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Abstract

We present the Vegetation Photosynthesis and Respiration Model (VPRM), a satellite-

based assimilation scheme that estimates hourly values of Net Ecosystem Exchange of 

CO2 (NEE) for 12 North American biomes using the Enhanced Vegetation Index (EVI) 

and Land Surface Water Index (LSWI), derived from reflectance data of the Moderate 

Resolution Imaging Spectroradiometer (MODIS), plus high resolution data for sunlight 

and air temperature. The motivation is to provide reliable, fine-grained first-guess fields 

of surface CO2 fluxes for application in inverse models at continental and smaller scales. 

An extremely simple mathematical structure, with minimal numbers of parameters, 

facilitates optimization using in situ data, with finesse provided by maximal infusion of 

observed NEE and environmental data from networks of eddy covariance towers across 

North America (AmeriFlux, Fluxnet Canada). Cross validation showed that the VPRM 

has strong prediction ability for hourly to monthly time scales for sites with similar 

vegetation. The VPRM also provides consistent partitioning of NEE into Gross 

Ecosystem Exchange (GEE, the light dependent part of NEE) and ecosystem Respiration 

(R, the light independent part), half-saturation irradiance of ecosystem photosynthesis, 

and annual sum of NEE at all eddy flux sites for which it is optimized. The capability to 

provide reliable patterns of surface flux for fine scale inversions is presently limited by 

the number of vegetation classes for which NEE can be constrained by the current 

network of eddy flux sites, and by the accuracy of MODIS data and data for sunlight.

2



1. Introduction

A primary  goal  of  studying  the  terrestrial  carbon  cycle  is  to  determine  the 

magnitude of Net Ecosystem Exchange (NEE) of carbon dioxide between the terrestrial 

biosphere and the atmosphere, and to understand the main drivers for hourly, seasonal 

and inter-annual variations of NEE [Wofsy and Harriss, 2002]. Particular interest attaches 

to time-resolved measurements of fluxes on regional and continental scales, too small to 

be reliably resolved by global inverse models, but too large for direct measurement. 

Inverse  (“top-down”)  analyses  of  CO2 budgets  on  regional  scales  utilize 

measurements of atmospheric CO2 concentrations on towers and by aircraft within the 

regions where sources and sinks are most active [Tans,  1980; Fung,  1993; Tans et al.,  

1993; Bakwin  et  al., 1998;  Lin  et  al.,  2004; Gerbig  et  al.,  2005].  These  data  are 

influenced by small scale, near field fluxes as well as by continental and global sources 

and sinks, and the analysis therefore requires fine scale spatial and temporal resolution 

for both transport fields and for distributions of surface fluxes [Gerbig et al. 2003 a-b;  

Baket et al., 2006]. Fluxes must be resolved on timescales including hourly, seasonal and 

annual, and on spatial scales as small  as 1-10 km, a difficult  challenge because NEE 

represents the difference between uptake (photosynthesis) and loss (respiration) processes 

that vary on a wide range of timescales [Goulden et al., 1996; Katul et al., 2001].

Since  the  inception  of  inverse  modeling  of  CO2,  it  has  been  recognized  that 

surface flux sub-models must accurately represent relevant spatio-temporal variations of 

NEE [Fung et al, 1987; Ruimy et al., 1995; Sellers et al, 1996; Goetz and Prince 1999; 

Xiao et  al., 2002;  2004a-b].  A priori  surface  flux  models  must  have a  low order  of 
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parameterization, so that the optimization process is well  constrained [Denning et al., 

1995; Lin et al., 2004], while retaining the required fine spatial and temporal resolution. 

The present paper addresses the need to reliably represent surface fluxes at fine 

time/space  scales  with  minimal  parameters,  into  which  we  infuse  the  maximum 

information from observations.

 We use remotely sensed data to define vegetation properties with t fine spatial 

resolution. Unfortunately temporal resolution is poor and direct information on NEE is 

lacking. We use measurements of NEE from eddy flux towers [Baldocchi et al., 2001] for 

direct flux data at high temporal resolution, capturing ecosystem functional responses to 

the environment at sites in North, Central, and South America, but, unfortunately, only 

small spatial scales (1 km2). 

The  Vegetation  Photosynthesis  Respiration  Model  (VPRM)  presented  here 

assimilates remote sensing, meteorological, and tower flux data for a large number of 

sites  in  order  to  represent  surface  fluxes  with  the  highest  possible  fidelity.  Model 

structure is made very simple to facilitate subsequent inverse analysis. 

Formulation of the VPRM starts from the Vegetation Photosynthesis Model (VPM) of 

Xiao et al. [2004a-b], which estimates Gross Ecosystem Exchange (GEE) using satellite-

based vegetation indices and environmental data, adding respiration (R) to provide NEE 

and a nonlinear function to account for the response of GEE to light.  The Enhanced 

Vegetation  Index  (EVI)  [Huete  et  al., 1997,  2002]  estimates  of  the  Fraction  of 

Photosynthetically Active Radiation (PAR) absorbed by photosynthetically active parts of 

the  vegetation  (FAPARPAV)  [Xiao et  al.,  2004a-b],  and  the  Land  Surface  Water  Index 

(LSWI) helps capture the effects of water stress and leaf phenology [Xiao et al. [2004a-b], 

especially for vegetation that becomes dormant in summer (e.g. grasslands). 
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The VPRM shares many features of earlier models for surface CO2 fluxes (e.g., 

