

Susan Murphy 01.11.17

E FOR SOCIAL RESEARCH

The Methodology Center advancing methods, improving health

Outline

- Introduction to mobile health
- Causal Treatment Effects (aka Causal Excursions)
- (A wonderfully simple) Estimation Method
- HeartSteps

HeartSteps

Context provided via data from: <u>Wearable band</u> \rightarrow activity and sleep quality; <u>Smartphone sensors</u> \rightarrow busyness of calendar, location, weather; <u>Self-report</u> \rightarrow stress, user burden

In which contexts should the smartphone provide the user with an activity suggestion?

Data from wearable devices that sense and provide treatments

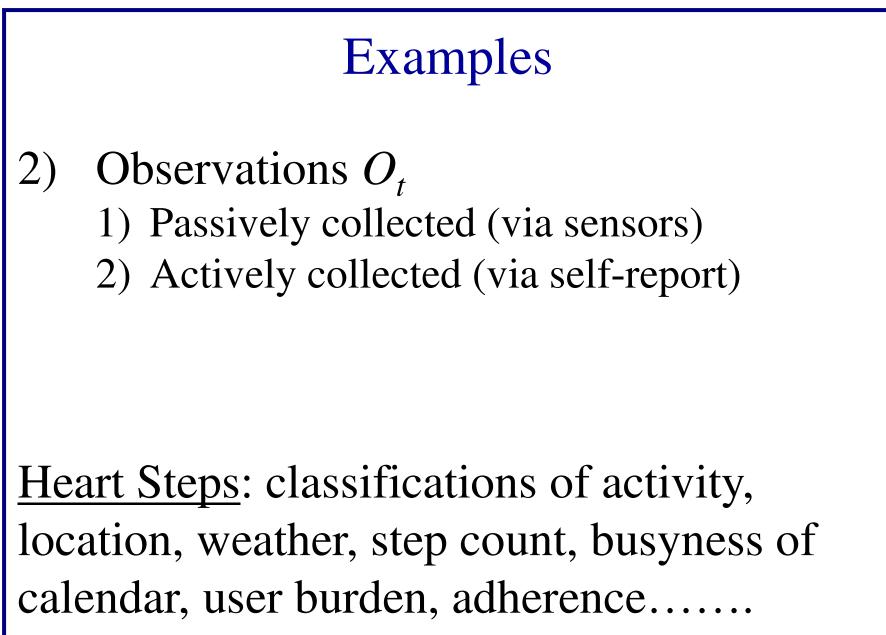
- On each individual: $O_1, A_1, Y_2, \dots, O_t, A_t, Y_{t+1}, \dots$
- *t*: Decision point
- O_t: Observations at tth decision point (high dimensional)
- A_t : Action at t^{th} decision point (treatment)
- Y_{t+1} : Proximal response (e.g., reward, utility, cost)

4

Examples

- 1) Decision Points (Times, *t*, at which a treatment might be provided.)
 - 1) Regular intervals in time (e.g. every minute)
 - 2) At user demand

<u>Heart Steps</u>: approximately every 2-2.5 hours: pre-morning commute, mid-day, mid-afternoon, evening commute, after dinner ⁵

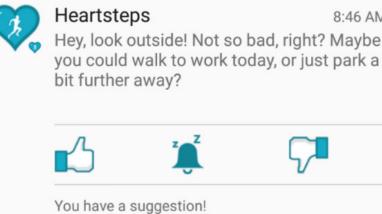


Examples

Actions A_t 3)

- 1) Types of treatments that can be provided at a decision point, t
- 2) Whether to provide a treatment

HeartSteps: tailored activity suggestion (yes/no)

