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Abstract
Language modelling is a fundamental building
block of natural language processing. However,
in practice the size of the vocabulary limits the
distributions applicable for this task: specifi-
cally, one has to either resort to local optimiza-
tion methods, such as those used in neural lan-
guage models, or work with heavily constrained
distributions. In this work, we take a step to-
wards overcoming these difficulties. We present
a method for global-likelihood optimization of
a Markov random field language model exploit-
ing long-range contexts in time independent of
the corpus size. We take a variational approach
to optimizing the likelihood and exploit underly-
ing symmetries to greatly simplify learning. We
demonstrate the efficiency of this method both
for language modelling and for part-of-speech
tagging.

1. Introduction
The aim of language modelling is to estimate a distribution
over words that best represents the text of a corpus. Lan-
guage models are central to tasks such as speech recogni-
tion, machine translation, and text generation, and the pa-
rameters of these models are commonly used as features
or as initialization for other algorithms. Examples include
the word distributions learned by topic models, or the word
embeddings learned through neural language models.

Central to the language modelling problem is the challenge
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of scale. It is typical for languages to have vocabularies of
hundreds of thousands of word types, and language models
themselves are often estimated on corpora with billions of
tokens (Graff et al., 2003). The scale of the problem inher-
ently limits the types of distributions that can be effectively
applied.

In practice, the most commonly used class of language
models are n-gram models. These represent the probability
of the next word as a multinomial distribution conditioned
on the previous context. The parameters of this class of
models can be very efficiently estimated by simply collect-
ing sufficient statistics and tuning a small set of parameters.

More recently neural language models (NLMs) have
gained popularity (Bengio et al., 2006; Mnih & Hinton,
2007). These models estimate the same distribution as n-
gram models, but utilize a non-linear neural network pa-
rameterization. NLMs have been shown to produce com-
petitive results with n-gram models using many fewer pa-
rameters. Additionally the parameters themselves have
proven to be useful for other language tasks (Collobert
et al., 2011). Unfortunately training NLMs can be much
slower than n-gram models, often requiring expensive gra-
dient computations for each token; techniques have been
developed to speed up training in practice (Mnih & Hinton,
2009; Mnih & Teh, 2012).

In this work, we consider a different class of language mod-
els. Instead of estimating the local probability of the next
word given its context, we globally model the entire corpus
as a Markov random field (MRF) language model. Undi-
rected graphical models like MRFs have been widely ap-
plied in natural language processing as a way to flexibly
model statistical dependencies; however, MRFs are rarely
used for language modelling since estimating their param-
eters requires computing a costly partition function.
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Our contribution is to provide a simple to implement algo-
rithm for very efficiently estimating this class of models.
We take a variational approach to the optimization prob-
lem, and devise a lower bound on the log-likelihood using
lifted inference. By exploiting the problem’s symmetry, we
derive an efficient approximation of the partition function.

Crucially, each step of the final algorithm has time com-
plexity of O(KC2) where K is the size of the n-gram con-
text and C is the size of the vocabulary. Note that besides
collecting statistics, this algorithm has no time dependence
on the number of tokens, potentially allowing its estimation
speed to scale similarly to n-gram models.

Experimentally, we demonstrate the quality of the models
learned by our algorithm by applying it to a language mod-
elling task. Additionally we show that this same estimation
algorithm can be effectively applied to other common se-
quence modelling tasks such as part-of-speech tagging.

2. Background
Notation We denote sequences by bold variables: t =
(t1, . . . , tn). A sub-sequence will be defined as either tji =
(ti, ti+1, . . . , tj) or t−i = (t1, . . . , ti−1, ti+1, . . . , tn).

Contextual language models Let us first define the class
of contextual language models as the set of distributions
over words conditioned on a fixed-length left context. For-
mally this is an estimate of p(ti|ti−1i−K) where ti is the cur-
rent word and K is the size of the context window. For a
basic n-gram language model, this is simply a multinomial
distribution, and the maximum-likelihood estimate can be
computed in closed-form from the statistics of the corpus
(although in practice some smoothing is often employed).

A neural (probabilistic) language model (NLM) is a con-
textual language model where the word probability is a
non-linear function of the context estimated from a neu-
ral network. In this work, we will focus specifically on
the class of NLMs with potentials that are bilinear in the
context and predicted word, such as the log-bilinear lan-
guage model of Mnih & Hinton (2007). This model is
parametrized as:

p(ti|ti−1i−K) =

exp

((∑K
l=1 Uti−lR

l

)
W>ti

)
Z(ti−1i−K)

(1)

where U ∈ RC×D, W ∈ RC×D, and R ∈ RK×D×D
are the parameters of the model, and Z(ti−1i−K) is a local
normalization function (dependent on the context). Specif-
ically, Uti and Wti are the left and right embeddings re-
spectively of token ti, Rl is a distance-dependent transition
matrix, C is the size of the vocabulary and D � C is the
size of the low-rank word embeddings. Another form of

bilinear model is the variant used in Word2Vec (Mikolov
et al., 2013):

p(ti|ti−1i−K , t
i+K
i+1 ) =

exp

(
K∑

l=−K
l 6=0

Uti+lW
>
ti

)

Z(ti−1i−K , t
i+K
i+1 )

(2)

These models have been shown to give similar results to n-
gram models while providing useful word representations.
However, the local normalization means that most opti-
mization methods need to look at one token at a time, and
scale at least linearly with the size of the corpus.

