Micro-randomized Trials & Mobile Health

S.A. Murphy IST, Vienna

mHealth

MD2K Smoking Cessation Coach

- Wearable bands measure activity, stress,
 cigarette smoking, sleep quality......
- Smartphone provides four types of support
 24/7
- O Should wrist band provide supportive "cue" and smartphone activate to highlight associated support when stress reaches a criterion?

mHealth

HeartSteps Activity Coach

- Wearable bands measure activity, phone sensors measure busyness of calendar, location,....
- O Should smartphone ping and lockscreen deliver activity ideas when user is receptive and user's calendar is not too busy?

Data from wearable devices that sense and provide treatments

$$O_1, A_1, Y_2, \ldots, O_j, A_j, Y_{j+1}, \ldots$$

 O_j : Observations at jth decision time (high dimensional)

 A_j : Action at jth decision time (treatment)

 Y_{j+1} : Proximal Response (aka, Reward, Cost, Utility)

- 1) Decision Times (Times at which a treatment can be provided.)
 - 1) Regular intervals in time (e.g. every 10 minutes)
 - 2) At user demand

HeartSteps includes two sets of decision times

- 1) Momentary: Approximately every 2-2.5 hours
- 2) Daily: Each evening at user specified time.

- Observations S_i
 - 1) Passively collected (location, weather, busyness of calendar, social context, activity on device, physical activity)
 - 2) Actively collected (self-report)

HeartSteps includes activity recognition (walking, driving, standing/sitting), weather, location, calendar, adherence, step count, whether momentary intervention is on, self-report: usefulness, burden, self-efficacy, etc.

- 3) Actions A_j
 - 1) Treatments that can be provided at decision time
 - 2) Whether to provide a treatment

HeartSteps includes two types of treatments

- 1) Momentary Lock Screen Recommendation
- 2) Daily Activity Planning

Momentary Lock Screen Recommendation

No Message or

≯ ▼ / **₹** 93% **은** AT&T Heartsteps 2:17 PM What warm, healthy treat could you make today? Maybe tea or soup? You could do squats or jumping jacks while the water heats up! You have a suggestion! **UP24** 2:13 PM Last synced Today, 2:13 PM 11° - Fair 2:10 PM Ann Arbor - Mar 14 02:01 PM USB debugging connected Touch to disable USB debugging. Connected as a media device Touch for other USB options. 6 0

4) Proximal Response Y_{j+1}

HeartSteps: Activity (step count) over next 60 minutes.

Smoking Cessation: Stress level over next x minutes.

Our Group's Scientific Goals

- 1) Develop trial designs/data analytics for assessing if there are proximal effects of the actions on the response.
- 2) Develop data analytics for assessing if there are delayed effects of the actions; assess if the effects vary by context, observations.
- 3) Develop data methods for constructing a treatment policy that inputs observations and delivers actions via phone.
- Develop online training algorithms that will result in a 4) Personalized Continually Learning mHealth <u>Intervention</u>

Proposed Experimental Design: Micro-Randomized Trial

Randomize between actions at decision times \rightarrow Each person may be randomized 100's or 1000's of times.

These are sequential, "full factorial," designs.

Why Micro-Randomization?

• Randomization (+ representative sample) is a gold standard in providing data to assess the causal effect of an intervention option.

 Sequential randomizations will enhance replicability and effectiveness of data-based decision rules.

Micro-Randomized Trial Elements

- 1. Record outcomes
 - Distal (scientific/clinical goal) & Proximal Response
- 2. Record context (sensor & self-report data)
- 3. Randomize among intervention options at decision points
- 4. <u>Use resulting data to assess treatment</u> effects, construct decision rules

Micro-Randomized Trial

• Focus on whether to provide a Momentary Lock Screen Recommendation, e.g.

$$A_j \in \{0, 1\}$$

Randomization in HeartSteps

$$P[A_j = 1] = .4 \ j = 1, \dots, J$$

Micro-Randomized Trial

First Question to Address: Do the intervention options have an effect on the proximal response?

-- Test for proximal *main effects* of the intervention

Micro-Randomized Trial

Time varying potentially intensive intervention delivery → potential for accumulating habituation and burden

 \longrightarrow

Allow proximal main effects of the intervention components to vary with time

Availability & The Main Effect

• Interventions can only be delivered at a decision time if an individual is *available*.

• The proximal main effect of treatment at a decision time is the difference in proximal response between *available* individuals assigned a lock-screen message and *available* individuals who are not assigned a lock-screen message.