NASA-CASA [Potter et al., 1993, 1999], SiB2 [Sellers et al., 1996], and TURC [Lafont 

et al., 2002]) developed for, and most appropriate to, global-scale inverse analysis, but it 

returns  to  the simpler  functional  representation introduced by  Fung et  al. [1987].  As 

summarized schematically in Fig. 1, the VPRM systematically incorporates data from 

eddy flux towers, spanning dominant vegetation types over North America, plus MODIS 

data and high-resolution meteorological fields, to provide a much finer representation of 

surface fluxes than in previous simple models.  VPRM NEE fields are thus optimally 

consistent with eddy flux data, and t

he model is readily exported to potential users and optimized using atmospheric 

data.  Inversion of  the VPRM is intended to  enable it  to  capture seasonal and spatial 

variations of NEE not explicitly represented a priori.

2. Model Framework

Monteith [1972]  showed  that  ecosystem  production  correlates  with  the  fraction  of 

Absorbed Photosynthetically Active Radiation (FAPAR).  FAPAR is often estimated as a 

linear  or  nonlinear  function  of  the  Normalized  Difference  Vegetation  Index  (NDVI) 

[Prince and Goward, 1995; Running et al., 2000], the normalized ratio between satellite-

derived reflectance in the red (ρred) and near infrared (ρnir) bands [Tucker, 1979], 

nir red

nir red

NDVI
 
 


  ,                                                                                                           (1)
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 using NDVI from the Advanced Very High Resolution Radiometer (AVHRR) to compute 

rates of terrestrial photosynthesis [e.g. Fung et al., 1987; Potter et al., 1993]. 

Recent studies [Xiao, et. al., 2004a-b & 2005] showed that MODIS EVI [Huete et  

al., 1997 & 2002] is more closely correlated with photosynthesis [Xiao et al., 2004a-b] 

across a larger range of leaf area index, and more closely follows phenology:

EVI=G×
 ρnir− ρred 

ρnirC1× ρred−C2× ρblue +L
                                                                      (2)

where  G=2.5,  C1=6,  C2=7.5,  and  L=1.  Inclusion  of  the  blue  band  helps  account  for 

atmospheric contamination, and L helps compensate for soil background reflectance. 

The VPRM also utilizes the LSWI [Xiao et al., 2004a-b] to help capture effects of water 

stress and phenology on plant photosynthesis: 

nir swir

nir swir

LSWI
 
 


                                                                                                        (3)

where NIR refers to the 841-876 nm band and SWIR to 1628-1652 nm). 

2.1 Gross Ecosystem Exchange

 We divide NEE into a light-dependent term, Gross Ecosystem Exchange (GEE), 

and a light-independent part, ecosystem respiration (R), where NEE = – GEE

 + R, following the sign convention that uptake of CO2 by plants is a negative flux 

(removal from the atmosphere). GEE is represented by: 

GEE=ε×
1

1 +PAR/PAR0 
×PAR×FAPARPAV                                                              (4)

6



where FAPARPAV is the fraction of Photosynthetically Active Radiation (PAR, µmol m-2 s-1) 

absorbed by the photosynthetically active portion of the vegetation (PAV), PAR0 is the half 

saturation value,  and ε is the light use efficiency (µmol CO2 /  µmol PPFD) at low light 

levels. We decompose ε into the product of the maximum quantum yield, ε0, and factors 

ranging between 0 and 1 that reduce light use efficiency, 

ε = ε0 × Tscale× Wscale× Pscale                                                                                    (5)

On average ε0 has a value around 1/6 for well-watered, C3 plants at optimal temperatures.

The  parameter  Tscale in  Eq.  (5)  represents  the  temperature  sensitivity  of 

photosynthesis, calculated  at  each  time  step  using  the  equation  developed  for  the 

Terrestrial Ecosystem Model [Raich et al., 1991]:

min max
2

min max

( )( )

[( )( ) ( ) ]scale
opt

T T T T
T

T T T T T T

 
    ,.                                                                         (6)

where  Tmin,  Tmax,  and  Topt are  minimum, maximum and optimal  temperatures  (0C) for 

photosynthesis,  respectively  [Aber  &  Federer,  1992;  Raich  et  al., 1991].  If  air 

temperature falls below Tmin, Tscale is set to be zero [Xiao et al., 2004a-b]. 

Since temperature and PAR are correlated on a daily basis, inclusion of Tscale in Eq. 

5 modifies values of PAR0 inferred from tower flux data. Moreover, were the parameters 

in Eq. 6 to be fit to eddy flux data along with PAR0, parameter values would be unstable; 

therefore Tmin, Tmax, and Topt were fixed at literature values. The role of Tscale  in the VPRM 

is explored in a sensitivity analysis below. 

The function Pscale accounts for effects of leaf age on canopy photosynthesis, using 

EVI and LSWI to identify the green-up (leaf expansion) and senescence phases [Xiao et  

al., 2002, 2004a; Boles et al., 2004]. For evergreen classes, Pscale is assumed to be 1 for 
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the whole year. For deciduous vegetation  and grasslands, we computed Pscale as a linear 

function of LSWI from bud burst to leaf full expansion (“phase 1”) by:

1

2scale

LSWI
P

                                                                                                                  (7)

After leaf full expansion (phase two) Pscale  was set to 1, and Eq. (7) was adopted again 

during senescence (phase 3). The dates for the three phases of phenology (bud burst, full 

canopy, senescence) were obtained using an EVI seasonal threshold similar to that of the 

MODIS  phenology  product  MOD12Q2   [Friedl  et  al.,  2003].  Thus,  for  large-scale 

application of the VPRM across North America, MOD12Q2 dates can be used directly.