Markov random fields To avoid this issue of local nor-
malization, we model the entire corpus as a sequence of
random variables T1 . . . TN , for which we give a joint,
globally normalized distribution. We specify this distribu-
tion with a Markov random field.

A Markov random field is defined by a graph structure G =
(V, E), and a set of potentials (θc)c∈C , where C is defined
as the set of cliques in graph G.

Let t denote a specific assignment of T1 . . . TN , and let
tc = (ti)i∈c. The log-probability of a sequence t is then:

log(p(t; θ)) =
∑
c∈C

θctc −A(θ)

where A(θ) is called the log-partition function, and can in
general be computed exactly with a complexity exponential
in the size of the tree-width of G.

3. MRF Language Models
Sentence model Building on this formalism, let us now
define a family of MRF distributions over text. We start
by considering a sequence x = (x1, . . . , xn) of n variables
with state spaceX . We define an orderK Markov sequence
model as a Markov Random field where each element of the
sequence is connected to its K left and right neighbours.

For simplicity of exposition, we restrict our description in
the rest of this paper to pairwise Markov sequence models,
for which only cliques of size 2 (edges) have potentials:
θ = {θ(i,j)|(i, j) ∈ E}. The lifted inference method, how-
ever, can be easily extended to higher-order potentials.

<S><S> dogThe barked <S>. <S>

Figure 1. The sentence distribution model for M = 4.

Following the notation introduced in Section 2, this gives
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us the following distribution pnseqK
over Xn:

∀x ∈ Xn, log(pnseqK
(x)) =

n−K∑
i=1

K∑
l=1

θ(i,i+l)xi,xi+l
−A(θ)

Let T denote the vocabulary of our text corpus. In this
work, we define the context of a word as itsK left and right
neighbouring tokens. By adding K “padding” or “separa-
tor” tokens 〈S〉 6∈ T to the left and right of the sentence,
this notion of context also allows us to bias the distribution
of tokens at the beginning and end of the sentence.

Let X = T ∪ {〈S〉}. A sentence t of length M is
then implicitly mapped to a sequence x(t) ∈ XM+2K

by adding the start and end 〈S〉 tokens. Now, letting
S = {x(t)|t ∈ T M}, the orderK Markov sequence model
allows us to define the following distribution over sentences
of length M , as illustrated in Figure 1:

pM (t) = pM+2K
seqK

(x = x(t)|x ∈ S) (3)

This gives rise to the following generative model for a sen-
tence:

1. Sample the sentence length M ∼ τ(M),
2. Sample M tokens: (t1, . . . , tM ) ∼ pM (t),

where τ is any distribution over integers and can easily be
fit to the data. We focus in this work on learning the pa-
rameters of pM .

These graphical models define a large family of log-
linear distributions, depending on the value of K and the
parametrization of the edge log-potentials θ. In the appli-
cations that follow θ will either be defined (and optimized
over) explicitly, or represented as a product of low-rank
matrices. We will show how to optimize the likelihood of
the corpus for both these settings.

Low rank Markov random fields We now consider dif-
ferent low-rank realizations of the log-potentials θ. Sup-
pose that θi,j only depends on |j− i|, that is to say, param-
eters are shared across edges of the same length (in which
case we shall simply write θi,j = θ|j−i|), we can have for
example: θ

|j−i|
ti,tj = UtiR

|j−i|Wtj (4)

θ
|j−i|
ti,tj = UtiW

|j−i|
tj (5)

One interesting property of these models is that since the
Markov blanket of a word consists only of its immediate
neighbours, its conditional likelihood can be expressed as:

p(ti|t−i) = p(ti|ti−1i−K , t
i+K
i+1 ) ∝ exp(

K∑
l=1

θlti−l,ti + θlti,ti+l)

This class of probability functions corresponds to those
defined by a bi-directional log-bilinear neural language
model. The model in Equation 4 (θ = URW ) can easily
be rewritten in terms of the bi-directional version of Mnih’s
LBL (Mnih & Teh, 2012) and the model in Equation 5,
which we use in the rest of this work, is a slightly more gen-
eral (distance-dependent) version of the Word2Vec CBOW
model from (Mikolov et al., 2013).

Conversely, log-bilinear NLMs can be seen as optimizing
the pseudo-likelihood (defined as

∏n
i=1 p(ti|t−i)) of an or-

der K Markov sequence model as defined above. Since
the pseudo-likelihood is a consistent estimator of the like-
lihood (Besag, 1975), we expect our factorization to have
properties similar to those of the embeddings learned by
log-bilinear neural language models.

4. Efficient Learning Using Lifted Variational
Inference

We now outline our method for optimizing the likelihood
of a corpus under our class of models. Learning undirected
graphical models is challenging because of the global nor-
malization constant, or partition function. We derive a
tractable algorithm by using a variational approximation:
we define a lower bound on the data likelihood (Wainwright
et al., 2005; Yanover et al., 2008), and alternate between
finding the tightest version of that bound and taking a gra-
dient ascent step in the parameters of the model.

The novelty of our method comes from the fact that for
the bound we define, both the tightening and gradient step
only require us to consider K pairwise moments, i.e. the
running time of learning will be independent of the size
of the corpus. We achieve this by showing how to reduce
the learning task to lifted variational inference, allowing us
to build upon recent work by Bui et al. (2014). We then
derive an algorithm to efficiently perform lifted variational
inference using belief propagation and dual decomposition.
The overall learning algorithm is simple to implement and
runs very fast.

