
Micro-randomized Trials 

& Mobile Health

S.A. Murphy

IST, Vienna



mHealth

MD2K Smoking Cessation Coach

o Wearable bands measure activity, stress, 

cigarette smoking, sleep quality…….

o Smartphone provides four types of support 

24/7

o Should wrist band provide supportive 

“cue” and smartphone activate to highlight 

associated support when stress reaches a 

criterion?
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mHealth

HeartSteps Activity Coach

o Wearable bands measure activity, phone 

sensors measure busyness of calendar, 

location,..…

o Should smartphone ping and lockscreen

deliver activity ideas when user is 

receptive and user’s calendar is not too 

busy?
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Data from wearable devices that sense 

and provide treatments 

Observations at jth decision time (high dimensional)

Action at jth decision time  (treatment)

Yj+1 :Proximal Response  (aka, Reward, Cost, Utility) 
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Examples

1) Decision Times   (Times at which a treatment 

can be provided.)

1) Regular intervals in time (e.g. every 10 

minutes)   

2) At user demand

HeartSteps includes two sets of decision times

1) Momentary: Approximately every 2-2.5 hours

2) Daily: Each evening at user specified time.
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Examples
2) Observations  

1) Passively collected (location, weather, 

busyness of calendar, social context, 

activity on device, physical activity)

2) Actively collected (self-report)

HeartSteps includes activity recognition (walking, 

driving, standing/sitting), weather, location, 

calendar, adherence, step count, whether 

momentary intervention is on, self-report: 

usefulness, burden, self-efficacy, etc.

Sj
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Examples

3) Actions  

1) Treatments that can be provided at 

decision time

2) Whether to provide a treatment

HeartSteps includes two types of treatments

1) Momentary Lock Screen Recommendation

2) Daily Activity Planning

Aj



8

Momentary 

Lock Screen 

Recommendation

No Message    or
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Examples

4) Proximal Response

HeartSteps:  Activity (step count) over next 

60 minutes.

Smoking Cessation:   Stress level over next 

x minutes.

Yj+1
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Our Group’s Scientific Goals

1) Develop trial designs/data analytics for assessing if 

there are proximal effects of the actions on the 

response.

2) Develop data analytics for assessing if there are 

delayed effects of the actions; assess if the effects vary 

by context, observations.

3) Develop data methods for constructing a treatment 

policy that inputs observations and delivers actions via 

phone.

4) Develop online training algorithms that will result in a 

Personalized Continually Learning mHealth

Intervention
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Proposed Experimental Design:

Micro-Randomized Trial

Randomize between actions at decision 

times � Each person may be randomized 

100’s or 1000’s of times.  

These are sequential, “full factorial,” 

designs.
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Why 

Micro-Randomization?

• Randomization (+ representative sample) is a 

gold standard in providing data to assess the 

causal effect of an intervention option.

• Sequential randomizations will enhance 

replicability and effectiveness of data-based 

decision rules.



Micro-Randomized Trial Elements 

1. Record outcomes 

– Distal (scientific/clinical goal) & Proximal 

Response 

2.  Record context (sensor & self-report 

data)

3.  Randomize among intervention options 

at decision points 

4. Use resulting data to assess treatment 

effects, construct decision rules
13
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Micro-Randomized Trial

• Focus on whether to provide a Momentary 

Lock Screen Recommendation, e.g. 

• Randomization in HeartSteps

Aj ∈ {0, 1}

P [Aj = 1] = .4 j = 1, . . . , J
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Micro-Randomized Trial

First Question to Address: Do the intervention 

options have an effect on the proximal response?

--Test for proximal main effects of the intervention 
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Micro-Randomized Trial

Time varying potentially intensive intervention 

delivery � potential for accumulating 

habituation and burden

→

Allow proximal main effects of the intervention 

components to vary with time
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Availability & The Main Effect

• Interventions can only be delivered at a decision 

time if an individual is available.

• The proximal main effect of treatment at a 

decision time is the difference in proximal 

response between available individuals assigned 

a lock-screen message and available individuals 

who are not assigned a lock-screen message.
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Availability

• is only delivered if the intervention is on at 

decision time j.  

