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Summary
Research Question: In adaptive enrichment trial designs,
how do prognostic baseline variables and short-term out-
comes, accrual rate, and delayed outcomes impact trial
power, sample size and duration?

•We derive formulas for the precision gain (measured by the
asymptotic relative efficiency against the unadjusted estimator) from
adjusting for baseline variables and short-term outcomes using
semiparametric estimators in randomized trials.

•Compared to the unadjusted estimator, adjusting for prognostic
baseline variables and short-term outcomes increase power and
reduce sample size and duration of the trial. The adjustment is
most valuable when the variables are highly correlated with final
outcome, when the delay to observe final outcome is long, when
accrual rate is fast, or when there is small or no treatment effect
heterogeneity.

•We use a targeted maximum likelihood estimator (TMLE) to adjust
for pre- and post-treatment covariates, and combine it with a new
multiple testing procedure. This method is guaranteed to
strongly control the familywise type I error rate,
asymptotically.

Our motivating clinical application is a trial of a new treat-
ment for preventing Alzheimer’s disease progression.
•We use a data set of 286 patients from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). The primary outcome is the Clinical
Dementia Rating Sum of Boxes (CDRsb) measured 2 years from
enrollment.

• In simulation studies, compared to the standard unadjusted estimator,
by using the adjusted estimator that leverages prognostic covariates,
we simultaneously increased the power by 10%, reduced
sample size by 3%, and reduced duration by 0.6 years.

Adaptive Enrichment Design

•Adaptive enrichment designs involve preplanned rules for modifying
enrollment criteria based on accrued data in an ongoing trial.

•We consider two prespecified subpopulations (defined by ApoE4
genotype) that partition the overall population.

•At each interim analysis, for each subpopulation a decision is made of
whether to continue accrual or stop.

•Randomization is 1:1 to treatment or control throughout the trial.
•Strong familywise Type I error control guaranteed by [3].

Null Hypotheses Denote by ∆1, ∆2, and ∆0 the average treatment
effect in subpopulation 1, subpopulation 2, and the combined population,
respectively. We test the following null hypotheses:

H01 : ∆1 ≤ 0; H02 : ∆2 ≤ 0; H00 : ∆0 ≤ 0.
We simulate the trials under a) both H01 and H02 are true; b) only H02 is
true; c) only H01 is true; d) neither H01 nor H02 is true.

Figure: Example of a two-stage adaptive enrichment design.
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(Image source: Michael Rosenblum’s short-sourse on Adaptive Enrichment Designs.
Johns Hopkins University, August 30, 2017.)

Table: Example of a five-stage trial in our simulation, assuming no early stopping due to
efficacy. Cumulative Sample Size (Cum. S. S.) is formatted as final outcome observed (+
pipeline∗)

Interim Analysis (k) 1 2 3 4 5
Cum.S.S. Subpop. 1 184 (+368) 368 (+368) 552 (+368) 768 (+216) 984 (+0)
Cum.S.S. Subpop. 2 314 (+628) 628 (+314) 942 (+0) 942 (+0) 942 (+0)
Cum.S.S. Comb. Pop. 498 (+996) 996 (+682) 1494 (+368) 1710 (+216) 1926 (+0)

Futility Boundary (l1,k) 0.25 0.24 0.23 0.23 -
Futility Boundary (l2,k) 0.41 0.39 ∞ - -

Efficacy boundaries are calculated using the covariances of the test-statistics for each sim-
ulated trial [1].
∗ Number of pipeline is calculated assuming dL = 1 year.

Acknowledgements

This research was supported by the FDA BAA (HHSF223201400113C), the US National In-
stitute of Neurological Disorders and Stroke (5R01 NS046309-07 and 5U01 NS062851-04),
and the Patient-Centered Outcomes Research Institute (ME-1306-03198). This paper’s
contents are solely the responsibility of the author and do not represent the views of these
agencies.

Notation and Theoretical Result

For a subject, define the following:
•S: subpopulation (no ApoE4 ε4 alleles / at least one allele)
•W : baseline variables (baseline CDR, age, Aβ42, ADA scale, etc.)
•A: binary treatment indicator
•L: short-term outcome, delay dL from enrollment (CDRsb at 1 year);
•Y : primary outcome, delay dY from enrollment (CDRsb at 2 year).
At an interim analysis, denote by:
•pl: proportion of enrollees with L observed;
•py: proportion of enrollees with Y observed.