4.1. Creating Symmetry using a Cyclic Model

Given a corpus tc = (t1, . . . , tnc) of nc sentences drawn
independently from our model, we wish to maximize
its likelihood p(tc) =

∏nc
i=1 p(t

i) =
∏nc
i=1 τ(Mi)p

Mi(ti).
We first show how to obtain a symmetric lower bound on
the likelihood

∏nc
i=1 p

Mi(ti).

Consider the sequence x(tc) ∈ XN obtained by adding K
〈S〉 tokens before the first and between any two adjacent
sentences in tc, where N =

∑nc
i=1(Mi + K). Let pcyclK

be the wrapped around version of pseqK , as illustrated in
Figure 2. We have the following result (the proof can be
found in the supplementary materials):
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.

<S>

the

All

 away

ran

scared

cats

The

<S>

<S>

<S>

loud

dog

.

barked

Figure 2. The cyclic model with N = 16 and a setting s ∈ S
corresponding to a corpus of two sentences.

Lemma 1. Let S = {x(tc)|tc ∈ T M1 × . . .× T Mnc}.
Then,

nc∏
i=1

pMi(ti) =
pNcyclK

(x = x(t))

pNcyclK
(x ∈ S)

.

Hence, the cyclic model pNcyclK
(x(tc)) provides a lower

bound on p(tc), which happens to be invariant to rotations;
the rest of the paper makes use of the symmetry to max-
imize this lower bound. Let θ0 denote single node unary
potentials, and θl the edge potentials as defined in Section
3. The objective we want to optimize is:

log(pNcyclK
(x(tc))) =

N∑
i=1

(
θ0xi +

K∑
l=1

θlxi,xi+l

)
−A(θ),

where

A(θ) = log(
∑

y∈XN
exp(

N∑
i=1

(
θ0yi +

K∑
l=1

θlyi,yi+l

)
))

and ∀l ∈ {1, . . . ,K}, xN+l = xl and yN+l = yl.

4.2. Variational lower bound

Unfortunately, the partition function A is extremely costly
to compute for any reasonable vocabulary size, as dynamic
programming would have running time O(NC2K+1).
However, it is easy to formulate upper bounds on A, which
give rise to a family of lower bounds on the log-likelihood.
We start by using an equivalent variational formulation of
the partition function as an optimization problem:

A(θ) = max
µ∈M

N∑
i=1

(
〈µi, θ0〉+

K∑
l=1

〈µi,i+l, θl〉

)
+H(µ),

where M denotes the marginal polytope (Wainwright &
Jordan, 2008). We then make two approximations to make
solving this optimization problem easier. First, we re-
place M with the local consistency polytope LC. Since

LC ⊇ M, this gives us an upper bound on the original so-
lution. Second, we replace the entropy H(µ) with the tree-
reweighted (TRW) upper bound (Wainwright et al., 2005):

H(µ) ≤ H̄ρ(µ) =

N∑
i=1

(
H(µi)−

K∑
l=1

ρi,i+lI(µi,i+l)

)
where ρi,j denotes the probability of edge (i, j) appearing
in a covering set of forests for the MRF. Let:

Ā(θ; ρ) = max
µ∈LC

N∑
i=1

(
〈µi, θ0〉+

K∑
l=1

〈µi,i+l, θl〉

)
+ H̄ρ(µ)

Using this variational approximation, we now have an up-
per bound on the log-partition function which can be com-
puted by solving a convex optimization problem. Al-
together this then gives us the following tractable lower
bound on the log-likelihood:

log(pNcyclK
(x)) ≥

N∑
i=1

(
θ0xi +

K∑
l=1

θlxi,tx+l

)
− Ā(θ; ρ)

= L̄(θ,x; ρ). (6)

Learning using gradient ascent then requires that we com-
pute the derivative of Ā(θ; ρ), which we will show is the
µ that maximizes the variational optimization problem (we
return to this process in more detail in the next section).
We can therefore reduce the learning task to that of re-
peatedly performing approximate inference using TRW.
Fast combinatorial solvers for TRW exist, including tree-
reweighted belief propagation (Wainwright et al., 2005),
convergent message-passing based on geometric program-
ming (Globerson & Jaakkola, 2007), and dual decomposi-
tion (Jancsary & Matz, 2011), which all have complexity
linear in the size of the corpus.

However, we next show that by taking advantage of the
symmetries present in the optimization problem, it is pos-
sible to solve it in time which is independent of N , the
number of word tokens in the corpus.

4.3. Lifting the objective

Our key insight is that because of the parameter sharing in
our model, each of the random variables in the cyclic model
are indistinguishable. More precisely, there is an automor-
phism group of rotation which can be applied to the suf-
ficient statistic vector and to the model parameters which
does not change the joint distribution (Bui et al., 2013).