• Set               if the intervention is on at decision 

time j, otherwise 

Aj
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Potential Outcomes

• Define

• Define                  to be the observed response,    

s if               ,  e.g., 

• Define                   to be the observed 

“intervention on” indicator if  

Āj = {A1, A2, . . . , Aj}, āj = {a1, a2, . . . , aj}

Yj+1(āj)
Āj = ājYj+1

Ij(āj−1)
Āj−1 = āj−1

Yj+1 = Yj+1(Āj)
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Proximal Main Effect

• The randomization implies that 

E
[
Yj+1(Āj−1, 1)− Yj+1(Āj−1, 0)

∣∣Ij(Āj−1) = 1
]
=

E
[
Yj+1|Ij = 1, Aj = 1

]
− E

[
Yj+1|Ij = 1, Aj = 0

]



• The Proximal Main Effect at time j is 

• What 

does this

estimand mean?
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Proximal Main Effect

Main Effect

β(j)

β(j) = E
[
Yj+1|Ij = 1, Aj = 1

]
− E

[
Yj+1|Ij = 1, Aj = 0

]
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Proposal

Design and size micro-randomized trial to 

detect proximal main effect of treatment

The proximal main effect is a time-varying 

main effect β(j), j=1,…,J

The proximal main effect is a causal effect.
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Sample Size Calculation

• We calculate a sample size to test: 

• Size to detect a low dimensional 

alternative.  E.g.  H1: β(j) quadratic with 

intercept, β0, linear term, β1, and quadratic 

term β2

and test  
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Sample Size Calculation

Because the alternative hypothesis is low 

dimensional, assessment of the effect of the 

lock-screen message uses not only contrasts 

of between person responses but also 

contrasts of within person responses.   

--The required sample size (number of subjects) 

will be small.
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Standardized Average 
Proximal Effect over 

42 Days

Sample Size 
For

70% availability or 
50% availability

0.06 81 or 112

0.08 48 or 65

0.10 33 or 43

HeartSteps Sample Sizes

Power=.8, α=.05 



These are a new type of Factorial Design

�Time varying factors� time varying 

main effects, time-varying two-way 

interactions, different delayed effects

�Better Designs?

�Design Studies to Detect Interactions 

Between Factors.
26

Experimental Design Challenges
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Steps Toward Long-Term Goal

1) Develop methods/trial designs for assessing if there 

are proximal effects of the actions on the response.

2) Develop data analytics for assessing if there are 

delayed effects of the actions; assess if the effects vary 

by context/ observations.

3) Develop data methods, to use with batch data,  for 

constructing a treatment policy that inputs 

observations and delivers actions via mobile device

4) Develop online training algorithms that will result in a 

“Continually Updating” Treatment Policy
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Steps Toward Long-Term Goal

1) Develop methods/trial designs for assessing if there 

are proximal effects of the actions on the response.

2) Develop data analytics for assessing if there are 

delayed effects of the actions; assess  if the effects vary 

by context/ observations.

3) Develop data methods, to use with batch data,  for 

constructing a treatment policy that inputs 

observations and delivers actions via mobile device

4) Develop online training algorithms that will result in a 

“Continually Updating” Treatment Policy
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Current State 

• Clinical scientists formulate mobile health 

intervention (e.g. treatment policy) using ideas 

from the literature, behavioral theory, clinical 

experience, observational data analyses.   

• Develop analysis methods for use with data in 

constructing “evidence-based” treatment 

policies.   

-- treatment policy should be interpretable.
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Stochastic Treatment Policy

We aim to construct a parameterized policy,      

a that is bounded away from 0 and 1.

• Variation in actions can help retard habituation 

and maintain engagement.

• that are continuous in θ are easier to 

estimate/compute.

πθ(a|s)

πθ(a|s)
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Background

1) On each of n individuals data set contains:

-- is a summary of                                      

that permits the Markovian property; a 

modeling assumption.

--

2) Optimality Criterion: Average Reward for 

Markov Decision Process

P [At = a|St = s] = µ(a|s)
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Markov Decision Process (MDP)

Markovian Assumptions

Stationarity Assumptions

P [Sj+1 = s′|S1, A1, . . . , Sj , Aj ] =
P [Sj+1 = s′|Sj , Aj ]
and

P [Yj+1 = r|S1, A1, . . . , Sj , Aj ] =
P [Yj+1 = r|Sj , Aj ]

P [Sj+1 = s′|Sj = s, Aj = a] = p(s′|s, a)
and

E[Yj+1|Sj = s, Aj = a] = r(s, a)
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Optimality Criterion

Average Reward, ηθ , for policy πθ :

Eθ denotes expectation under the stationary 

distribution, dθ, associated with πθ.

ηθ = lim
T→∞

1

T
Eθ

[
T−1∑

t=0

Yt+1

∣∣∣S0 = s

]

=
∑

s

dθ(s)
∑

a

πθ(a|s)r(s, a)
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Background: Differential Value

Vθ is the Differential Value

Vθ(s) - Vθ(s ́) reflects the difference in sum of 

centered responses accrued when starting in state s

as opposed to state s ́ .

