Some Data Analytics for Developing Just-in-Time Adaptive Interventions in Mobile Health

Susan Murphy
10.24.16
The Dream!

“Continually Learning Mobile Health Intervention”

• Help you achieve, and maintain, your desired long term healthy behaviors
 – Provide sufficient short term reinforcement to enhance your ability to achieve your long term goal

• The ideal mobile health intervention
 – will engage you when you need it and will not intrude when you don’t need it.
 – will adjust to unanticipated life events
Heart Steps

Context provided via data from:
- **Wearable band** → activity and sleep quality;
- **Smartphone sensors** → busyness of calendar, location, weather;
- **Self-report** → stress, user burden

In which contexts should the smartphone provide the user with an activity suggestion?
Data from wearable devices that sense and provide treatments

• On each individual: $O_1, A_1, Y_2, \ldots, O_t, A_t, Y_{t+1}, \ldots$

• t: Decision point

• O_t: Observations at t^{th} decision point (high dimensional)

• A_t: Action at t^{th} decision point (treatment)

• Y_{t+1}: Proximal outcome (e.g., reward, utility, cost)
Examples

1) Decision Points (Times, t, at which a treatment can be provided.)
 1) Regular intervals in time (e.g. every 10 minutes)
 2) At user demand

Heart Steps: approximately every 2-2.5 hours (activity suggestions)
Examples

2) Observations O_t
 1) Passively collected (via sensors)
 2) Actively collected (via self-report)

Heart Steps: classifications of activity, location, weather, step count, busyness of calendar, user burden, adherence…….
Examples

3) Actions A_t
 1) Types of treatments that can be provided at a decision point, t
 2) Whether to provide a treatment

HeartSteps: tailored activity suggestion (yes/no)
Availability

• Treatments can only be delivered at a decision point if an individual is available.
 – O_t includes $I_t=1$ if available, $I_t=0$ if not

• Treatment effects at a decision point are conditional on availability.

• Availability is not the same as adherence!
Examples

4) Proximal Outcome Y_{t+1}

Heart Steps: Step count over next 30 minutes (activity suggestions),
Continually Learning Mobile Health Intervention

1) Trial Designs: Are there effects of the actions on the proximal response? *experimental design*

2) Data Analytics for use with trial data: Do effects vary by the user’s internal/external context,? Are there delayed effects of the actions? *causal inference*

3) Learning Algorithms for use with trial data: Construct a “warm-start” treatment policy. *batch Reinforcement Learning*

4) Online Algorithms that personalize and continually update the mHealth Intervention. *online Reinforcement Learning*
Heart Steps
Micro-Randomized Trial

On each of n participants and at each of T decision points, treatment is repeatedly randomized:

Activity suggestion (T=210 randomizations)

• Provide a suggestion with probability .6; do nothing with probability .4
Conceptual Models

Generally data analysts fit a series of increasingly more complex models:

\[Y_{t+1} \sim \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t \]

and then next,

\[Y_{t+1} \sim \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t + \beta_1 A_t S_t \]

and so on…

• \(Y_{t+1} \) is subsequent activity over next 30 min.
• \(A_t = 1 \) if activity suggestion and 0 otherwise
• \(Z_t \) summaries formed from \(t \) and past/present observations
• \(S_t \) potential moderator (e.g., current weather is good or not)
Conceptual Models

Generally data analysts fit a series of increasingly more complex models:

\[Y_{t+1} \sim \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t \]

and then next,

\[Y_{t+1} \sim \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t + \beta_1 A_t S_t \]

and so on…

\(\alpha_0 + \alpha_1^T Z_t \) is used to reduce the noise variance in \(Y_{t+1} \)

\(Z_t \) is sometimes called a vector of control variables)
Causal Effects

\[Y_{t+1} \sim \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t \]

\(\beta_0 \) is the effect, marginal over all observed and all unobserved variables, of the activity suggestion on subsequent activity.

\[Y_{t+1} \sim \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t + \beta_1 A_t S_t \]

\(\beta_0 + \beta_1 \) is the effect when the weather is good \((S_t=1)\), marginal over other observed and all unobserved variables, of the activity suggestion on subsequent activity.
Data Scientist’s Goal

• Challenges:
 • Time-varying treatment \((A_t, \ t=1, \ldots, T)\)
 • “independent” variables: \(Z_t, \ S_t, \ I_t\) that may be affected by prior treatment

• Develop data analytic methods that are consistent with the scientific understanding of the meaning of the \(\beta\) regression coefficients