When such symmetry exists, Bui et al. (2014) show that
without loss of generality one can choose the edge appear-
ance probabilities to be symmetric, which in our setting
corresponds to choosing a ρ such that ∀i, j, ρi,j = ρ|j−i|
(i.e., the tightest TRW upper bound on A(θ) can be ob-
tained by a symmetric ρ). When the edge appearance
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probabilities are chosen accordingly, since the objective is
strictly concave and the variables are rotationally symmet-
ric, it follows (Bui et al., 2014, Theorem 3) that the opti-
mum must satisfy the following property:

∀1 ≤ i, j ≤ N, 1 ≤ l ≤ K,µi = µj and µi,i+l = µj,j+l.
(7)

We will take advantage of this structural property to dra-
matically simplify the variational optimization problem. In
particular, using the notation µ0

V to refer to the single-node
marginal (there is only one) and µlE(x1, x2) to refer to the
edge marginal corresponding to the potential θl, we have:

Ā(θ) = max
µ

N
[
〈µ0
V , θ

0〉+H(µ0
V ) (8)

+

K∑
l=1

(
〈µlE , θl〉 − ρlI(µlE)

)]
,

where the maximization is subject to the non-negativity
constraints µ0

V , µ
1
E , . . . , µ

K
E ≥ 0, sum-to-one constraints∑

xv
µ0
V (xv) = 1 and ∀l,

∑
x1,x2

µlE(x1, x2) = 1, and
pairwise consistency constraints:∑

x1

µlE(x1, x2) = µ0
V (x2) ∀l, x2, (9)∑

x2

µlE(x1, x2) = µ0
V (x1) ∀l, x1. (10)

The optimal µlE is guaranteed to be symmetric, and so we
could have used a slightly more compact form of the op-
timization problem (c.f. Bui et al., 2014). However, we
prefer this form both because it is easier to describe and
because it is more amenable to solving efficiently.

The lifted problem, Eq. 8, has only C + KC2 optimiza-
tion variables, instead of the N(C + KC2) of the original
objective. However, it remains to figure out how to solve
this optimization problem. Bui et al. (2014) solve the lifted
TRW problem using Frank-Wolfe, which has to repeatedly
solve a linear program over the same feasible space (i.e.,
Eqs. 9 and 10). These linear programs would be huge in
our setting, where C can be as large as 10, 000, leading to
prohibitive running times.

4.4. Dual Decomposition

We now derive an efficient algorithm based on dual de-
composition to optimize our lifted TRW objective. We will
have an upper bound on the log-partition function, and thus
a lower bound on the likelihood, for any valid edge ap-
pearance probabilities. However, our algorithm requires a
specific choice for all edges: ∀l, ρl = 1

K+1 .

We assume that the corpus lengthN is a multiple ofK+1,
which can always be achieved by adding “filler” 〈S〉 to-
kens. To prove that our choice of ρ defines valid edge

Figure 3. The set of K + 1 covering forests used for K = 3,
N = 16. Each edge is represented in exactly one forest.

appearance probabilities, we demonstrate a set of K + 1
forests T such that ρij =

∑
T :ij∈T ρT , where for all T ,

ρT = 1
K+1 . In particular, we take forests which are made

up of disconnected stars, rotated so that each edge is cov-
ered exactly once. Figure 3 illustrates this choice of forests.

Using this, we can rewrite the objective in Eq. 8 as:

Ā(θ) =
N

K + 1
max
µ

(K + 1)
[
〈µ0
V , θ

0〉+H(µ0
V )
]

(11)

+

K∑
l=1

(
〈µlE , (K + 1)θl〉 − I(µlE)

)
.

Finally, rather than optimizing over Eq. 11 explicitly, we
re-write it in a form in which we can use a belief propa-
gation algorithm to perform part of the maximization. To
do so, we introduce redundant variables µlV for l ∈ [1,K],
enforce that they are equal to µ0

V and use them instead of
µ0
V for each pairwise consistency constraint. The resulting

equivalent form of the optimization problem is:

Ā(θ) =
N

K + 1
max
µ

K∑
l=0

〈µlV , θ0〉+

K∑
l=1

〈µlE , (K + 1)θl〉

+

K∑
l=0

H(µlV )−
K∑
l=1

I(µlE), (12)

subject to non-negativity and sum-to-1 constraints, and:

∀l ∈ [1,K], x2,
∑
x1

µlE(x1, x2) = µlV (x2)

∀l ∈ [1,K], x1,
∑
x2

µlE(x1, x2) = µlV (x1)

∀l ∈ [1,K], x1, µlV (x1) = µ0
V (x1). (13)

If one ignores the equality constraints (13), we see that
the constrained optimization problem in (12) exactly cor-
responds to a Bethe variational problem for the tree-
structured MRF shown in Figure 4. As a result, it could be
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3 2 1 0

Figure 4. The tree corresponding to the maximization sub-
problem in the lifted inference, for K = 3.

maximized in linear time using belief propagation (Wain-
wright & Jordan, 2008, Theorem 4.2b, pg. 83–84).

Our next step is to introduce these constraints in a way that
still allows for efficient optimization. This can be achieved
through the use of Lagrangian duality: by formulating the
right dual problem, we obtain a tight bound on our objec-
tive which can still be maximized through message passing.

We introduce Lagrange multipliers δlV (xl) for each con-
straint in (13) and form the Lagrangian by adding∑K
l=1

∑C
xl=1 δ

l
V (xl)(µ

l
V (xl) − µ0

V (xl)) to the objective
(12). Re-arranging terms and omitting the constant, we ob-
tain that the dual objective is:

Oδ(θ,µ) = 〈µ0
V , θ

0 −
K∑
l=1

δlV 〉+

K∑
l=1

〈µlV , θ0 + δlV 〉 (14)

+

K∑
l=1

〈µlE , (K + 1)θl〉+

K∑
l=0

H(µlV )−
K∑
l=1

I(µlE).