The effect of water stress on GEE is a complex function of soil moisture and VPD 

[e.g. Field et al., 1995; Running et al., 2000]. These are not available for the VPRM, 

since they cannot be derived directly from weather or remote sensing data 

[Pathmathevan et al., 2003].  

Following Xiao et al., [2004a], we set

max

1

1scale

LSWI
W

LSWI


                                                                                                            (8)

where LSWImax is the maximum LSWI within the plant growing season for each site (or 

pixel). LSWI has been shown to capture drought-induced changes in plant canopies for 

ecosystems  that  senesce  during  dry  periods,  such  as  grasslands,  but  not  for  other 

vegetation. Hence effects of water stress are a principal source of variance to be captured 

in an inverse analysis via adjustments to the VPRM parameters.

The complete expression for GEE in the VPRM is thus given by:

                         (10)
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Here λPAR replaces ε0, in order to aggregate into one parameter empirical adjustments to 

Pscale, Tscale, and Wscale; λPAR and PAR0 are the only adjustable parameters for description of 

the light-dependent part of NEE, with values derived below from tower flux data.

PAR is measured at  all  flux tower sites, but not across the continent.  At large 

scales, the VPRM will be driven using shortwave (SW) radiation, available for almost all 

of North America from Geostationary Operational Environmental Satellite (GOES) data 

[e.g. Diak et al., 2004] and from assimilated meteorological products. SW is very closely 

correlated with PAR, SW ≅ 0.505 × PAR (units: SW, Watts/m2; PAR, µmolm-2s-1). 

2.2 Ecosystem Respiration

Plant and soil respiration rates generally increase as temperatures rise [Grace and 

Rayment, 2000; Piovesan and Adams, 2000], and we therefore represented R as:

R=α×T+β .                                                                                                            (11) W e 

set T=Tlow in Eq. (11) when T ≤ Tlow, to account for the persistence of soil respiration in 

winter, when air temperatures are very cold but soils remain warm. Values for α, β, and 

Tlow were derived from tower flux data for each vegetation type (Table 2).

2.2.3 Net Ecosystem Exchange

The full VPRM model equation is:

           (12)

There are four basic parameters per vegetation type,  λPAR,  PAR0,  α and β, which can be 

adjusted in an inverse model application to provide an accurate representation for the 

distribution NEE in space and time across North America, with a priori estimates from 

9
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flux towers data. We assess transferability across the landscape by examining data from 

sites not used in deriving the prior estimates (“validation sites”). 

3. Study sites and data 

3.1 Vegetation and tower flux data 

Tower measurements of NEE and water fluxes are  made at  numerous sites in 

North America and worldwide [Baldocchi et al., 2001]. We assembled a large subset of 

these data to calibrate and test VPRM surface fluxes, classified by vegetation type based 

on  the  1-km  International  Geosphere  Biosphere  Programme  (IGBP)  classification 

[Belward et al., 1999]. 

Since tower flux data are not available for each of the 17 IGBP vegetation classes, 

we grouped North American ecosystems into 9 major classes

 for which eddy flux data are available are: evergreen forests, deciduous forest, mixed 

forest, shrubland (including open and closed shrubland), savannas (savannas and woody 

savannas), cropland, grassland (grassland, cropland/natural vegetation mosaic, and barren 

or sparsely vegetated), permanent wetlands, and others (especially the water bodies). 

Two  of  these  9  large  classes  needed  to  be  subdivided  to  account  for  major 

biophysical  differences  within  them.  The  IGBP class  “evergreen  needleleaf  forests” 

(~6.751%  of  land  area)  is  broadly  distributed,  from  boreal  boggy  black  spruce  to 

1
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subtropical slash pine. We combined this class with “evergreen broadleaf forests”, which 

have negligible occurrence in North America (~0.5%), and then subdivided into 4 classes 

(boreal  (e.g.,  black  spruce),  wet  temperate/montane  (e.g.,  Douglas  fir,  western  white 

pine), dry temperate (e.g.,  ponderosa pine) and subtropical (e.g., slash pine, with strong 

summertime droughts)) by climate zone, using Holdridge Life Zone data [Leemans and 

Cramer, 1991]. Similarly, “cropland” was divided into soy and corn (to be expanded to 

include  wheat  when data  become available).  Fortunately, suitable  eddy flux  data  are 

available for these subdivisions.

We designated 11 tower sites to calibrate the four parameters for each vegetation 

class (except water, snow and ice, where fluxes are assumed zero), and identified 11 other 

sites for testing (“validation”) as listed in Table 1. More details and data of the 22 test 

sites  can  be  obtained  from  network  websites,  (http://public.ornl.gov/ameriflux/)  and 

(http://www.fluxnet-canada.ca/), and from the original references in Table 1.