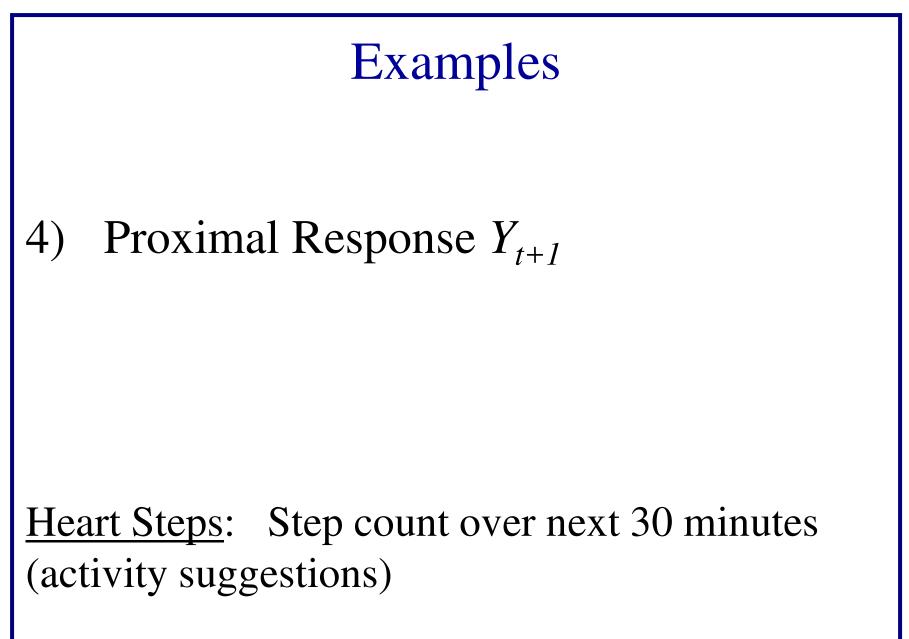


8:46 AM

You have a suggestion!

Availability

- Treatments, A_t, can only be delivered at a decision point if an individual is *available*.
 O_t includes I_t=1 if available, I_t=0 if not
- Treatment effects at a decision point are conditional on availability.
- Availability is not the same as adherence!



Continually Learning Mobile Health Intervention

1) Trial Designs: Are there effects of the actions on the proximal response? *experimental design*

2) Data Analytics for use with trial data: Do effects vary by the user's internal/external context,? Are there delayed effects of the actions? *causal inference*

3) Learning Algorithms for use with trial data: Construct a "warm-start" treatment policy. *batch Reinforcement Learning*

4) Online Algorithms that personalize and continually update the mHealth Intervention. *online Reinforcement Learning*

10

Micro-Randomized Trial Data

On each of *n* participants and at each of *T* decision points:

- O_t observations at decision point t, - includes $I_t=1$ if available, $I_t=0$ if not
- $A_t=1$ if treated, $A_t=0$ if not treated at decision t - Randomized, $P[A_t=1|H_t, I_t=1]=p_t(H_t)$
- Y_{t+1} proximal response

 $H_t = \{(O_i, A_i, Y_{i+1}), i=1, \dots, t-1; O_t\}$ denotes data through t_{11}

Conceptual Models

Generally data analysts fit a series of increasingly more complex models:

$$Y_{t+1}$$
 "~" $\alpha_0 + \alpha_1^T Z_t + \beta_0 A_t$

and then next,

$$Y_{t+1} \quad \tilde{} \sim \tilde{} \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t + \beta_1 A_t S_t$$

and so on...

- Y_{t+1} is subsequent activity over next 30 min.
- $A_t = 1$ if activity suggestion and 0 otherwise
- Z_t summaries formed from t and past/present observations
- S_t potential moderator (e.g., current weather is good or not)

Conceptual Models

Generally data analysts fit a series of increasingly more complex models:

$$Y_{t+1} \quad ``\sim `` \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t$$

and then next,

$$Y_{t+1} \quad \tilde{} \sim \tilde{} \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t + \beta_1 A_t S_t$$

and so on...

 $\alpha_0 + \alpha_1^T Z_t$ is used to reduce the noise variance in Y_{t+1} (Z_t is sometimes called a vector of control variables)

Causal Effects

$$Y_{t+1} \quad ``\sim " \quad \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t$$

 β_0 is the effect, marginal over all observed and all unobserved variables, of the activity suggestion on subsequent activity.

$$Y_{t+1} \quad \tilde{} \sim \tilde{} \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t + \beta_1 A_t S_t$$

 $\beta_0 + \beta_1$ is the effect when the weather is good ($S_t=1$), marginal over other observed and all unobserved variables, of the activity suggestion on subsequent activity. 14

Our Goal

- Develop data analytic methods that are consistent with the scientific understanding of the meaning of the β coefficients
- Challenges:
 - Time-varying treatment $(A_t, t=1,...,T)$
 - "independent" variables: Z_t , S_t , I_t that may be affected by prior treatment

Robustly facilitate noise reduction via use of controls, Z_t 15

Outline

- Introduction to mobile health
- Causal Treatment Effects (aka Causal Excursions)
- (A wonderfully simple) Estimation Method
- HeartSteps

Potential Outcomes

- $\bar{A}_t = \{A_1, A_2, \dots, A_t\}$ (random treatments), $\bar{a}_t = \{a_1, a_2, \dots, a_t\}$ (realizations of treatments)
- $Y_{t+1}(\bar{a}_t)$ is one potential proximal response
- $I_t(\bar{a}_{t-1})$ is one potential "available for treatment" indicator
- *H_t*(*ā_{t-1}*) is one potential history vector *S_t*(*ā_{t-1}*) is a vector of features of history *H_t*(*ā_{t-1}*)