Since the primal problem is concave and strictly feasible
(it is feasible with no inequality constraints), Slater’s con-
ditions are met and we have strong duality. Thus,

A(θ) ≤ Ā(θ) =
N

K + 1
min
δ

max
µ∈LC

Oδ(θ, µ). (15)

One useful property of the above is that we have a valid up-
per bound onA(θ), the log-partition function of the circular
model, for any choice of the dual variables δ. For a fixed
δ, computing the upper bound simply requires one pass of
belief propagation in the tree MRF shown in Figure 4, for
a running time of O(KC2).

5. Learning Algorithm
Recall that our goal is to estimate parameters θ to maximize
L̄(θ,x; ρ) given in Eq. 6. Letting µ̂x denote the observed
moments of the corpus x(tc), we have for ρ = 1

K+1 that:

L̄(θ,x; ρ) = N × 〈µ̂x, θ〉 − Ā(θ)

= N ×
(
〈µ̂x, θ〉 −

minδ maxµ∈LC O
δ(θ, µ)

K + 1

)
= N ×max

δ

(
〈µ̂x, θ〉 −

maxµ∈LC O
δ(θ, µ)

K + 1

)
= N ×max

δ
L(θ,x; δ),

Algorithm 1 Tightening the bound
input: model parameters θ
repeat

compute θ̄(θ, δ) for the lifted MRF { Eq. (17) }
compute µ(θ̄) {BP on Fig. 4 MRF}
compute∇δ(θ̄) { Eq. (16) }
Take sub-gradient step: δnew = δ − α∇δ

until µ satisfies primal constraints { Eq. (13) }
output: L̄(θ,x; ρ), pseudo-marginals µ

Algorithm 2 Gradient ascent
input: data x(t) = (xi)

N
i=1, precision ε, initial U , V

collect pairwise moments (µ̂u,v)(u,v)∈X 2 from the data
repeat

compute θ(U,W )
compute bound L̄(θ,x; ρ) = maxδ L(θ,x; δ) {Alg.1}
compute∇θL̄(θ,x; ρ) {Eq. (18)}
compute∇U L̄ and ∇W L̄ {Eq. (19)}
take gradient step Unew ← U +∇U L̄
take gradient step Wnew ←W +∇W L̄

until convergence: |L̄new − L̄old| < ε
output: estimated parameters Unew, Wnew

where L(θ,x; δ) = 〈µ̂x, θ〉 − maxµ∈LC O
δ(θ,µ)

K+1 . Hence, for
any δ, N × L(θ,x; δ) defines a lower bound over the log-
likelihood of x(tc), which can be made tighter by optimiz-
ing over δ. Moreover, L(θ,x; δ) is jointly concave in δ and
θ. The learning algorithm consists of alternating between
tightening this bound (Algorithm 1), and taking gradient
steps in θ (Algorithm 2), in an approach similar to that of
Meshi et al. (2010) and Hazan & Urtasun (2010).

Tightening the bound: For a fixed value of the
parameters θ, the tightest bound is obtained for
δ∗ = arg minδ maxµ∈LC O

δ(θ, µ). We can find this min-
imizer through a sub-gradient descent algorithm. In partic-
ular, letting µ∗ be a maximizer of Oδ(θ, µ), the following
is a sub-gradient of Oδ(θ, µ) in δ:

∇δlV = µl∗V − µ0∗
V ∀l ∈ [1,K]. (16)

The optimal µ∗ corresponds to the single node and edge
marginals of the tree-structured MRF given in Figure 4,
which can be computed by running belief propagation with
the following log-potentials:

θ̄0V = θ0 −
K∑
l=1

δlV , θ̄lV = θ0 + δlV ∀l ∈ [1,K],

θ̄lE = (K + 1)θl ∀l ∈ [1,K]. (17)

Gradient Ascent: The marginals computed at δ∗ can
then be used to compute gradients for our main objective.
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Recall that our aim is to maximize the objective function
L̄(θ,x; ρ) = N × L(θ,x; δ∗(θ)), where δ∗(θ) is the output
of Algorithm 1. For any value of δ, even before optimality,
we have:

∇θ max
µ∈LC

Oδ(θ, µ) = (K + 1)arg max
µ∈LC

Oδ(θ, µ).

Hence:

∇θL̄(θ,x; ρ) = N ×
(
µ̂x − arg max

µ∈LC
Oδ
∗
(θ, µ)

)
. (18)

For the low-rank MRFs, the gradients in the parameters can
then be obtained using the chain rule. For the factorization
of θ presented in Eq. 5, we get for u, v ∈ X , d ∈ [1, D],
l ∈ [1,K]:

∇Uu,dL̄(θ,x; ρ) =

K∑
l′=1

∑
v′∈X

(
∇θu,v′ L̄(θ,x; ρ)×W l′

v′,d

)
∇W l

v,d
L̄(θ,x; ρ) =

∑
u′∈X

(
Uu′,d ×∇θu′,v L̄(θ,x; ρ)

)
(19)

These can be used to perform gradient ascent on the objec-
tive function, as outlined in Algorithm 2.

6. Experiments
We conducted experiments using the lifted algorithm to ex-
amine its practical efficiency, effectiveness at estimating
gradients, and the properties of the tree re-weighted bound.
We implemented models for two standard natural language
tasks: language modelling and part-of-speech tagging.

