Mobile Health Intervention Optimization

Susan Murphy
09.14.17
HeartSteps (PI Klasnja)

Goal: Develop an mobile activity coach for individuals who have coronary artery disease

Three iterative studies:

- 42 day micro-randomized pilot study with sedentary individuals,
- 90 day micro-randomized study,
- 365 day personalized study
HeartSteps

Context provided via data from:
Wearable band → minute level step count, bouts of activity and sleep quality;
Smartphone sensors → busyness of calendar, location at pre-specified time points during day, weather;
Self-report → nightly stress, user burden

In which contexts should the smartphone provide the user with a tailored activity suggestion?
Structure of a mobile health intervention that uses wearable devices to sense the context and deliver treatments
Structure of Mobile Health Intervention

1) Decision Points: times, t, at which a treatment might be delivered or “pushed”
 1) Regular intervals in time (e.g. every 10 minutes)
 2) At user demand

HeartSteps: approximately every 2-2.5 hours: pre-morning commute, mid-day, mid-afternoon, evening commute, after dinner
Structure of Mobile Health Intervention

2) Observations at decision point \(t\)
 1) Passively collected (via sensors)
 2) Actively collected (via self-report)

HeartSteps: classifications of activity, location, weather, step count, busyness of calendar, usefulness ratings, adherence…….
3) **Actions** A_t
 1) Types of treatments/engagement strategies that can be provided at a decision point, t
 2) Whether to provide a treatment

HeartSteps: tailored activity suggestion (yes/no)
Availability

Activity suggestions can only be delivered if the individual is currently available. -- $I_t=1$ if available, $I_t=0$ if not

- Unavailability is not the same as nonadherence!

HeartSteps: Unavailable if sensors indicate that the individual may be operating a vehicle, is walking or has turned off the intervention.
4) Proximal Outcome Y_{t+1}

HeartSteps: Step count over 30 minutes following decision point, t
Treatment Effects

The tailored activity suggestions are designed to be near-term actionable: to impact activity in the near term.

Does the tailored activity suggestion influence step count in the subsequent 30 minutes?
 • Does this effect deteriorate over time?
Treatment Effect

Effect of activity suggestion on step count is likely time-varying

What does this effect mean?

Standardized Effect
HeartSteps Micro-Randomized Trial

On each participant, randomize delivery of a mobile intervention component (activity suggestion) each time that component may be delivered.

Activity suggestion (210 randomizations)

- If available, provide an activity suggestion with probability .6; do nothing with probability .4
Data analyses following the micro-randomized mobile health trial
Conceptual Models

Generally data analysts fit a series of increasingly more complex models:

\[Y_{t+1} \sim \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t \]

and then next,

\[Y_{t+1} \sim \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t + \beta_1 A_t S_t \]

and so on…

- \(Y_{t+1} \) is subsequent activity over next 30 min.
- \(A_t = 1 \) if activity suggestion and 0 otherwise
- \(Z_t \) summaries formed from \(t \) and past/present observations
- \(S_t \) potential moderator (e.g., current weather is good or not)
Conceptual Models

Generally data analysts fit a series of increasingly more complex models:

\[Y_{t+1} \sim \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t \]

and then next,

\[Y_{t+1} \sim \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t + \beta_1 A_t S_t \]

and so on…

\(\alpha_0 + \alpha_1^T Z_t \) is used to reduce the noise variance in \(Y_{t+1} \)

(\(Z_t \) is sometimes called a vector of control variables)
Causal Effects

\[Y_{t+1} \sim \alpha_0 + \alpha_1 T Z_t + \beta_0 A_t \]

\(\beta_0 \) is the effect, marginal over all observed and all unobserved variables, of the activity suggestion on subsequent activity.

\[Y_{t+1} \sim \alpha_0 + \alpha_1 T Z_t + \beta_0 A_t + \beta_1 A_t S_t \]

\(\beta_0 + \beta_1 \) is the effect when the weather is good \((S_t=1)\), marginal over other observed and all unobserved variables, of the activity suggestion on subsequent activity.
Goal

• Develop data analytic methods that are consistent with our scientific understanding of the meaning of the β coefficients

• Challenges:
 • Time-varying treatment ($A_t, t=1,...T$)
 • “Independent” variables: Z_t, S_t, I_t that may be affected by prior treatment

• Robustly facilitate noise reduction via use of controls, Z_t
“Centered and Weighted Least Squares Estimation”