The calibration sites  for  evergreen forests  are  the Northern Old Black Spruce 

(NOBS/BOREAS) site in Manitoba (boreal fores), Niwot Ridge in Colorado (subalpine 

coniferous  forest)  and  Metolius  Forest  in  Oregon (ponderosa  pine) for  Wet  and  Dry 

Temperate Evergreen, respectively, and Donaldson (Florida Slash pine) for Subtropical 

Dry Evergreen forest. We would like additional evergreen classes for cool non-montane 

pines (e.g white pine) and for hemlock, but flux data are unavailable. 

Harvard Forest was the calibration site for deciduous broadleaf forests (~1.976%), 

which also included IGBP class “deciduous needleleaf forests” (e.g. larch) that do not 

occur extensively in North America. IGBP mixed forest (~7.29%) was calibrated using 

1
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Howland, (Maine). IGBP closed (~0.54%) and open shrubland (~8.6%) were combined 

into “Shrubland”, and calibrated using Lucky Hills. IGBP woody savannas (~1.3%) and 

savannas (~0.14%) were combined (“Savannas”) and calibrated using Tonzi Ranch. 

The IGBP class of croplands (~3.77%) was adopted as-is, and calibrated using 

data from Mead-S2 (Nebraska) for both irrigated maize and soybeans, planted in rotation.

IGBP  “grasslands”  (~3.3%),  “crop/natural  vegetation  mosaic”  (~3.9%)  and 

“barren or sparsely vegetated lands” (~1.8%) were combined into VPRM “Grasslands” 

and  calibrated  at  the  Vaira  range  site.  This  class  may  be  affected  by  significant 

representation errors when the grassland calibration is applied to crop/natural mosaics, 

which in the northern tier are often dairy farms interspersed with woodlands. But there 

are no data to allow subdivision of these categories. The IGBP “permanent wetlands” 

(~0.7%) was calibrated at the Eastern Peatland site in Canada. IGBP classes for water 

bodies (~59%), urban and built-up (~0.18%) and snow and ice (~0.27%) were combined 

into our last class, for which vegetation-derived fluxes are assigned as zeros.

Tower data sets provide several versions of NEE: with and without filtering by 

turbulent intensity (u*), and with or without gap filling. Some sites also provide GEE and 

R, separated using various approaches. To avoid possible biases and inconsistencies from 

filling  or  separating  GEE and  R,  VPRM parameters  were  optimized  against  unfilled 

tower NEE, with a u*-filter applied to eliminate unrepresentative observations. 

The current VPRM is intended to cover vegetation from 11N to 65N and 50W to 

145W, including the continental United States, Mexico, and most of Canada. For large-

scale applications, the 1–km IGBP vegetation data was classified into these types and re-

gridded to 10 x 10 km, or 1/4o x 1/6o, retaining information on the fractional coverage for 

each vegetation type. These data are provided to the public with the VPRM distribution.

1
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3.2Satellite data 

We analyzed multi-year satellite images from the MODIS sensor aboard the Terra 

satellite  (2000-2003/04),  crossing the  equator  at  10:30 a.m.  MODIS views the entire 

surface of the Earth every 1 — 2  days measuring 36 spectral bands at 250 or 500 m 

resolution between 0.405 and 14.385 µm. 

We acquired 8-day mean MODIS surface reflectances (MOD09A1) for our calibration 

and  validation  sites  from  the  Oak  Ridge  Distributed  Active  Archive  Center 

(http://www.modis.ornl.gov/modis/index.cfm), which provides time series data for most 

flux towers in ASCII format. We had to process MODIS subsets directly (Hierarchical 

Data  Format  (HDF);  http://landval.gsfc.nasa.gov)  for  sites  where  the  MODIS  ASCII 

subsets were unavailable (e.g., Lucky-Hill).

The MOD09A1 products give data for 9 MODIS pixels covering 1.5 km  × 1.5 

km, centered on each flux tower.  We averaged the 8-day mean surface reflectance data 

for red (620-670  nm), NIR (841-876  nm),  blue (459-479  nm), and SWIR (1628 -1652 

nm)  to  calculate  EVI  and  LSWI,  then  applied  a  low-order  smoothing  algorithm 

(“lowess”, Locally-weighted least squares) [Cleveland, 1981] to the time series for each 

to reduce noise associated with imperfect atmospheric corrections in MOD09A1 data. 

4. Results

We optimized model parameters (λ, PAR0, α, and β; Table 2) via non-linear least 

squares (Newton-Raphson, tangent linear approximation), and estimated confidence 

intervals assuming Gaussian errors for both model and tower data. For each calibration 
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site, we generated hourly data from the smoothed time series of vegetation indices (EVI, 

LSWI), and obtained measurements of air temperature and PAR from the tower sites.

Examples of observed and modeled NEE are shown in Fig. 2a. The VPRM 

provides consistent partitioning of tower NEE data into light-dependent and light-

independent parts for all calibration sites, and it thus provides an independent tool for 

filling missing data (see Fig. 2a). (Note that Tscale is assumed to define the temperature 

dependence of photosynthesis.) VPRM has the advantage of incorporating satellite data 

into the process, and it can be applied to any tower site. It yields consistent, independent 

estimates of annual net exchange for all sites where the optimization procedure is run. 

When  driven  by  high-resolution  data  sets,  the  VPRM  equations  are  able  to 

reproduce one to four years of data with remarkable fidelity, including both diurnal cycles 

(Fig. 2b) and aggregation to monthly time scales (Fig. 3), despite their ultra-simple doem. 