Setup For language modelling we ran experiments on the
Penn Treebank (PTB) corpus with the standard language
modelling setup: sections 0-20 for training (N = 930k),
sections 21-22 for validation (N = 74k) and sections 23-
24 (N = 82k) for test. For this dataset the vocabulary size
is C = 10k, and rare words are replaced with UNK.

For part-of-speech tagging we use the tagged version of
the Penn Treebank corpus (Marcus et al., 1993). We use
section 2-21 for training, section 22 for validation and sec-
tion 23 for test. For this corpus the tag size is T = 36 and
we use the full vocabulary size with C ≈ 30k.

For model parameter optimization (the gradient step in Al-
gorithm 2) we use L-BFGS (Liu & Nocedal, 1989) with
backtracking line-search. For tightening the bound (Algo-
rithm 1), we used 200 sub-gradient iterations, each requir-
ing a round of belief propagation. Our sub-gradient rate
parameter α was set as α = 103/2t where t is the num-
ber of preceding iterations where the dual objective did not
decrease. Our implementation of the algorithm uses the
Torch numerical framework (http://torch.ch/) and
runs on the GPU for efficiency.

Figure 5. Comparison of a model trained by optimizing exact
likelihood (green) versus the lifted TRW objective (red). The blue
line shows the exact log-likelihood of the red model as it is being
optimized based on the lifted TRW bound.

Figure 6. The red and blue lines give lower bounds on the log-
likelihood (lifted objective). The green line shows the fixed value
of the validation log-likelihood of an LBL model trained on PTB.

Experiments First, to confirm the properties of the al-
gorithm, we ran experiments on a small synthetic data set
with N = 12, K = 1 and C = 4. The small size of this
data set allows us to exactly compute the log-partition for
the original conditional model (Equation 3).

Figure 5 shows a comparison of a model trained using the
exact gradients on the conditional likelihood to a model
trained by gradient ascent with the lifted TRW objective.
As expected, the latter gives an underestimate of the log-
likelihood, but the learned parameters yield an exact log-
likelihood close to the model learned with exact gradients.

Next we applied the lifted algorithm to a language mod-
elling task on PTB. We trained both the explicit full-rank
model and the model with low-rank log-potentials from
Section 3, θ|j−i|ti,tj = UtiW

|j−i|
tj , for D = 30 and K = 2.

The results are presented in Figure 6. The lower bound on
the likelihood given by our algorithm is only slightly lower
than the exact log-likelihood computed for a left-context
LBL model with K = 2. We also note that the explicit
model is prone to over-fitting, and gets to a worse valida-
tion objective.

Another advantage of using low-rank potentials is that they
produce embedded representations of the vocabulary. Ta-
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WORD MRF LIFTED MRF SGD WORD2VEC

firm he holding
company industry it anacomp

group corp. uniroyal
conservative vietnamese cross

red freedom delegation tape
black judge delicious
had have had

has is had been
was n’t have

currency intergroup currency
dollar economy market pound

government uses stabilized
richard like kemp

jack david needed porter
carl first timothy

Table 1. Nearest neighbours in different embeddings. MRF
LIFTED are the embeddings learned by our algorithm. MRF SGD
are obtained by running stochastic gradient descent for 48 hours
on the pseudo-likelihood objective: the algorithm did not con-
verge in that time. WORD2VEC are the vectors learned by the
Word2Vec software of (Mikolov et al., 2013)

ble 1 shows a sample of embeddings learned for the MRF
compared to those obtained with the Word2Vec algorithm
(with D = 100 and a window size of 4, training run for 5
epochs). We also tried training our algorithm by perform-
ing stochastic gradient descent on the pseudo-likelihood
of the corpus under our model. The column MRF SGD
shows the embeddings obtained after 48 hours of training.
In comparison, the GPU implementation of our algorithm
reached its optimal objective value on the validation dataset
in 45 minutes on the Penn Treebank dataset.

Finally we ran experiments on part-of-speech tagging. For
this task we use a different MRF graphical structure. Each
tag node is connected to its K neighbors as well as the L
nearest-words. We use a different set of covering forests
which is shown in Figure 7. As with language modelling
the partition function for this model would be very ineffi-
cient to compute explicitly. However, given a sentence, the
best tagging can be found efficiently by dynamic program-
ming.

For this model, we also employ explicit features for pair-
wise potentials, i.e. θmti,wi+m = Umf(ti, wi+m) and
θlti,ti+l = V lg(ti, ti+l) where U, V are parameter matrices
and f, g are predefined feature functions. For g we use tag-
pair indicator features, and for f we use standard features
on capitalization, punctuation, and prefixes/suffixes (given
in Appendix B). This model and features are analogous
to a standard conditional random field tagger; however, we
optimize for joint likelihood.

It is known that joint models are less effective than discrim-
inative conditional models for this task (Liang & Jordan,
2008), but we can compare performance to a similar joint

PDT

All

DT

the

JJ

scared

NNS

cats

PDT

All

DT

the

JJ

scared cats

NNS

Figure 7. The POS tagging model for K = 2, L = 3, and a
decomposition for the lifted inference algorithm

Model Total Acc Unk Acc
HMM 95.8 65.4
Lifted MRF 96.0 76.0

Table 2. Comparison of tagging accuracy between the lifted MRF
and an HMM in total and on unseen words.

model. We compare this model with K = 1 to a stan-
dard first-order HMM tagging model using the TnT tagger
(Brants, 2000) with simple rare word smoothing. Table 2
shows the results. The lifted model achieves similar to-
tal accuracy, but has much better performance on unseen
words, due to its feature structure.

