises

Remainder of times

Average 1.5x/day

R

Prompt use of stress-management exercises

Remainder of times

No intervention

Distal Outcome
Release or smoking abstinence

Proximal Outcome
Probability of stress episode

PI: S Kumar
Location: Northwestern University, B. Spring, (P.I.)
Funding: NIBIB through funds provided by the trans-NIH Big Data to Knowledge initiative U54EB020404
Data from Micro-Randomized Trial

- On each individual: $S_t A_t R_{t+1}, \ldots$,

- t: time

- S_t: Context accrued after $t-1$ and up to/including decision point t (high dimensional)

- A_t: Action at t^{th} time (treatment)

- R_{t+1}: Reward (e.g., utility, cost) accrued after time t and prior to time $t+1$
Outline

• mHealth
• Micro-Randomized Trials
• Challenges to RL
• HeartSteps V1, V2
• A Butchered Bandit
• Open Question
Reinforcement Learning (RL)

- RL algorithms use sequential experimentation to learn the optimal policy: e.g. how to best select the action A_t after observing context, S_t.

- The optimal policy maximizes a criterion. This criterion is often a discounted sum of rewards:

$$E \left[\sum_{t \geq 0} \gamma^t R_{t+1} \right] = E \left[\sum_{t \geq 0} \gamma^t r(S_t, A_t) \right]$$

γ is discount rate.
Challenges to RL

• State is large yet partially observed: “unknown-unknowns”
 – Non-stationary reward
• Treatment actions that tend to have positive effects on immediate rewards but negative impact on future rewards via user habituation/burden.
• High noise within/between users
• Clinical populations (e.g., small numbers of users)
• Facilitate end of study causal inference to further develop behavioral science
Outline

• mHealth
• Micro-Randomized Trials
• Challenges to RL
• HeartSteps V1, V2
• A Butchered Bandit
• Open Question
HeartSteps (PI Klasnja)

Goal: Develop an mobile activity coach for individuals who are at high risk of adverse cardiac events.

Three iterative studies:
- V1: 42 day micro-randomized pilot study with 37 sedentary individuals,
- V2: 90 day micro-randomized (partially via a bandit) study,
- V3: 365 day personalized study
HeartSteps V1

HeartSteps MRT to Promote Physical Activity Among Sedentary People

<table>
<thead>
<tr>
<th>Observations</th>
<th>Next 30 minutes after intervention is delivered</th>
<th>Measured via accelerometer throughout study</th>
</tr>
</thead>
</table>

- location (via GPS)
- weather (via Internet)
- motion (via wrist band)
- usefulness of prompt (via user indication)
- self report of activity (via app in evenings)

<table>
<thead>
<tr>
<th>Observations</th>
<th>Proximal Outcome physical activity (steps taken)</th>
<th>Distal Outcome Overall activity in the 42-day study</th>
</tr>
</thead>
</table>

- weather
- location
- time of day
- day of week

<table>
<thead>
<tr>
<th>Observations</th>
<th>Proximal Outcome physical activity (steps taken)</th>
</tr>
</thead>
</table>

- weather
- location
- time of day
- day of week

<table>
<thead>
<tr>
<th>Observations</th>
<th>Proximal Outcome physical activity (steps taken)</th>
</tr>
</thead>
</table>

- weather
- location
- time of day
- day of week
Actions

• Contextually tailored activity suggestion (provide yes/no)

• The set of actions may depend on the context, S_t
Some Results from HeartSteps V1

1) The tailored activity suggestion, as compared to no activity suggestion, indicates an initial increase in step count over succeeding 30 minutes by approximately 271 steps but by day 20 this increase is only approximately 65 steps.

2) Features that appear to predict succeeding 30 minute step count:
 1) Time in study, recent number of messages sent, location, variability in step count in 60 min window over previous 7 days, prior 30 min step count, total steps on prior day, current temperature
Some Results from HeartSteps V1

2) Features that appear to predict succeeding 30 minute step count:
 1) Time in study, recent number of messages sent, location, variability in step count in 60 min window over previous 7 days, prior 30 min step count, total steps on prior day, current temperature

3) Features that appear to interact with treatment on succeeding 30 minute step count:
 1) Time in study, recent number of messages sent, location, variability in step count in 60 min window over previous 7 days
Goal

HeartSteps V2: use RL algorithm to select binary treatment action--whether to provide tailored activity suggestion--so as to maximize the sum of rewards for each user over the 90 day study (subject to constraints).

1. 5 decision points per day (set according to user’s work schedule)
2. Reward is the 30 minute stepcount following each decision point t.
Outline

- mHealth
- Micro-Randomized Trials
- Challenges to RL
- HeartSteps V1, V2
- A Butchered Bandit
- Open Question
A “Bandit” Algorithm

Overview:

1) Initialize parameters in expected reward, \(r(S, A) \), given the treatment, \(A \) and context feature, \(S \).

2) At time point \(t \): input current features, \(S_t \) and select treatment, \(A_t \).