- Simple method for complex data!
- Enables unbiased inference for a causal, marginal, treatment effect (the β’s)
- Inference for treatment effect is not biased by how we use the controls to reduce the noise variance in Y_{t+1}

https://arxiv.org/abs/1601.00237
Application of the “Centered and Weighted Least Squares Estimation” method in an initial analysis of HeartSteps
HeartSteps Micro-Randomized Trial
On each of $n=37$ participants:

a) Activity suggestion, A_t

- **Provide a suggestion with probability .6**
 - a tailored sedentary-reducing activity suggestion (probability=.3)
 - a tailored walking activity suggestion (probability=.3)
- **Do nothing (probability=.4)**

- 5 times per day * 42 days = 210 decision points
Conceptual Models

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \beta_0 A_t \]
\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \alpha_2 d_t + \beta_0 A_t + \beta_1 A_t d_t \]

- \(t=1, \ldots, T=210 \)
- \(Y_{t+1} \) = log-transformed step count in the 30 minutes after the \(t^{th} \) decision point,
- \(A_t = 1 \) if an activity suggestion is delivered at the \(t^{th} \) decision point; \(A_t = 0 \), otherwise,
- \(Z_t \) = log-transformed step count in the 30 minutes prior to the \(t^{th} \) decision point,
- \(d_t \) = days in study; takes values in \((0,1,\ldots,41)\)
HeartSteps Analysis

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \beta_0 A_t, \text{ and} \]

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \alpha_2 d_t + \beta_0 A_t + \beta_1 A_t d_t \]

<table>
<thead>
<tr>
<th>Causal Effect Term</th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0 A_t) (effect of an activity suggestion)</td>
<td>(\hat{\beta}_0 = .13)</td>
<td>(-0.01, 0.27)</td>
<td>.06</td>
</tr>
<tr>
<td>(\beta_0 A_t + \beta_1 A_t d_t) (time trend in effect of an activity suggestion)</td>
<td>(\hat{\beta}_0 = .51)</td>
<td>(.20, .81)</td>
<td><.01</td>
</tr>
<tr>
<td></td>
<td>(\hat{\beta}_1 = -.02)</td>
<td>(-.03, -.01)</td>
<td><.01</td>
</tr>
</tbody>
</table>
On each of \(n=37 \) participants:

a) Activity suggestion

- Provide a suggestion with probability \(.6 \)
 - a tailored walking activity suggestion (probability=.3)
 - a tailored sedentary-reducing activity suggestion (probability=.3)
- Do nothing (probability=.4)

- 5 times per day \(\times 42 \) days = 210 decision points
HeartSteps Analysis

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \beta_0 A_{1t} + \beta_1 A_{2t} \]

- \(A_{1t} = 1 \) if walking activity suggestion is delivered at the \(t^{th} \) decision point; \(A_{1t} = 0 \), otherwise,
- \(A_{2t} = 1 \) if sedentary-reducing activity suggestion is delivered at the \(t^{th} \) decision point; \(A_{2t} = 0 \), otherwise,

<table>
<thead>
<tr>
<th>Causal Effect</th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0 A_{1t} + \beta_1 A_{2t})</td>
<td>(\hat{\beta}_0 = .21)</td>
<td>(.04, .39)</td>
<td>.02 ns</td>
</tr>
<tr>
<td></td>
<td>(\hat{\beta}_1 >0)</td>
<td>ns</td>
<td>ns</td>
</tr>
</tbody>
</table>
Initial Conclusions

• The data indicates that there is a causal effect of the activity suggestion on step count in the succeeding 30 minutes.
 • This effect is primarily due to the walking activity suggestions.
 • This effect deteriorates with time
 • The walking activity suggestion initially increases step count over succeeding 30 minutes by approximately 271 steps but by day 20 this increase is only approximately 65 steps.
On each of $n=37$ participants:

b) Evening planning prompt, A_t

- **Provide a prompt with probability .5**
 - Prompt using unstructured activity planning for following day with probability = .25
 - Prompt using structured activity planning for following day with probability = .25

- **Do nothing with probability = .5**

- 1 time per day * 42 days = 42 decision points
Conceptual Models

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \beta_0 A_t \]
\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \alpha_2 W_t + \beta_0 A_t W_t + \beta_1 A_t (1-W_t) \]

- \(t=1,...T=42 \)
- \(Y_{t+1} \) = square root-transformed step count on the day after the \(t^{th} \) day,
- \(A_t = 1 \) if activity planning prompt on the evening of the \(t^{th} \) day; \(A_t = 0 \), otherwise,
- \(Z_t \) = square-root step count on the \(t^{th} \) day,
- \(W_t = 1 \) if Sunday through Thursday; \(W_t = 0 \), otherwise
HeartSteps Analysis

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \beta_0 A_t, \text{ and} \]

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \alpha_2 W_t + \beta_0 A_t W_t + \beta_1 A_t (1-W_t) \]