Availability

• A_j is only delivered if the intervention is on at decision time j.

• Set $I_j = 1$ if the intervention is on at decision time j, otherwise $I_j = 0$

Potential Outcomes

Define

$$\bar{A}_j = \{A_1, A_2, \dots, A_j\}, \bar{a}_j = \{a_1, a_2, \dots, a_j\}$$

- Define $Y_{j+1}(\bar{a}_j)$ to be the observed response, Y_{j+1} if $\bar{A}_j = \bar{a}_j$, e.g., $Y_{j+1} = Y_{j+1}(\bar{A}_j)$
- Define $I_j(\bar{a}_{j-1})$ to be the observed "intervention on" indicator if $\bar{A}_{j-1}=\bar{a}_{j-1}$

Proximal Main Effect

The randomization implies that

$$E[Y_{j+1}(\bar{A}_{j-1}, 1) - Y_{j+1}(\bar{A}_{j-1}, 0) | I_j(\bar{A}_{j-1}) = 1] =$$

$$E[Y_{j+1}|I_j = 1, A_j = 1] - E[Y_{j+1}|I_j = 1, A_j = 0]$$

Proximal Main Effect

• The Proximal Main Effect at time j is

$$\beta(j) = E[Y_{j+1}|I_j = 1, A_j = 1] - E[Y_{j+1}|I_j = 1, A_j = 0]$$

What
 does this
 estimand mean?

Proposal

Design and size micro-randomized trial to detect proximal main effect of treatment

The proximal main effect is a time-varying main effect $\beta(j)$, j=1,...,J

The proximal main effect is a causal effect.

Sample Size Calculation

• We calculate a sample size to test:

$$H_0: \beta(j) = 0, j = 1, 2, \dots 210$$

• Size to detect a low dimensional alternative. E.g. H_1 : $\beta(j)$ quadratic with intercept, β_0 , linear term, β_1 , and quadratic term β_2

and test
$$\beta_0 = \beta_1 = \beta_2 = 0$$

Sample Size Calculation

Because the alternative hypothesis is low dimensional, assessment of the effect of the lock-screen message uses not only contrasts of *between person responses* but also contrasts of *within person responses*.

-- The required sample size (number of subjects) will be small.

HeartSteps Sample Sizes Power=.8, α=.05

Standardized Average Proximal Effect over 42 Days	Sample Size For 70% availability or 50% availability
0.06	81 or 112
0.08	48 or 65
0.10	33 or 43
	25

Experimental Design Challenges

These are a new type of Factorial Design

- Time varying factors → time varying main effects, time-varying two-way interactions, different delayed effects
- Better Designs?
- Design Studies to Detect Interactions Between Factors.

Steps Toward Long-Term Goal

- 1) Develop methods/trial designs for assessing if there are proximal effects of the actions on the response.
- Develop data analytics for assessing if there are delayed effects of the actions; assess if the effects vary by context/ observations.
- 3) Develop data methods, to use with batch data, for constructing a treatment policy that inputs observations and delivers actions via mobile device
- 4) Develop online training algorithms that will result in a "Continually Updating" Treatment Policy

Steps Toward Long-Term Goal

- 1) Develop methods/trial designs for assessing if there are proximal effects of the actions on the response.
- 2) Develop data analytics for assessing if there are delayed effects of the actions; assess if the effects vary by context/ observations.
- 3) Develop data methods, to use with batch data, for constructing a treatment policy that inputs observations and delivers actions via mobile device
- 4) Develop online training algorithms that will result in a "Continually Updating" Treatment Policy

Current State

- Clinical scientists formulate mobile health intervention (e.g. treatment policy) using ideas from the literature, behavioral theory, clinical experience, observational data analyses.
- Develop analysis methods for use with data in constructing "evidence-based" treatment policies.
 - -- treatment policy should be interpretable.

Stochastic Treatment Policy

We aim to construct a parameterized policy, $\pi_{\theta}(a|s)$ that is bounded away from 0 and 1.

- Variation in actions can help retard habituation and maintain engagement.
- $\pi_{\theta}(a|s)$ that are continuous in θ are easier to estimate/compute.