3) After the time point: input the reward, \(R_{t+1} \).

4) The algorithm updates the expected reward, as a function of both the treatment and features.

5) Given the context features at the next time point, \(S_{t+1} \) the algorithm uses the updated expected reward to select next treatment, \(A_{t+1} \). Go to 3) with \(t = t + 1 \).
Linear Thompson Sampling Bandit

1) Linear model for expected reward, e.g.
\[E[R_{t+1}|S_t, A_t] = r(S_t, A_t) = \eta^T f(S_t, A_t) \]

2) Initialize \(\eta \) parameters in expected reward with a prior distribution (here a Gaussian).

3) Given \(S_t, A_t, R_{t+1} \) update posterior distribution of \(\eta \). Posterior distribution has mean, covariance denoted by \(\eta_t, \Sigma_t \).

4) Given \(S_{t+1} \), the probability of selecting treatment, \(A_{t+1} = a \), is given by the posterior probability that treatment \(a \) has the highest expected reward.
Challenges in Mobile Health

1) Noisy data

Our solution: Bandit algorithm

- Bandit algorithms learn faster than full RL algorithms
- The bandit acts as a regularizer (discount rate $\gamma=0$): trade speed of learning (reduced variance) with bias
- Use a low dimensional parameterization of the expected reward: linear model in context and treatment. $E[R_{t+1} | S_t, A_t] = \eta^T f(S_t, A_t)$
- Use a Gaussian prior on η with mean, variance based on the data from Heartsteps V1 and a baseline micro-randomized week of data from Heartsteps V2
2) Nonstationarity: Over longer periods of time, the expected reward function will likely change.

- Due to inability to fully sense, known and unknown, aspects of user’s current context.

Our solution:

- Promote continual exploration: Use a Gaussian process prior in the model for the expected reward, e.g.

\[
E[R_{t+1}|S_t, A_t] = f(S_t, A_t)^T \eta_t \quad \text{where} \quad \eta_{t+1} = \mu_0 + \
\tau(\eta_t - \mu_0) + \varepsilon_t \quad \varepsilon_t \sim N(0, 1 - \tau^2)
\]
Challenges

3) The immediate effects are primarily positive; the delayed effects are primarily negative. →
 • Algorithm may falsely learn that “always treat” is best, yet there are better policies.

Our Solution
• Add to current reward: proxy for the average future rewards if send activity message minus proxy for the average future rewards if do not send
• The average future reward == value function for an MDP in which dose evolves deterministically and all other states are iid across time.
Challenges

4) Need to ensure ability to conduct “off-policy learning” and causal inference after bandit study

Our solution:

• Use explicit randomization to explore: Thompson Sampling Bandit
• Ensure the no-treatment selection probability lies in an interval bounded away from 0 and 1; here [.2, .9]
Challenges

5) Expected reward, $E[R_{t+1}|S_t, A_t]$ is likely a complex function of context, S_t

Proposed Solution: Center the treatment indicator by binary treatment selection probability, π_t
Action-Centered Bandit

Proposal: For binary A_t:
replace $E[R_{t+1}|S_t = s, A_t = a] = \eta^T f(s, a)$
with
$E[R_{t+1}|S_t = s, A_t = a] = b_t(s) + \eta^T f(s)(a - \pi_t)$
where
$b_t(s)$ is an unspecified baseline (maybe nonlinear, non-stationary)

$\eta^T f(s)(a - \pi_t)$ is centered since π_t is the probability of selecting treatment $A_t = a = 1$

In the Thompson-Sampling update of expected reward use a working (but likely mis-specified) approximation for $b_t(s)$.
Median Regret
500 simulated users

Quartiles of Regret
500 simulated users

Context, s, is 3 dimensional
True $b_t(s)$ is nonlinear
Linear working model for $b_t(s)$

No proxy value
Only Gaussian prior
No Gaussian process prior
Outline

• mHealth
• Micro-Randomized Trials
• Challenges to RL
• HeartSteps V1, V2
• A Butchered Bandit
• Open Question
Optimality Criterion?

Multiple goals for learning algorithm

• Track best (nonstationary) policy
• Intermittent off-policy inferences
 – causal not just correlational.
 – concern different outcomes than the reward.
 – use different structural assumptions
 – should be valid even if the structural assumptions made by the treatment learning algorithm are false.
Optimality Criterion?

Ideas:

• Minimize finite time T regret subject to bounds on power to detect a particular causal effect at time T?
• Minimize finite time T regret subject to bounds on exploration probability?
Discussion

Challenges:

– Online accommodation/use of missing data
– High between user variance in performance of online algorithms

Randomization assists in post-study causal inferences based on minimal structural assumptions

– The bandit algorithm is one way to conduct randomization
– Randomization can also be based more directly on forecasts or predictions
Long Term Goal:
Continually learning mHealth App

The learning algorithm is part of the mHealth app

- Incorporate continual learning in the rollout of a mHealth application.
- Learning algorithm makes structural assumptions so as to trade bias and variance in learning
Collaborators!

samurphy@fas.harvard.edu
Notes

Context $s_t = [I, s_{t2}, s_{t3}, s_{t4}]^T$

nonlinear generative model

$r_t = I(a_t = 1)\theta_1^T s_t + I(a_t = 2)\theta_2^T s_t + [1.32, 1.26, .58][1, s_{t3}, s_{t4}]^T + 2I([s_t]_2 \leq 0.8)$

Analysis model used for action centering.