• Robustly facilitate noise reduction via use of controls, \(Z_t\)
Treatment Effect Model:

\[
E \left[E[Y_{t+1} | A_t = 1, I_t = 1, H_t] \right. \\
\left. - E[Y_{t+1} | A_t = 0, I_t = 1, H_t] | I_t = 1, S_t \right]
= S_t^T \beta
\]

\(H_t\) is all participant data available up to and at time \(t\)

\(S_t\) is a vector of data summaries and time, \(t\), \((S_t \subseteq H_t)\)

\(I_t\) indicator of availability

We aim to conduct inference about \(\beta\)!
“Centered and Weighted Least Squares Estimation”

- Simple method for complex data!
- Enables unbiased inference for a causal, marginal, treatment effect (the β’s)
- Inference for treatment effect is not biased by how we use the controls, Z_t, to reduce the noise variance in Y_{t+1}

https://arxiv.org/abs/1601.00237
Application of the “Centered and Weighted Least Squares Estimation” method in first analyses of HeartSteps
Heart Steps Pilot Study

On each of $n=37$ participants:

a) Activity suggestion, A_t
 - Provide a suggestion with probability .6
 - a tailored sedentary-reducing activity suggestion (probability=.3)
 - a tailored walking activity suggestion (probability=.3)
 - Do nothing (probability=.4)

- 5 times per day * 42 days = 210 decision points
Conceptual Models

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \beta_0 A_t \]
\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \beta_0 A_t + \beta_1 A_t d_t \]

- \(t=1, \ldots, T=210 \)
- \(Y_{t+1} = \) log-transformed step count in the 30 minutes after the \(t^{th} \) decision point,
- \(A_t = 1 \) if an activity suggestion is delivered at the \(t^{th} \) decision point; \(A_t = 0 \), otherwise,
- \(Z_t = \) log-transformed step count in the 30 minutes prior to the \(t^{th} \) decision point,
- \(d_t = \) days in study; takes values in \((0,1,\ldots,41)\)
Pilot Study Analysis

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \beta_0 A_t, \text{ and} \]

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \beta_0 A_t + \beta_1 A_t d_t \]

<table>
<thead>
<tr>
<th>Causal Effect Term</th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0 A_t)</td>
<td>(\hat{\beta}_0 = .13)</td>
<td>(-0.01, 0.27)</td>
<td>.06</td>
</tr>
<tr>
<td>(effect of an activity suggestion)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_0 A_t + \beta_1 A_t d_t)</td>
<td>(\hat{\beta}_0 = .51)</td>
<td>(.20, .81)</td>
<td><.01</td>
</tr>
<tr>
<td>(time trend in effect of an activity suggestion)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_1 = -.02)</td>
<td>(-.03, -.01)</td>
<td><.01</td>
<td></td>
</tr>
</tbody>
</table>
Heart Steps Pilot Study

On each of \(n=37 \) participants:

a) Activity suggestion

- Provide a suggestion with probability .6
 - a tailored walking activity suggestion (probability=.3)
 - a tailored sedentary-reducing activity suggestion (probability=.3)
- Do nothing (probability=.4)

- 5 times per day * 42 days= 210 decision points
Pilot Study Analysis

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \beta_0 A_{1t} + \beta_1 A_{2t} \]

- \(A_{1t} = 1 \) if walking activity suggestion is delivered at the \(t^{th} \) decision point; \(A_{1t} = 0 \), otherwise,
- \(A_{2t} = 1 \) if sedentary-reducing activity suggestion is delivered at the \(t^{th} \) decision point; \(A_{2t} = 0 \), otherwise,

<table>
<thead>
<tr>
<th>Causal Effect</th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0 A_{1t} + \beta_1 A_{2t})</td>
<td>(\hat{\beta}_0 = .21) (\hat{\beta}_1 >0)</td>
<td>(.04, .39)</td>
<td>.02 ns</td>
</tr>
</tbody>
</table>
Initial Conclusions

• The data indicates that there is a causal effect of the activity suggestion on step count in the succeeding 30 minutes.
 • This effect is primarily due to the walking activity suggestions.
 • This effect deteriorates with time
 • The walking activity suggestion initially increases step count over succeeding 30 minutes by \(\approx 271 \) steps but by day 20 this increase is only \(\approx 65 \) steps.
Discussion

Problematic Analyses

• GLM & GEE analyses
• Random effects models & analyses
• Machine Learning Generalizations:
 – Partially linear, single index models & analysis
 – Varying coefficient models & analysis

--These analyses do not take advantage of the micro-randomization. Can accidentally eliminate the advantages of randomization for estimating causal effects--
Discussion

• Randomization enhances:
 – Causal inference based on minimal structural assumptions

• Challenge:
 – How to include random effects which reflect scientific understanding ("person-specific" effects) yet not destroy causal inference?
It takes a Team!