Inputs of accurate solar irradiance and temperatures allow the VPRM to closely track 

hourly variations; inputs from remote sensing data enable the VPRM to also track the 

seasonal course of NEE. The model even captures a significant amount of inter-annual 

variability, driven by variations in T, PAR, and EVI, (Fig. 2a, right panels).

Values of  λ for forests and crops range from 0.17 to 0.27  (Table 2), consistent 

with the expectation that optimum light use efficiency at low light should be ~1:6 for a 

dense vegetation canopy. Values are lower for semi-arid grasslands and shrublands, again 

as expected.  Values of  r2 range from 0.6 to  0.9  for  calibration sites;  correlations  are 

almost as good at many validations sites. Note the high value of PAR0 (Table. 2) for corn, 

suggesting  a  high  LUE [Gower  et  al., 1999].  PAR0 values  in  Table  2  are  higher  at 

cropland xeric sites than would be found in conventional analysis of a light curve, where 

NEE is fit to a hyperbolic function of PAR. Midday summer temperatures often exceed 

1
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Topt,  and  hence  the  VPRM  infers  high  R  and  low  GEE,  attributing  the  decrease  in 

photosynthetic efficiency to excessive heat rather than to light saturation. 

The upper panels in 

4.1

Figure 3 show the relationship between the seasonal dynamics of  NEE and the 

VPRM photosynthesis factors. As expected, croplands and grasslands respond strongly to 

phenology (Pscale) and the amount of photosynthetically active vegetation (EVI). Likewise, 

variations in Pscale and EVI, as well as light (PAR), strongly modulate the uptake of CO2 at 

deciduous and mixed sites (Harvard, Howland), whereas the temperature dependence of 

photosynthesis  (Tscale)  is  the  primary  factor  limiting  uptake  of  CO2 by  well-watered 

evergreen  forests  (NOBS,  Metolius/Oregon,  Niwot).  Intra-seasonal  trends  sometimes 

captured by water stress and changes in EVI. 

There are a few surprises. Harvard and Howland forests both include significant 

evergreen conifers, as typical for “deciduous” and “mixed” forests, and Tscale is thus also 

critically important in limiting uptake at these sites in winter. Donaldson is warm and 

evergreen, but in winter it is not actually very green at all, and the very low values of EVI 

limit uptake. The notably poor fit at Donaldson in summer may be particular to the 2001-

2002 interval used for calibration; this was the end of a severe, extended drought and 

remotely sensed indices might not have captured the associated aftereffects. 

Other discrepancies appear to be associated with the inability of remotely-sensed 

data to detect water stress and/or conductance limitations during summer at sites with 

strong coniferous representation (Donaldson, Metolius, Howland). Thus the VPRM over-

predicts uptake at these sites in mid- and late-summer, when photosynthesis rates decline 

1
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steeply  but  EVI  and  LSWI  change  only  modestly.  At  some  sites  the  model  does  a 

surprisingly good job in capturing declines in net uptake due to increased respiration in 

mid- and late summer, for example, NOBS/BOREAS [Dunn et al, 2006].

The shrubland site (Lucky-Hill) had the worst fit. Carbon dioxide exchanges at 

this site derive from both organic and inorganic pools [Emmerich, 2003]. Separation of 

the carbon fluxes from these two pools is beyond the scope of a model like the VPRM. 

4.2

We carried out VPRM simulations for 11 different validation sites (SOBS, B1850, 

EOBS, DUKE-PP, INDIANA, DUKE-HW, WCREEK, LCREEK, WLEF, BOND, and 

ANLGRASS)  using  derived  model  parameters  from  calibration  sites  in  the  same 

vegetation classes, without any adjustment. SOBS, B1850 and EOBS were classified as 

old-growth  evergreen  boreal  forests  and  model  parameters  were  taken  from  NOBS. 

DUKE-PP was classified as evergreen dry temperate forest and model parameters were 

taken from Metolius. INDIANA and DUKE-HW were classified as deciduous forest and 

model  parameters  were  taken from Harvard Forest.  WCREEK, LCREEK and WLEF 

were classified as mixed forest and model parameters were taken from Howland Forest. 

Soy and corn at BOND and ANLGRASS were validated using Mead-S2 soy and corn and 

VAIRA  model  parameters,  respectively.  We  were  not  able  to  test  the  VPRM 

independently for other vegetation classes due to lack of tower data.

Most validation simulations were very successful. Figure 4 shows that the diurnal 

variation of NEE was slightly underestimated at B1850, DUKE-HW and ANLGRASS 

and  slightly  overestimated  at  BOND-soy  and  LCREEK.  ANLGRASS  nighttime 
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respiration was notably underestimated. Figure 5 shows the seasonal variation of NEE at 

validation sites, and associated VPRM functions, as in Fig. 3. Seasonal peaks of NEE 

were slightly overestimated at DUKE-PP, INDIANA, ANLGRASS, and BOND-SOY. 