Marginal & Causal Effect

Effect at decision point *t*:

$$E[Y_{t+1}(\bar{A}_{t-1},1) - Y_{t+1}(\bar{A}_{t-1},0)] | I_t(\bar{A}_{t-1}) = 1, S_t(\bar{A}_{t-1})]$$

- Effect is marginal over any Y_u , $u \le t$, A_u , u < t not in $S_t(\bar{A}_{t-1})$ --over all variables not in $S_t(\bar{A}_{t-1})$.
- Effect is conditional on availability; only concerns the subpopulation of individuals available at decision *t*

Marginal & Causal Effect

Lagged effect at decision point *t*:

$$E\left[Y_{t+2}\left(\bar{A}_{t-1}, 1, A_{t+1}^{a_t=1}\right) - Y_{t+2}\left(\bar{A}_{t-1}, 0, A_{t+1}^{a_t=0}\right) \mid I_t\left(\bar{A}_{t-1}\right) = 1, S_t\left(\bar{A}_{t-1}\right)\right]$$

- Impact of $A_{t+1}^{a_t=1}$ depends on randomization probabilities
- Effect is marginal over any Y_u , $u \le t$, $A_u, u < t$ not in $S_t(\bar{A}_{t-1})$ ---over all variables not in $S_t(\bar{A}_{t-1})$.
- Effect is conditional on availability; only concerns the subpopulation of available individuals.
- Definitions for greater lags are similar.

Consistency &
Micro-Randomized
$$A_t \rightarrow$$

 $E[Y_{t+1}(\bar{A}_{t-1}, 1) - Y_{t+1}(\bar{A}_{t-1}, 0) | I_t(\bar{A}_{t-1}) = 1, S_t(\bar{A}_{t-1})]$
 $=$
 $E[Y_{t+1}|A_t = 1, I_t = 1, H_t]$
 $-E[Y_{t+1}|A_t = 0, I_t = 1, H_t] | I_t = 1, S_t]$
 $=$
 $E\left[\frac{A_t Y_{t+1}}{p_t(H_t)} - \frac{(1 - A_t)Y_{t+1}}{(1 - p_t(H_t))} | I_t = 1, S_t\right]$
(n.(H.) is randomization probability)

 $(p_t(H_t) \text{ is randomization probability})$

Marginal Treatment Effect

Treatment Effect Model:

$$E[E[Y_{t+1}|A_t = 1, I_t = 1, H_t] - E[Y_{t+1}|A_t = 0, I_t = 1, H_t] | I_t = 1, S_t] = S_t^T \beta$$

 H_t is participant's data up to and at time t

 S_t is a vector of data summaries and time, t, $(S_t \subseteq H_t)$

 I_t indicator of availability

We aim to conduct inference about β !

Outline

- Introduction to mobile health
- Causal Treatment Effects (aka Causal Excursions)
- (A wonderfully simple) Estimation Method
- HeartSteps

"Centered and Weighted Least Squares Estimation"

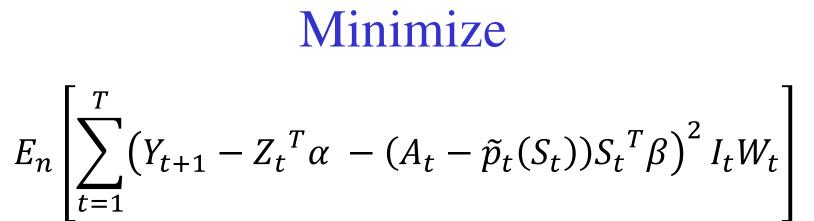
- Simple method for complex data
- Enables unbiased inference for a causal, marginal, treatment effect (the β 's)
- Inference for treatment effect is not biased by how we use the controls, Z_t , to reduce the noise variance in Y_{t+1}

Estimation

- Select probabilities: $\tilde{p}_t(s) \in (0,1)$
- Form weights: $W_t = \left(\frac{\tilde{p}_t(S_t)}{p_t(H_t)}\right)^{A_t} \left(\frac{1-\tilde{p}_t(S_t)}{1-p_t(H_t)}\right)^{1-A_t}$
- Center treatment actions: $A_t \to (A_t \tilde{p}_t(S_t))$
- Minimize:

$$E_n \left[\sum_{t=1}^T \left(Y_{t+1} - Z_t^T \alpha - (A_t - \tilde{p}_t(S_t)) S_t^T \beta \right)^2 I_t W_t \right]$$

• E_n is empirical distribution over individuals.