(ηθ is the average reward)

Vθ(s) = lim
T→∞

Eθ

[
T∑

t=0

(
Yt+1 − ηθ

)∣∣∣S0 = s

]

.
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Background: Bellman Equation

Oracle Temporal Difference:

Bellman Equation:

Eθ

[
δt

∣∣∣St
]
= 0

δt = Yt+1 − ηθ + Vθ(St+1)− Vθ(St)
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Background: Bellman Equation

Bellman’s equation implies that 

will be, for all t, for any vector, f(.), of 

appropriately integrable functions, and 

appropriate distribution expectation, E,   

equal to 0 if                       

E

[
πθ(At|St)

µ(At|St)

(
Yt+1 − η + V (St+1)− V (St)

)( 1
f(St)

)]

η = ηθ, V = Vθ
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Estimating Function

• Construct a nonparametric model for,         , say 

b          , for f(s) a p by 1 vector of basis 

functions evaluated at s (p is large)

• Solve 

=0  for  

Vθ(s)

Pn

[
T∑

t=1

πθ(At|St)

µ(At|St)

(
Yt+1 − η + f(St+1)

T v − f(St)
T v
)( 1

f(St)

)]

f(s)T vθ

η̂θ, v̂θ
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Overview of Algorithm

• The resulting η and v are functions of θ, 

denote by               .

• B          are the output of the Critic

• The Actor maximizes over θ to obtain      .

• this will require repeated calls to the 

Critic 

• is the output of the Actor

η̂θ, v̂θ

η̂θ, v̂θ

η̂θ

θ̂

θ̂
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Actor

• The objective function for the actor is given by 

• We want to construct a policy, πθ that is 

bounded away from 0, 1. 

Binary action: 

η̂θ = Pn

[
T∑

t=1

πθ(At|St)

µ(At|St)

(
Yt+1 + f(St+1)

T v̂θ − f(St)
T v̂θ

)]

πθ(a|s) =
eθ

T g(s)a

1 + eθT g(s)
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Actor

Chance constraint on θ :

for  all actions,     and for P* ,  a reference           

b distribution.

• This constraint is nonconvex;  we relax 

via Markov inequality.

T−1
T∑

t=1

P ∗ [p0 ≤ πθ(a|St) ≤ 1− p0] ≥ 1− α

a
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CRITIC

Write the estimating function as,

To accommodate a large feature vector, the critic 

minimizes

to obtain 

Pn

[
T∑

t=1

πθ(At|St)

µ(At|St)

(
Yt+1 − η + f(St+1)

T v − f(St)
T v
)( 1

f(St)

)]

= Âθ

(
η
v

)
− b̂θ

||Âθ

(
η
v

)
− b̂θ||

2 + λc||v||
2

η̂θ, v̂θ
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ACTOR

• The actor obtains     by maximizing

subject to the constraint, 

θTΣgθ ≤ α
(
log((1− p0)/p0)

)2

η̂θ = Pn

[
T∑

t=1

πθ(At|St)

µ(At|St)

(
Yt+1 + f(St+1)

T v̂θ − f(St)
T v̂θ

)]

θ̂

Σg = T−1
∑T

t=1 E
∗
[
g(St)g(St)

T
]
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Constructing Policies from 

Training Data

• We propose an off-line, off-policy actor 

critic algorithm for learning a treatment 

policy from a training set. 

– This treatment policy will be a warm-start 

policy for an online learning algorithm

• Any method should provide confidence 

intervals/permit scientists to test hypotheses. 

• Computational problems……
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Challenges
• How to accommodate/utilize the vast amount of 

missing data, some of which will be 

informative.

– This must be done both for the batch, off-line 

setting and for online learning.

• How to reduce the amount of self-report data 

(there are statistical approaches to do this)

• Development of multiple risk predictors both in 

batch and online setting (including risk for 

disengagement)

• Measuring burden without causing burden. 
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Collaborators
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Actor

• This chance constraint can be further relaxed to 

a convex constraint on space of θ by noting

• Our constraint:

1− T−1
T∑

t=1

P ∗ [p0 ≤ πθ(a|St) ≤ 1− p0]

≤
θTT−1

∑T

t=1 E
∗
[
g(St)g(St)

T
]
θ

(
log((1− p0)/p0)

)2

α ≥
θTT−1

∑T

t=1E
∗
[
g(St)g(St)

T
]
θ

(
log((1− p0)/p0)

)2
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Implementation

To approximate the differential value, ,        , 

s=(s1,…sp1
),  we use features that are all singletons 

and pairwise products of piecewise linear splines 

in the set: , j=1,…,p1, 

k=1,…10. 

Thus the dimension of the feature vector, f(s), is 

Vθ(s)

{(sj − cj,k)+, (cj,k − sj)+}

≈ 600p21
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Implementation

The class for πθ consists of 

gj are features; q is small— in our examples q=3

The constraint (p0=α=.05) 

πθ(a|s) =
e(θ0+θ1g1+...+θqgq)a

1 + eθ0+θ1g1+...+θqgq

gj

θTΣgθ ≤ .43

Σg = T−1
T∑

t=1

Pn

[
g(St)g(St)

T
]