Overall,  when model  parameters  from calibrated sites  were  applied  to  similar 

ecosystems for validation (Table 3), r2 values were almost as high as at calibration sites, 

demonstrating strong predictive ability for sites with similar vegetation. WLEF was an 

outlier.  Several  studies  have noted [Desai  et  al., 2006;  Wang et  al.,  2006]  the sharp 

differences between WLEF fluxes versus WCREEK and LCREEK, which lie in very 

similar vegetation. Mackay et al. [2002] compared WLEF stand types to IGBP classes 

and  suggested  that  4  distinct  stand  types  are  needed  to  characterize  the  region’s 

evapotranspiration fluxes. Possibly the great tower height affects resolution of surface 

fluxes, extends the area influencing the tower, or introduces measurement artifacts. 

The VPRM provides excellent prediction of monthly NEE for most calibration 

and validation sites (Figure 6), excluding WLEF. Since the optimization exclusively used 

hourly data, the excellent agreement between VPRM and observations at the monthly 

time scale (Table 3), representing aggregation by factor ~600 in time, indicates successful 

elimination  of  bias  in  the  nonlinear  optimized  functions.  Only  one  calibration  site 

(Donaldson/slash pine) and two of the validation sites (ANL-grassland, Duke Ponderosa 

pine) fail to scale up in time. These are the sites are likely affected by water stress, which 

we already noted may not be accurately captured in the VPRM. 

The  VPRM  validations  did  not  capture  the  seasonal  cycle  as  well  at  boreal 

evergreen forests (SOBS, B1850 and EOBS; see Table 3) as at other sites. These biomes 

exhibit an especially strong strong seasonal cycle of ecosystem respiration, controlled by 

subsurface  processes  such  as  slow thawing  and  draining  of  snowmelt-saturated  soils 
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[Dunn et al., 2006] that are not remotely sensible. Thus the VPRM cannot distinguish the 

late summer trends at these sites from the trend fit to the NOBS data.

We  quantified  the  role  of  satellite  vegetation  indices  and  of  the  temperature 

function for photosynthesis (Tscale) using a series of reduced models. Each was optimized 

independently using NEE data for Harvard and NOBS, then compared to the VPRM: 

NEE model−2=−λ'
×T scale×

1

1 +PAR /PAR0
'

×EVI×PAR+α'

×T+β '
      (13)

NEE model−1=−λ ''
×T scale×

1

1 +PAR/PAR0
''

×PAR+α ''

×T+β''
               (14)

NEE model-0=−λ'''
×

1

1 +PAR/PAR0
'''

×PAR+α'''

×T+β '''
                        (15)

Model-2 deletes the water and phenology scaling factors using LSWI, Model-1 deletes all 

satellite information (LSWI and EVI), and Model-0 deletes these and also drops Tscale.

Figure 7 compares GEE from the VPRM to GEE from these reduced models, and 

to GEE partitioned from eddy flux data. At Harvard, the shaping of the uptake curve by 

Pscale plays a role, and inter- and intra-seasonal changes of EVI are very important (Figure 

7a). The role of Tscale is surprisingly significant, as noted above, and omitting Tscale ruins 

the seasonal fit at Harvard.

Data inputs from LSWI and EVI are much less important for representing fluxes 

from boreal evergreens (Figure 7b), as expected. However, inter-annual variations of EVI 

appear significant in capturing inter-annual variations of GEE. At this site also, no good 

fit can be obtained unless Tscale is included to limit photosynthesis in cold weather.
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5. Discussion

This  paper  develops  and  validates  the  VPRM,  a  satellite-based  vegetation 

photosynthesis and respiration model intended to provide NEE over North America with 

fine  temporal  and  spatial  resolution.  The  model  has  very  simple  structure  and  few 

adjustable parameters. It was tested using observations from all across the AmeriFlux and 

Fluxnet-Canada networks. When combined with maps of vegetation type, meteorological 

data for temperature, and satellite-derived shortwave radiation, it provides an excellent a 

priori representation  of  surface  CO2 fluxes,  with  hourly  time  resolution  and  spatial 

resolution equal to that of the vegetation data ( 1-km for the IGBP). 

The are many process-based biogeochemical models (e.g., SiB2 or Biome-BGC) 

that simulate the storage and fluxes of water, carbon, and nitrogen by vegetation, litter 

and soil. They can provide estimates of net primary production (NPP) or gross primary 

production  (GPP),  and  in  some  cases,  NEE,  with  hourly  resolution.  However,  these 

models  require  complex  parameter  specification.  For  example,  47  parameters  were 

spatially interpolated for regional simulations of SiB2 [Denning et al., 2001] . In many 

cases, model parameters need frequent recalibration within short time periods, and the 

models may incur significant computational effort. 

The data-driven approach of  the VPRM is capable of reproducing spatial  and 

temporal variations of NEE using simple equations plus a compact database derived from 

MODIS. There are only 4 parameters per vegetation type that persist for the whole annual 

cycle, with spatial and temporal variations rendered by high-resolution meteorological 

and remote sensing data.

Statistical  uncertainties  in  the  VPRM are  given  in  Tables  2  and  3.  Important 

additional systematic errors arise in part from the 
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model structure. The lack of a soil moisture component and inability to remotely sense 

water stress are discussed above. 

Errors also arise due to limited resolution in the vegetation classification. Calibration and 

validation sites do not have identical vegetation assemblages, and the landscape includes 

assemblages not represented at all in present networks (e.g. northern white pine forests, 

loblolly  pine  plantations).  Differences  in  vegetation  functional  responses  are  also 

associated with climate, soil properties and soil moisture, canopy structure, and tree ages 

and distribution, none of which can currently be resolved using tower site data. Related 

errors arise from misclassification by the IGBP. 