$r_t = (I(a_t > 0) - \pi_t)[I(\bar{a}_t = 1)\theta_1^T s_t + I(\bar{a}_t = 2)\theta_2^T s_t] + \pi_t[I(\bar{a}_t = 1)\xi_1^T s_t + I(\bar{a}_t = 2)\xi_2^T s_t] + \eta^T s_t$

Total params: 20.

Analysis model for std Thompson.

$r_t = I(a_t = 1)\theta_1^T s_t + I(a_t = 2)\theta_2^T s_t + \eta^T s_t$

Total params: 12.

Theta1 = [.116, -.275, -.233, .0425]

Theta2 = [.116, .275, -.233, .0425].
Long Term Goal: Continually learning mHealth App

The learning algorithm is part of the mHealth app

- Incorporate continual learning in the implementation of a mHealth application.
- Learning algorithm makes structural assumptions so as to trade bias and variance in learning
Challenges to RL

• State is large yet partially observed: “unknown-unknowns”
 – Non-stationary reward
• Treatment actions that tend to have positive effects on immediate rewards but negative impact on future rewards via user habituation/burden.
• High noise within/between user
• Clinical populations (e.g., small numbers of users)
• Off-policy causal inference to further develop behavioral science
Micro-randomized Trial

- Micro-randomized trial = combination of factorial experimental design with explicitly controlled exploration
- Exploration via use of online forecasting (and RL algorithms)
- Multiple treatment factors occurring at different time scales and which target different rewards
- Probabilistic budgets on # of treatment pushes to manage habituation/burden
- Off-policy, after study is over, causal inference
BariFit

BariFit MRT to Promote Weight Maintenance Among People Who Received Bariatric Surgery

Prior to the study
Each participant randomized 2x at baseline

Each day of study

30 minutes after prompt
Measured via accelerometer throughout study

Set Goals
Use 60th percentile of daily step counts over 10 prior days as goal

Set Goals
Use variable percentiles of daily step counts over 10 prior days as goal

Observations
- step count (sensor)
- whether participant tracks food (sensor)
- interaction with app (sensor)
- weight (self report)
- food intake (self report)

Start Intervention
Tailored text message to become physically active

Proximal Outcome
Physical activity (steps taken)

Following day

Start Intervention
Remind participant to track food

Proximal Outcome
Did participant complete food log?

Distal Outcome
Growth in step count

Daily Goals
Rest (no goal) 1 of every 7 days on average

Daily Goals
No rest: receive a goal every day of the study

PI: P Klasnja
Location & Funding: Kaiser Permanente
Sense2Stop MRT for Stress Management in Newly Abstinent Smokers

Every minute of every day starting with quit date

For two hours after intervention is delivered

Measured via EMA and puffMarker over 10 days

Observations
- stress (via AutoSense sensor suits)
- motion (via accelerometer)
- smoking (via self-report)

Available? YES NO

is stressed? YES NO

R Remainder of times

No intervention

R Average 1.5x/day

Prompt use of stress-management exercises

Proximal Outcome Probability of stress episode

Distal Outcome Release or smoking abstinence

PI: S Kumar
Location: Northwestern University, B. Spring, (P.I.)
Funding: NIBIB through funds provided by the trans-NIH Big Data to Knowledge initiative U54EB020404
PIs: M Walton, S Murphy, and M Rabbi Shuvo
Location: University of Michigan
Funding: Michigan Institute for Data Science (PI S. Murphy), University of Michigan Injury Center (PI M. Walton)
Engagement with JOOL

MRT to Promote Engagement with Purpose-driven Well-being App

Each day of study

Within 24 hours of push notification

Future

Observations
- activity (via accelerometer)
- surveys (via app)

Select time of day:
1/6 chance for each on weekdays
1/5 chance on weekends
8:30 am (weekday only)
12:30 pm
5:30 pm
6:30 pm
7:30 pm or 8:30 pm

Received notification recently?

Stop

YES 50%

NO

50%

Stop

Push notification
Tailored health message to encourage engagement with the app

Proximal Outcome
Engaged app

Decision Rules for Recency

IF THEN ASK
0-1 days since last engaged app fewer than 3 days since last notification?
2-9 days since last engaged app fewer than 2 days since last notification?
10-29 days since last engaged app fewer than 6 days since last notification?
30+ days since last engaged app fewer than 15 days since last notification?

Distal Outcome
More consistent self-monitoring

PI: Victor Strecher, PhD, MPH, CEO of JOOL Health
Location & Funding: Ann Arbor, MI
URL: https://www.joolhealth.com