<table>
<thead>
<tr>
<th>Causal Effect Term</th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\beta_0 A_t] (effect of planning)</td>
<td>[\hat{\beta}_0 = 1.7]</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>[\beta_0 A_t W_t + \beta_1 A_t (1-W_t)] (effect of planning for weekday (W_t = 1) and for weekend (W_t = 0))</td>
<td>[\hat{\beta}_0 = 3.6] [\hat{\beta}_1 < 0]</td>
<td>(.74, 6.4) ns</td>
<td><.02 ns</td>
</tr>
</tbody>
</table>
On each of $n=37$ participants:

b) Evening planning prompt

- Provide a prompt with probability 0.5
 - Prompt using unstructured activity planning for following day with probability 0.25
 - Prompt using structured activity planning for following day with probability 0.25
- Do nothing with probability 0.5

- 1 time per day * 42 days = 42 decision points
Conceptual Model

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \beta_0 A_{1t} + \beta_1 A_{2t} \]

- \(Y_{t+1} = \) square root-transformed step count on the day after the \(t^{th} \) day,
- \(A_{1t} = 1 \) if unstructured activity planning prompt on the evening of the \(t^{th} \) day; \(A_{1t} = 0 \), otherwise,
- \(A_{2t} = 1 \) if structured activity planning prompt on the evening of the \(t^{th} \) day; \(A_{2t} = 0 \), otherwise,
- \(Z_t = \) square-root step count on the \(t^{th} \) day,
HeartSteps Analysis

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \beta_0 A_{1t} + \beta_1 A_{2t} \quad t=0, \ldots, T=41 \]

- \(A_{1t} = 1 \) if unstructured activity planning prompt on the evening of the \(t^{th} \) day; \(A_{1t} = 0 \), otherwise,
- \(A_{2t} = 1 \) if structured activity planning prompt on the evening of the \(t^{th} \) day; \(A_{2t} = 0 \), otherwise,

<table>
<thead>
<tr>
<th>Causal Effect Term</th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0 A_{1t} + \beta_1 A_{2t})</td>
<td>(\hat{\beta}_0 = 3.1) (\hat{\beta}_1 > 0)</td>
<td>(-.22, 6.4)</td>
<td>.07 ns</td>
</tr>
</tbody>
</table>
HeartSteps Analysis

\[Y_{t+1} \sim \alpha_0 + \alpha_1 Z_t + \alpha_2 W_t + \beta_0 A_{1t} W_t + \beta_1 A_{1t} (1-W_t) + \beta_2 A_{2t} W_t + \beta_3 A_{2t} (1-W_t) \]

\[A_{1t} = 1 \text{ if unstructured activity planning prompt on the evening of the } t^{\text{th}} \text{ day; } A_{1t} = 0, \text{ otherwise,} \]

\[W_t = 1 \text{ if Sunday through Thursday; } W_t = 0, \text{ otherwise} \]

<table>
<thead>
<tr>
<th>Causal Effect</th>
<th>Estimate</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_0 A_{1t} W_t + \beta_1 A_{1t} (1-W_t)) + (\beta_2 A_{2t} W_t + \beta_3 A_{2t} (1-W_t))</td>
<td>(\hat{\beta}_0 = 5.3) (\hat{\beta}_1 < 0, \hat{\beta}_2 > 0, \hat{\beta}_3 < 0)</td>
<td>(2.2, 8.5) all ns</td>
<td><.01 all ns</td>
</tr>
</tbody>
</table>
Initial Conclusions

• The data indicates that there is a causal effect of planning the next day’s activity on the following day’s step count.
 • This effect is due to the unstructured planning prompts.
 • This effect occurs primarily on weekdays.
 • On weekdays the effect of an unstructured planning prompt is to increase step count on the following day by approximately 780 steps.
Discussion

Problematic Analyses

• GLM & GEE analyses
• Random effects models & analyses
• Machine Learning Generalizations:
 – Partially linear, single index models & analysis
 – Varying coefficient models & analysis

--These analyses do not take advantage of the micro-randomization. Can accidentally eliminate the advantages of randomization for estimating causal effects--
Discussion

• Randomization enhances:
 – Causal inference based on minimal structural assumptions

• Challenge:
 – How to include random effects which reflect scientific understanding (“person-specific” effects) yet not destroy causal inference?
Continually Learning Mobile Health Intervention

1) Trial Designs: Are there effects of the actions on the proximal response? *experimental design*

2) Data Analytics for use with trial data: Do effects vary by the user’s internal/external context? Are there delayed effects of the actions? *causal inference*

3) Learning Algorithms for use with trial data: Construct a “warm-start” treatment policy. *batch Reinforcement Learning*

4) Online Algorithms that personalize and continually update the mHealth Intervention. *online Reinforcement Learning*
Collaborators!