Background

1) On each of n individuals data set contains:

$$S_1, A_1, Y_2, \dots, S_T, A_T, Y_{T+1}$$

-- S_t is a summary of $O_1, A_1, Y_2, \dots, Y_t, O_t$ that permits the Markovian property; a modeling assumption.

$$P[A_t = a | S_t = s] = \mu(a|s)$$

2) Optimality Criterion: Average Reward for Markov Decision Process

Markov Decision Process (MDP)

Markovian Assumptions

$$P[S_{j+1} = s'|S_1, A_1, \dots, S_j, A_j] = P[S_{j+1} = s'|S_j, A_j]$$
and
$$P[Y_{j+1} = r|S_1, A_1, \dots, S_j, A_j] = P[Y_{j+1} = r|S_j, A_j]$$

Stationarity Assumptions

$$P[S_{j+1} = s' | S_j = s, A_j = a] = p(s' | s, a)$$

and
 $E[Y_{j+1} | S_j = s, A_j = a] = r(s, a)$

Optimality Criterion

Average Reward, η_{θ} , for policy π_{θ} :

$$\eta_{ heta} = \lim_{T o \infty} rac{1}{T} E_{ heta} \left[\sum_{t=0}^{T-1} Y_{t+1} \middle| S_0 = s \right]$$

$$= \sum_{s} d_{ heta}(s) \sum_{a} \pi_{ heta}(a|s) r(s,a)$$

 E_{θ} denotes expectation under the stationary distribution, d_{θ} , associated with π_{θ} .

Background: Differential Value

 V_{θ} is the Differential Value

$$V_{\theta}(s) = \lim_{T \to \infty} E_{\theta} \left[\sum_{t=0}^{T} \left(Y_{t+1} - \eta_{\theta} \right) \middle| S_0 = s \right].$$

 $V_{\theta}(s)$ - $V_{\theta}(s)$ reflects the difference in sum of centered responses accrued when starting in state s as opposed to state s'.

 $(\eta_{\theta}$ is the average reward)

Background: Bellman Equation

Oracle Temporal Difference:

$$\delta_t = Y_{t+1} - \eta_\theta + V_\theta(S_{t+1}) - V_\theta(S_t)$$

Bellman Equation:

$$E_{\theta} \left[\delta_t \middle| S_t \right] = 0$$

$$S_t, A_t, Y_{t+1}, S_{t+1}$$

Background: Bellman Equation

Bellman's equation implies that

$$E\left[\frac{\pi_{\theta}(A_t|S_t)}{\mu(A_t|S_t)}\left(Y_{t+1}-\eta+V(S_{t+1})-V(S_t)\right)\begin{pmatrix}1\\f(S_t)\end{pmatrix}\right]$$

will be, for all t, for any vector, f(.), of appropriately integrable functions, and appropriate distribution expectation, E, equal to 0 if $\eta = \eta_{\theta}$, $V = V_{\theta}$

Estimating Function

Construct a nonparametric model for, $V_{\theta}(s)$, say $f(s)^T v_{\theta}$, for f(s) a p by 1 vector of basis functions evaluated at s (p is large)

Solve
$$\mathbb{P}_{n} \left[\sum_{t=1}^{T} \frac{\pi_{\theta}(A_{t}|S_{t})}{\mu(A_{t}|S_{t})} \left(Y_{t+1} - \eta + f(S_{t+1})^{T} v - f(S_{t})^{T} v \right) \begin{pmatrix} 1\\f(S_{t}) \end{pmatrix} \right]$$

$$= 0 \text{ for } \hat{\eta}_{\theta}, \ \hat{v}_{\theta}$$
37

=0 for
$$\hat{\eta}_{ heta},~\hat{v}_{ heta}$$

Overview of Algorithm

- The resulting η and ν are functions of θ , denote by $\hat{\eta}_{\theta}$, \hat{v}_{θ}
 - $\hat{\eta}_{\theta}$, \hat{v}_{θ} are the output of the Critic
- The Actor maximizes $\hat{\eta}_{ heta}$ over heta to obtain $\hat{ heta}$.
 - this will require repeated calls to the Critic
 - $\hat{ heta}$ is the output of the Actor

Actor

The objective function for the actor is given by

$$\hat{\eta}_{\theta} = \mathbb{P}_{n} \left[\sum_{t=1}^{T} \frac{\pi_{\theta}(A_{t}|S_{t})}{\mu(A_{t}|S_{t})} \left(Y_{t+1} + f(S_{t+1})^{T} \hat{v}_{\theta} - f(S_{t})^{T} \hat{v}_{\theta} \right) \right]$$

• We want to construct a policy, π_{θ} that is bounded away from 0, 1.