7. Conclusion
This work introduces a Markov random field language
model that extends upon NLMs, and presents a fast lifted
inference algorithm with complexity independent of the
length of the corpus. We show experimentally that this
technique is efficient and estimates useful parameters on
two common NLP tasks. The use of low-rank MRFs may
also be useful in other applications where random variables
have very large state spaces.

Our paper presents a new application area for lifted in-
ference, and could potentially lead to its broader adop-
tion in machine learning. For example, one could ap-
ply our methodology to efficiently learn the parameters of
grid-structured MRFs commonly used in computer vision,
where symmetry is obtained using an approximation which
wraps the grid around left-to-right and top-to-bottom. Our
dual decomposition algorithm may also be more broadly
useful for efficiently performing lifted variational infer-
ence.

Our approach opens the door to putting a much broader
class of word embeddings used for language into a prob-
abilistic framework. One of the most exciting directions
enabled by our advances is to combine latent variable mod-
els together with neural language models. For example,
one could imagine using our approach to perform semi-
supervised or fully unsupervised learning of part-of-speech
tags using vast unlabeled corpora. Our lifted variational in-
ference approach can be easily combined with Expectation
Maximization or gradient-based likelihood maximization.
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A. Proof of Lemma 1
Let us start by reviewing some of the notions supporting
the model presented in the main paper. All probability
distributions defined in this paper correspond to Markov
random field sequence models, so we begin by describing
these models in detail.

A.1. Sequence models

Linear-chain Markov sequence model We start by con-
sidering a sequence x = (x1, . . . , xn) of n variables with
state space X . We define an order K Markov sequence
model as a Markov random field where each element of the
sequence is connected to its K left and right neighbours.
Figure 8 presents such a model for n = 8, K = 2.

x2x1 x4x3 x5 x7x6 x8

Figure 8. Second-order Markov sequence model for n = 8.

As mentioned in Section 3, a pairwise MRF with this struc-
ture gives the following distribution pnseqK

over Xn:

∀x ∈ Xn, log(pnseqK
(x)) =

n−K∑
i=1

K∑
l=1

θ(i,i+l)xi,xi+l
−AnseqK

(θ)

(20)

Where:

AnseqK
(θ) = log

( ∑
y∈Xn

exp

( n−K∑
i=1

K∑
l=1

θ(i,i+l)yi,yi+l

))

Cyclic Markov sequence model Now consider the
cyclic version of the above sequence model, where the last
K tokens are connected to the first K (specifically, edges
are added between vn−k and vl, ∀1 ≤ k + l ≤ K), as
illustrated in Figure 9.

This gives the following distribution pncyclK
over Xn:

∀x ∈ Xn, log(pncyclK
(x)) =

n∑
i=1

K∑
l=1

θ(i,i+l)xi,xi+l
−AncyclK

(θ)

(21)

Where:

AncyclK
(θ) = log

( ∑
y∈Xn

exp

( n∑
i=1

K∑
l=1

θ(i,i+l)yi,yi+l

))

And ∀l ∈ [1,K], xn+l = xl, yn+l = yl.

x2x1

x4

x3

x5

x7

x6

x8

Figure 9. Cyclic second order Markov sequence model for n = 8.

A.2. Language modelling

To apply a Markov sequence model to language modelling
we also need to explicitly handle the boundary cases of a
sentence.

Consider a linear-chain Markov sequence model over a
sentence of size M , let T denote the vocabulary of our cor-
pus, and define the bidirectional context of a word as its K
left and right neighbouring tokens. By addingK “padding”
or “separator” tokens 〈S〉 6∈ T to the left and right bound-
ary of the sentence, this notion of context also allows us to
bias the distribution of tokens at the beginning and end of
the sentence.

<S><S> dogThe barked <S>. <S>

M = 4 τ

p4

Figure 10. The full generative model for a sentence.

In terms of the sequence model defined above, a
sentence t ∈ T M will then correspond to a se-
quence x(t) ∈ XM+2K , with X = T ∪ {〈S〉}, such that
x(t)K+M

K+1 = t and x(t)K1 = x(t)M+2K
M+K+1 = 〈S〉K .

This allows us to define the following distribution pM over
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sentences of length M :

∀t ∈ T M , pM (t) = pM+2K
seqK

(
xK+M
K+1 = t∣∣∣∣xK1 = xM+2K

M+K+1 = 〈S〉K
)

(22)

We can then define the following generative process for
sentences (as illustrated in Figure 10):

• Draw the sentence length M from a distribution over
integers τ .

• Draw a sequence of M tokens:
tM = (t1, . . . , tM ) ∼ pM (tM ) .

Under this model, the likelihood of a corpus tc =
(t1, . . . , tnc) is then:

p(tc) =

nc∏
i=1

τ(Mi)p
Mi(ti)

= τ(M1, . . . ,Mnc)

nc∏
i=1

pMi(ti)

Since the maximum likelihood parameters of τ can easily

be estimated, we focus on the second part
nc∏
i=1

pMi(ti) in

the rest of the proof.

A.3. Proving the Lemma

Now we consider the lemma of interest relating the linear-
chain Markov sequence model to the cyclic model. We re-
state the lemma here:

Lemma. Let S = {x(tc)|tc ∈ T M1 × . . .× T Mnc}.
Then,

nc∏
i=1

pMi(ti) =
pNcyclK

(x = x(t))

pNcyclK
(x ∈ S)

.