Noise in MODIS data also introduce significant errors in EVI and LSWI, and the 

noisy time series of MODIS data lead to errors in phenology. Notably large errors in 

model NEE accrue due to deficiencies in the driver data (sunlight, temperature), affecting 

CO2 flux predictions from all surface flux models. Detailed studies of errors in driver data 

will be described in a subsequent paper. 

6. Conclusions 
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The VPRM assimilates large amounts of data from remote sensing, meteorology, 

and flux towers, and compresses the acquired knowledge into just four parameters in each 

vegetation class. Vegetation indices (EVI, LSWI) from the MODIS sensor, representation 

of the temperature dependence of photosynthesis, and accurate driver data are all required 

to  describe  the  hourly  and  seasonal  dynamics  of  NEE  across  the  landscape.  When 

coupled to accurate data sets for these factors, the VPRM partitions NEE into GEE (light-

dependent)  and  R  (light  independent)  without  complex  algorithms,  sub-models,  or 

arbitrary assumptions, and the 4 parameters of the VPRM have strong predictive ability 

for NEE from hourly to monthly timescales. 

The selected calibration and validation sites provide a minimal representation of 

the vegetation of North America. At present, over 200 eddy flux tower sites make up a 

global FLUXNET network (http://www.daac.ornl.gov/FLUXNET). Data for  CO2,  H2O 

and energy flux for numerous ecosystem types have been accumulated; but availability of 

quality-assured data has not kept pace. Once multi-year data from more eddy flux tower 

sites  are  available,  the  VPRM can be  refined  and extended across  a  wider  range  of 

ecosystem and climate and soil conditions, and to other continents..

The VPRM can be applied at the scale of North American, providing a detailed 

representation of the spatiotemporal variation of CO2 fluxes across the landscape, with a 

low dimensional parameter space for optimization in an inverse model framework. The 

calibrated model coefficients (λ, PAR0, α and β) represent a priori parameter estimates, to 

be  re-optimized  at  any  local,  regional,  or  continental  scale  in  top-down analyses  of 

carbon fluxes. The model and underlying databases are publicly available at (http://www-

as.harvard.edu/data/).
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Tables:

Table 1. Carbon Flux and MODIS Data from these 22 AmeriFlux and Fluxnet-Canada 

sites used in this study.

2
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Abbreviation Site Data Year LAT(N) LON(W) Country Reference

NOBS NSA Old black Spruce Forest 2000-2003 55.879 98.480 MB, Canada Goulden et al., [1998]; 
Dunn et al., [2006]

NIWOT Niwot Ridge Forest ( NWT1) 2000-2003 40.033 105.546 CO, USA Monson et al., [2002]; 
Yi et al., [2004]

METOLIUS Metolius-intermediate (69Yrs) 
ponderosa pine Forest

2002-2004 44.452 121.557 OR, USA Coops et al., [2005]

DONALDSON Donaldson mid-rotation (12 
Yrs) Slash pine Forest

2001-2002 29.755 82.163 FL, USA Clark et al.,  [1999];
Clark et al.,  [2004];

HARVARD Harvard Forest (main) 2000-2003 42.538 72.171 MA, USA Wofsy et al., [1993]; 
Davidson et al., [2002a]

HOWLAND Howland Forest (main) 2000-2003 45.204 68.740 ME, USA Hollinger et al., [1999]; 
Davidson et al., [2002a-b] 

LUCKY-HILL Walnut-Gulch Lucky Hills 
Shrub lands

2000-2003 31.744 110.052 AZ, USA Emmerich et al., [2003]

TONZI Tonzi Range Savannas 2002-2004 38.432 120.966 CA, USA Xu et al., [2003]; Baldocchi 
et al., [2004]

MEAD-S2 Irrigated maize-soybean 
rotation site (2)

 Soy-2002 
Corn-2003

41.099 96.281 NE, USA Verma et al., [2005]

VAIRA Vaira Range Grassland 2001-2003 38.407 120.951 CA, USA Xu et al., [2004]; Baldocchi 
et al., [2004]

PEATLAND Eastern Peatland, Permanent 
wetland

2002 45.409 75.520 ON, Canada Lafleur et al., [2001]
Lafleur et al., [2003]

ANLGRASS Walnut River Watershed, 
Grassland

2002-2003 37.521 96.855 KS, USA Song et al., [2003; 2006] 
Coulter et al., [2005]

WLEF Park Falls / WLEF 2000-2001 45.946 90.272 WI, USA Davis et al., [2003]; 
Ricciuto et al., [2006]

WCREEK Willow Creek 2000-2004 45.806 90.080 WI, USA Desai et al., [2005]
Cook et al., [2004]

LCREEK Lost Creek 2001-2004 46.083 89.979 WI, USA Desai et al., [2006]
Wang et al., [2006]

SOBS SSA Old black Spruce Forest 2000-2004 53.987 105.118 SK, Canada Turner et. al., [2003];
Griffis et al., [2003]

B1850 NSA 1850 Burn site 2001-2004 55.880 98.480 MB, Canada Goulden et al., [2006]

EOBS Quebec Mature Boreal Forest 2004 49.693 74.342 PQ, Canada Bergeron et al., [2006]