Binary action:
$$\pi_{\theta}(a|s) = \frac{e^{\theta - g(s)a}}{1 + e^{\theta^T g(s)}}$$

Actor

Chance constraint on θ :

$$T^{-1} \sum_{t=1}^{T} P^* \left[p_0 \le \pi_{\theta}(a|S_t) \le 1 - p_0 \right] \ge 1 - \alpha$$

for all actions, a and for P^* , a reference distribution.

 This constraint is nonconvex; we relax via Markov inequality.

CRITIC

Write the estimating function as,

$$\mathbb{P}_n \left[\sum_{t=1}^T \frac{\pi_{\theta}(A_t|S_t)}{\mu(A_t|S_t)} \left(Y_{t+1} - \eta + f(S_{t+1})^T v - f(S_t)^T v \right) \begin{pmatrix} 1\\ f(S_t) \end{pmatrix} \right]$$
$$= \hat{A}_{\theta} \begin{pmatrix} \eta\\ v \end{pmatrix} - \hat{b}_{\theta}$$

To accommodate a large feature vector, the critic minimizes

$$||\hat{A}_{\theta} \begin{pmatrix} \eta \\ v \end{pmatrix} - \hat{b}_{\theta}||^2 + \lambda_c ||v||^2$$

to obtain $\hat{\eta}_{ heta},~\hat{v}_{ heta}$

ACTOR

• The actor obtains $\hat{\theta}$ by maximizing

$$\hat{\eta}_{\theta} = \mathbb{P}_{n} \left[\sum_{t=1}^{T} \frac{\pi_{\theta}(A_{t}|S_{t})}{\mu(A_{t}|S_{t})} \left(Y_{t+1} + f(S_{t+1})^{T} \hat{v}_{\theta} - f(S_{t})^{T} \hat{v}_{\theta} \right) \right]$$

subject to the constraint,

$$\theta^T \Sigma_g \theta \le \alpha \left(\log((1 - p_0)/p_0) \right)^2$$

$$\Sigma_g = T^{-1} \sum_{t=1}^T E^* [g(S_t)g(S_t)^T]$$

Constructing Policies from Training Data

- We propose an off-line, off-policy actor critic algorithm for learning a treatment policy from a training set.
 - This treatment policy will be a warm-start policy for an online learning algorithm
- Any method should provide confidence intervals/permit scientists to test hypotheses.
- Computational problems.....

Challenges

- How to accommodate/utilize the vast amount of missing data, some of which will be informative.
 - This must be done both for the batch, off-line setting and for online learning.
- How to reduce the amount of self-report data (there are statistical approaches to do this)
- Development of multiple risk predictors both in batch and online setting (including risk for disengagement)
- Measuring burden without causing burden.

Collaborators

Actor

• This chance constraint can be further relaxed to a convex constraint on space of θ by noting

$$1 - T^{-1} \sum_{t=1}^{T} P^* \left[p_0 \le \pi_{\theta}(a|S_t) \le 1 - p_0 \right]$$

$$\leq \frac{\theta^T T^{-1} \sum_{t=1}^T E^* [g(S_t) g(S_t)^T] \theta}{\left(\log((1-p_0)/p_0)\right)^2}$$

Our constraint:

$$\alpha \ge \frac{\theta^T T^{-1} \sum_{t=1}^T E^* [g(S_t) g(S_t)^T] \theta}{\left(\log((1 - p_0)/p_0)\right)^2}$$

Implementation

To approximate the differential value, $V_{\theta}(s)$, $s=(s_1,...s_{p_1})$, we use features that are all singletons and pairwise products of piecewise linear splines in the set: $\{(s_j-c_{j,k})_+, (c_{j,k}-s_j)_+\}$ $j=1,...,p_1$, k=1,...10.

Thus the dimension of the feature vector, f(s), is $\approx 600p_1^2$

Implementation

The class for π_{θ} consists of

$$\pi_{\theta}(a|s) = \frac{e^{(\theta_0 + \theta_1 g_1 + \dots + \theta_q g_q)a}}{1 + e^{\theta_0 + \theta_1 g_1 + \dots + \theta_q g_q}}$$

 g_j are features; q is small—in our examples q=3

The constraint $(p_0 = \alpha = .05)$

$$\theta^T \Sigma_g \theta \le .43$$

$$\Sigma_g = T^{-1} \sum_{t=1}^T \mathbb{P}_n \left[g(S_t) g(S_t)^T \right]$$