Our proof first shows how to chain together sentences in
a corpus, and then applies the cyclic Markov sequence
model.

Concatenating sentences Consider a corpus of c sen-
tences x(tc) = (t1, . . . , tnc) (of lengths (M1, . . . ,Mc))
independently drawn from the above model. As above,
we can use a mapping x of t to XN+K , where:
N = K +M1 + . . .+K +Mnc , by adding 〈S〉 tokens at
the beginning and end of the corpus and between adjacent

sentences:

x(t1, . . . , tnc) = (23)(
〈S〉, . . . , 〈S〉︸ ︷︷ ︸

×K

, t11, . . . , t
1
M1
, 〈S〉, . . . , 〈S〉︸ ︷︷ ︸

×K

, t21,

. . . , tcMc
, 〈S〉, . . . , 〈S〉︸ ︷︷ ︸

×K

)

Let us first consider the base case where c = 2. From
Equations 20 and 22, we get that:

∀j ∈ {1, 2} pMj (tj) ∝ pMj+2K
seqK (x(tj))

∝ exp(

Mj+K∑
i=1

K∑
l=1

θlx(tj)i,x(tj)i+l
)

t1 t2 <S> <S> s1 s2 <S><S> <S> <S>

t1 t2 <S> <S><S> <S>

<S> <S> s1 s2 <S> <S>

Figure 11. Concatenating sentences t1 and t2

Additionally, we have by construction:

∀l ∈ [1,K], x(t1)M1+K+l = x(t2)l

= x(t1, t2)M1+K+l

= 〈S〉

Hence:

M1+M2+2K∑
i=1

∑
l=1K

θlx(t1,t2)i,x(t1,t2)i+l =

M1+K∑
i=1

∑
l=1K

θlx(t1)i,x(t1)i+l

+

M2+K∑
j=1

∑
l=1K

θlx(t2)j ,x(t2)j+l
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In other words:

pM1(t1)pM2(t2) ∝ exp(

M1+K∑
i=1

K∑
l=1

θlx(t1)i,x(t1)i+l)

× exp(

M2+K∑
i=1

K∑
l=1

θlx(t2)i,x(t2)i+l)

∝ exp(

M1+M2+2K∑
i=1

∑
l=1K

θlx(t1,t2)i,x(t1,t2)i+l)

∝ pM1+M2+3K
seqK

(x = x(t1, t2))

By induction, we get that:

nc∏
i=1

pMi(ti) ∝ pN+K
seqK

(x = x(t))

Now, let SN = {x(t)|t ∈ T M1 × . . .× T Mc}. Since the
text model is defined for x ∈ SN , by normalization, it then
follows that:

nc∏
i=1

pMi(ti) =
pN+K

seqK
(x = x(t))

pN+K
seqK (x ∈ SN )

= pN+K
seqK

(x = x(t)|x ∈ SN ) (24)

Using a cyclic model Finally, ∀x ∈ SN , we have that
∀l ∈ [1,K], xl = xN+l = 〈S〉. According to Equations 20
and 21, this means that:

∀x ∈ SN , pN+K
seqK

(x) ∝ pNcyclK
(x)

Hence:
nc∏
i=1

pMi(ti) ∝ pNcyclK
(x)

Which by normalization gives us:

nc∏
i=1

pMi(ti) =
pNcyclK

(x = x(t))

pNcyclK
(x ∈ SN )

= pNcyclK
(x = x(t)|x ∈ SN ) (25)

Which proves the lemma.

B. Implementation Details
Synthetic data generation The synthetic data used to
obtain the results presented in Figure 5 consists of a se-
quence of 12 tokens sampled uniformly at random from
T = {a,b,c,d}. For K = 2 this gives a sequence of the
form:

〈S〉 〈S〉 a b c d b a b d c b a c 〈S〉 〈S〉

Language modelling experiments In our implementa-
tion of the inner loop of the algorithm (Algorithm 1 of the
main paper), we use LBFGS to find the optimal value of
δ. However, as mentioned in Section 4, the inner loop does
not need to be run to optimality to find an ascent direction.

The LBL model in Figure 6 was trained using SGD on
minibatches of size 64. The learning rate was initialized
at 0.1, and halved any time the error validation went up.

The second model presented in Table 1 (MRF SGD) was
trained by running SGD on the model pseudo-likelihood,
with minibatches of size 100. The learning rate was initial-

ized at 0.025 and decayed as
1

t0.4
.

Sequence tagger features For part-of-speech tagging
experiments we make use of two feature functions
g(ti, ti+l) and f(ti, wi+m). The tag-tag function g simply
consists of indicator features for all possible pairs of tags.
The feature function f(ti, wi+m) conjoins an indicator of
the tag ti with surface-form features including:

• An indicator for the word wi+m itself.

• Prefixes and suffixes of wi+m up to length 4.

When m = 0, i.e. the potential with the tag directly above
a word, the tag is further conjoined with a standard set of
morphology features including:

• Is wi completely upper case?

• Is the first letter of wi upper case?

• Does wi end with ‘s’?

• Is the first letter of wi upper case and it ends with ‘s’?

• Is wi completely upper-case and it end with ‘S’?

• Does wi contain a digit?

• Is wi all digits?

• Does wi contain a hyphen?