BOND Bondville maize-soy Cropland Soy-2000 
Corn-2001

40.006 88.292 IL, USA Hollinger et al., [2004]
Meyers et al., [2004]

INDIANA Morgan Monroe State Forest 2000-2003 39.323 86.413 IN, USA Schmid et al., [2000]
Su et al., [2004]

DUKE_PP Duke Forest - loblolly pine 2001-2004 35.971 79.093 NC, USA Oren et al., [2006]

DUKE_HW Duke Forest - Hardwoods 2001-2004 35.974 79.100 NC, USA Stoy et al., [2005]
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Site Tmin Topt Tmax Tlow PAR0 λ α β σ-
PAR0

σ-λ σ-α σ-β

HARVARD 0 20 40 5
570 0.127 0.271 0.25 14 0.002 0.006 0.060

HOWLAND 0 20 40 2 629 0.123 0.244 -.24 17 0.002 0.004 0.036
NOBS 0 20 40 1 262 0.234 0.244 0.14 5 0.004 0.002 0.015
NIWOT 0 20 40 1 446 0.128 0.250 0.17 13 0.003 0.003 0.018
METOLIUS 0 20 40 2 1206 0.097 0.295 -.43 39 0.002 0.003 0.028
SOY_MEADS2 5 22 40 2 2051 0.064 0.209 0.20 137 0.002 0.005 0.058
CORN_MEAD 5 22 40 2 11250 0.075 0.173 0.82 1746 0.002 0.006 0.081
TONZI 2 20 40 - 3241 0.057 0.012 0.58 293 0.002 0.002 0.036
VAIRA 2 18 40 - 542 0.213 0.028 0.72 23 0.006 0.002 0.035
DONALDSON 0 20 40 1 790 0.114 0.153 1.56 18 0.002 0.004 0.076
LUCKY-HILLS 2 20 40 - 321 0.122 0.028 0.48 14 0.004 0.001 0.019
PEATLAND 0 20 40 3 558 0.051 0.081 0.24 23 0.002 0.002 0.019

Table 2: Parameters (PAR0 (µmole m-2s-1); λ (µmole CO2 m-2s-1 / µmole PAR m-2s-1); α (µ
mole CO2 m-2s-1 / 0C); β (µmole CO2 m-2s-1) and their variances, and Light use efficiency 
(λ) at calibration sites. 



Table 3:  Correlation coefficients (r2)  for monthly and hourly NEE, and means for all 
seasons  and  for  the  growing  season  hourly  data  (April  to  June  for  VAIRA  and 
ANLGRASS; June to August for all other sites) of tower flux and VPRM calculations at 
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Site Calibration 
Site

r2 §

mon
r2

hrly

Mean NEE-all
(µmole m-2s-1)

Growing seas.:
(µmole m-2s-1)

Obs VPRM Obs VPRM
HARVARD - 4 0.96 0.83 -1.64 -1.70 -7.24 -7.50
HOWLAND - 4 0.33 0.65 -0.59 -0.59 -1.32 -2.61
NOBS - 4 0.83 0.72 -0.54 -0.59 -1.75 -1.96
NIWOT - 4 0.25 0.56 -0.19 -0.19 -0.85 -1.13
METOLIUS - 3 0.55 0.63 -0.99 -0.99 -1.66 -1.31
SOY_MEADS2 - 1 0.61 0.66 0.08 0.05 -2.32 -2.05
CORN_MEADS2 - 1 0.94 0.83 -1.54 -1.58 -8.13 -9.42
TONZI - 3 0.57 0.43 -0.59 -0.59 -1.22 -0.81
VAIRA - 3 0.44 0.55 -0.42 -0.43 -1.33 -2.43
DONALDSON - 2 -1.04 0.82 -1.49 -1.52 -1.15 -2.12
LUCKY-HILLS - 4 0.36 0.46 0.02 0.01 0.31 0.74
PEATLAND - 1 0.50 0.71 -0.04 -0.04 -0.77 -1.06

SOBS NOBS 5 0.81 0.69 -0.88 -1.23 -2.04 -2.83
EOBS NOBS 1 0.88 0.74 -0.51 -0.29 -1.91 -1.70
B1850 NOBS 4 0.84 0.62 -0.66 -0.57 -1.97 -1.69
DUKE_PP METOLIUS 4 -0.43 0.58 -1.01 -2.63 -1.66 -4.89
DUKE_HW HARVARD 4 0.64 0.58 -1.00 0.47 -3.59 -1.80
INDIANA HARVARD 4 0.59 0.65 -0.70 -0.40 -4.35 -4.94
WCREEK HOWLAND 5 0.77 0.77 -0.87 -1.78 -5.36 -7.95
LCREEK HOWLAND 4 0.53 0.66 -0.27 -0.18 -2.12 -2.68
WLEF HOWLAND 2 -11.0 0.46 0.26 -0.37 -0.52 -3.94
SOY_BOND SOY_MEAD 1 0.80 0.72 0.31 0.85 -2.62 -3.02
CORN_BOND CORN_MEAD 1 0.76 0.63 -1.27 -0.53 -7.02 -9.03
ANLGRASS VAIRA 2 -.040 0.57 -0.34 -0.80 -0.52 -1.32



calibration  and  cross  validation  sites.  Only  intersection  data  (available  in  both 
observation and model columns) were used.
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