•Define E0(·) = E(· | A = 0), Var0(·) = Var(· | A = 0); similarly define
E1(·) and Var1(·).

•γ is the treatment effect heterogeneity:

γ = Var{E1(Y | W )− E0(Y | W )}
Σa∈{0,1}Vara{Y }

.

•R2
W is the prognostic value in W :

R2
W =

Σa∈{0,1}Vara{Ea(Y | W )}
Σa∈{0,1}Vara(Y )

.

•R2
L|W is the prognostic value in L after adjusting for W :

R2
L|W =

Σa∈{0,1}Vara{Ea(Y | L,W )− Ea(Y | W )}
Σa∈{0,1}Vara(Y )

.

In the ADNI data, R2
W ≈ 0.20 and R2

L ≈ 0.48.

Result Qian et al. [2]: Assume randomization (A ⊥⊥ W ) and indepen-
dent censoring on L, Y . For estimating the average treatment effect of A
on Y , the asymptotic relative efficiency between an efficient RAL estimator
and the unadjusted estimator is

AVar(unadjusted)
AVar(efficient)

= {1 + (py/2)γ − [1− (py/pl)]R2
L|W −R2

W}−1.

Adjusted Estimator: TMLE

We use the Targeted Maximum Likelihood Estimator (TMLE) [4] to adjust
for prognostic baseline variables and short-term outcomes. The advantages
of using TMLE in a randomized trial are as follows.
•Guaranteed to strongly control the familywise Type I error rate, using
the testing procedure based on corresponding Wald statistics. (Assuming
outcome data missing completely at random, or missing at random with
correctly modeled missingness probability.)

• Improve power, reduce sample size, and reduce trial duration compared
to the unadjusted estimator.

•R2
W and R2

L|W can be estimated empirically to predict the precision gain
from covariate adjustment.

•Available in R package ltmle.

Simulation Setup

Our goal is to evaluate the performance of an adaptive enrichment design
with a delayed response when we vary the prognostic values in baseline
variables and short-term outcome, accrual rates, delay time, and estimator
used. The performance is evaluated based on Type I error, power, expected
sample size and average duration of the trial, and is based on two estimators:
the unadjusted estimator (the difference between the sample means of the
primary outcome between the two study arms), and an adjusted estimator
(TMLE).
We vary the following in our simulation studies: the prognostic value of
baseline variables W and short-term outcome L represented by the R-
squared formulas; the delay time dL of the short-term outcome; the delay
time dY of the final outcome; and the accrual rate.
Table: Summary of simulation setup. Default value of parameter: R2

W = 0.20, R2
L = 0.48,

dL = 1 years, dY = 2 year, accrual rate 167 patients/year. Ranges of values x− y indicate
the design characteristic(s) varied in the corresponding simulation study.

Simulation R2
W R2

L dL dY accrual rate
study (years) (years) (patients/year)
1 0− 0.6 0 default default default
2 0 0− 0.6 default default default
3 default 0 default 0− 4 default
4 default default 0− dY 0.1, 1, 2, 3, 4 default
5 default default default default 50− 500

Simulation Results

Figure: Impact of accrual rate on expected sample size (ESS) and expected duration (ED).
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Simulation Results (cont.)

Figure: Impact of prognostic value on expected sample size (ESS), expected duration (ED).
Performance of the unadjusted estimator does not depend on R2

W or R2
L, and is marked

next to the vertical axis.
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Figure: Impact of delay time to final outcome (dY ) and to short-term outcome (dL) on
expected sample size (ESS). Horizontal axis is the ratio of the delays to short-term
outcome and to final outcome. Performance of the unadjusted estimator does not depend
on dL or dY , and is marked next to the vertical axis. Figure for expected duration (ED) has
similar trends and is omitted here.
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Future Research
•Extension to sequential decision time points. The theory
and simulation results presented here are for traditional randomized
trials with a single intervention. When there are multiple time points
of intervention (e.g., mHealth setting), how to properly adjust for
time-varying covariates and how much precision gain such adjustment
brings is ongoing research.

•Extension to individual treatment effect. The current setup
focuses on estimating the average treatment effect. When there are
multiple time points of intervention (e.g., mHealth setting), it is
possible to consider estimation of individual treatment effect. We are
working on random effects models with the presence of time-varying
covariates in order for regression coefficients to still have valid causal
interpretation.
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