• Good but incorrect intuition: Weighted "GEE" with a working independence correlation matrix and a centered treatment indicator,
$$A_t - \tilde{p}_t(S_t)$$

 E_n is expectation with respect to empirical distribution₂₅

Minimize

$$E_{n} \left[\sum_{t=1}^{T} (Y_{t+1} - Z_{t}^{T} \alpha - (A_{t} - \tilde{p}_{t}(S_{t}))S_{t}^{T} \beta)^{2} I_{t} W_{t} \right]$$

If \tilde{p}_t depends at most on features in S_t , then, under moment conditions, $\hat{\beta}$ is consistent for β_0

Model assumption:

$$E[(E[Y_{t+1}|A_t = 1, I_t = 1, H_t] - E[Y_{t+1}|A_t = 0, I_t = 1, H_t])|I_t$$

 $= 1, S_t] = S_t^T \beta_0$

Theory

Under moment conditions, $\sqrt{n}(\hat{\beta} - \beta_0)$ converges to a Normal distribution with mean 0 and var-covar matrix, $(\Sigma_p)^{-1} \Sigma(\Sigma_p)^{-1}$

$$\sum_{p} = \mathbf{E} \Big[\sum_{t=1}^{T} \tilde{p}_{t}(S_{t}) \Big(1 - \tilde{p}_{t}(S_{t}) \Big) I_{t} S_{t} S_{t}^{T} \Big]$$

 Z_t and S_t are finite dimensional feature vectors.

Gains from Randomization

- Causal inference for a marginal treatment effect
- Inference on treatment effect is robust to working model:

$$E[Y_{t+1} | I_t = 1, H_t] \approx Z_t^T \alpha$$

- $Z_t \subseteq H_t$
- Contrast to literature on partially linear, single index models and varying coefficient models
 28

Price due to Marginal Estimand

This "GEE-like" method can only use a working independence correlation matrix

 Estimating function is biased if off-diagonal elements in working correlation matrix: in general,

$$E[(Y_{t+1} - Z_t^T \alpha - (A_t - \tilde{p}_t(S_t))S_t^T \beta)I_t W_t I_u W_u \sigma_{t,u} Z_u] \neq 0$$

if $u \neq t$

29

Choice of Weights

Choice of $\tilde{p}_t(S_t)$ determines marginalization over time.

Example: $S_t = 1$, $\tilde{p}_t(S_t) = \tilde{p}$. Resulting $\hat{\beta}$ is an estimator of

$$\sum_{t=1}^{T} E[I_t]\beta_t / \sum_{t=1}^{T} E[I_t]$$

where

$$\beta_t = E[E[Y_{t+1}|A_t = 1, I_t = 1, H_t] - E[Y_{t+1}|A_t = 0, I_t = 1, H_t]|I_t = 1]$$

Outline

- Introduction to mobile health
- Causal Treatment Effects (aka Causal Excursions)
- (A wonderfully simple) Estimation Method

• HeartSteps

Heart Steps Pilot Study

On each of n=37 participants:

a) Activity suggestion, A_t

- Provide a suggestion with probability .6
 - a tailored sedentary-reducing activity suggestion (probability=.3)
 - a tailored walking activity suggestion (probability=.3)
- **Do nothing (probability=.4)**
- 5 times per day * 42 days= 210 decision points

Conceptual Models

 $Y_{t+1} \quad \text{``} \sim \text{''} \quad \alpha_0 + \alpha_1 Z_t + \beta_0 A_t$ $Y_{t+1} \quad \text{``} \sim \text{''} \quad \alpha_0 + \alpha_1 Z_t + \alpha_2 d_t + \beta_0 A_t + \beta_1 A_t d_t$

- *t*=1,...*T*=210
- $Y_{t+1} = \text{log-transformed step count in the 30 minutes after}$ the *t*th decision point,
- $A_t = 1$ if an activity suggestion is delivered at the t^{th} decision point; $A_t = 0$, otherwise,
- $Z_t = \text{log-transformed step count in the 30 minutes$ *prior*to the*t*th decision point,
- d_t =days in study; takes values in (0,1,...,41)

Pilot Study Analysis

 Y_{t+1} "~" $\alpha_0 + \alpha_1 Z_t + \beta_0 A_t$, and

 $Y_{t+1} \quad \text{``~``} \quad \alpha_0 + \alpha_1 Z_t + \alpha_2 d_t + \beta_0 A_t + \beta_1 A_t d_t$

Causal Effect Term	Estimate	95% CI	p-value
$\beta_0 A_t$ (effect of an activity suggestion)	$\hat{\beta}_0 = .13$	(-0.01, 0.27)	.06
$\beta_0 A_t + \beta_1 A_t d_t$	$\hat{\beta}_0 = .51$	(.20, .81)	<.01
(time trend in effect of an activity suggestion)	$\hat{\beta}_1 =02$	(03,01)	<.01
			34

Heart Steps Pilot Study

On each of n=37 participants:

- a) Activity suggestion
 - Provide a suggestion with probability .6
 - a tailored walking activity suggestion (probability=.3)
 - a tailored sedentary-reducing activity suggestion (probability=.3)
 - **Do nothing (probability=.4)**
- 5 times per day * 42 days= 210 decision points

Pilot Study Analysis

$$Y_{t+1} ``~" \alpha_0 + \alpha_1 Z_t + \beta_0 A_{1t} + \beta_1 A_{2t}$$

- $A_{1t} = 1$ if walking activity suggestion is delivered at the t^{th} decision point; $A_{1t} = 0$, otherwise,
- $A_{2t} = 1$ if sedentary-reducing activity suggestion is delivered at the *t*th decision point; $A_{2t} = 0$, otherwise,

Causal Effect	Estimate	95% CI	p-value
$\beta_0 A_{1t} + \beta_1 A_{2t}$	$ \hat{\boldsymbol{\beta}}_0 = .21 \\ \hat{\boldsymbol{\beta}}_1 > 0 $	(.04, .39) ns	.02 ns

Initial Conclusions

- The data indicates that there is a causal effect of the activity suggestion on step count in the succeeding 30 minutes.
 - This effect is primarily due to the walking activity suggestions.
 - This effect deteriorates with time
 - The walking activity suggestion initially increases step count over succeeding 30 minutes by ≈ 271 steps but by day 21 this increase is only ≈ 65 steps.

Discussion

Problematic Analyses

- GLM & GEE analyses
- Random effects models & analyses
- Machine Learning Generalizations:
 - Partially linear, single index models & analysis
 - Varying coefficient models & analysis

--These analyses do not take advantage of the microrandomization. Can accidentally eliminate the advantages of randomization for estimating causal effects-- ³⁸

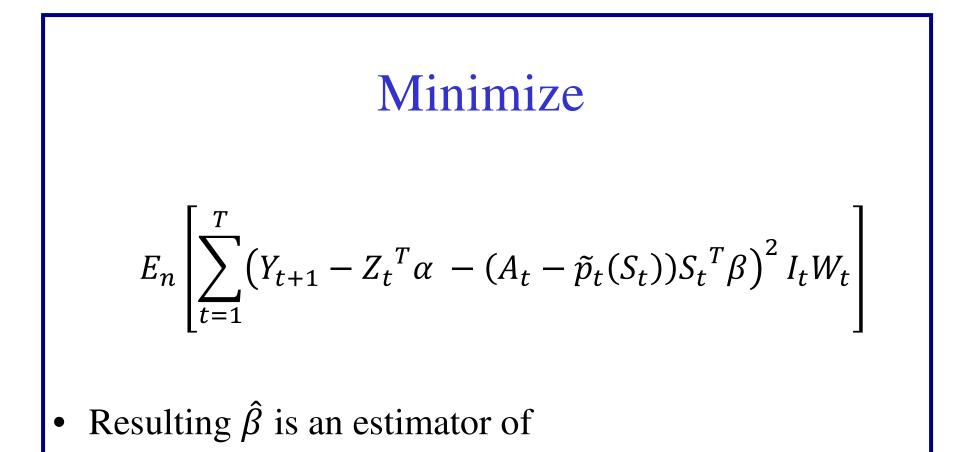
Discussion

- Randomization enhances:
 - Causal inference based on minimal structural assumptions
- Challenge:
 - How to include random effects which reflect scientific understanding ("person-specific" effects) yet not destroy causal inference?

mHealth

Sense2Stop Smoking Cessation Coach

- Wearable wrist/chest bands provide multiple physiological sensor streams...; craving, burden,.....
- Supportive stress-regulation interventions available on smartphone 24/7
- In which contexts should the wrist band provide reminder to access stressregulation apps?



$$\left(E\sum_{t=1}^{T}\tilde{p}_t(S_t)\left(1-\tilde{p}_t(S_t)\right)I_tS_tS_t^T\right)^{-1}E\left[\sum_{t=1}^{T}S_t\tilde{p}_t(S_t)\left(1-\tilde{p}_t(S_t)\right)I_t\beta_t(S_t)\right]$$