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–Short and long-term processes Controlling CO2 Exchange at Harvard Forest 

S. Urbanski, C. Barford, J. Munger,  S. Wofsy, C. Kucharik, E. Pyle, J. Budney, D. Fitzjarrald (+ other ASRC) ......

Abstract

To better understand the role of northern, mid-latitude forests in sequestering atmospheric CO2
, we examined 12 years of CO2 exchange observations from a New England mixed deciduous forest, using an ecophysiologically-based statistical model and contrasted the observations with ecosystem model predictions. The goals of this study are to: (1) quantify the mean ecosystem fast-response to controlling climate variables (temperature, sunlight, soil moisture), and (2) identify the mechanisms responsible for seasonal to annual time-scale anomalies of ecosystem carbon exchange from the decadal mean climate response. We quantitatively assess the role of climate in controlling the variability of CO2 exchange at Harvard Forest and attribute the observed influence of climate to specific processes. Variability not directly attributable to short term climate forcing is characterized and discussed with respect to key ecological factors
 (e.g. biomass dynamics, nutrient status). The Integrated BIosphere Simulator-2 (IBIS-2), a mechanistic, global ecosystem model based on dynamic biosphere-climate system interaction, has been run for the study site over the same 12-year period in order to explore the role of model formulation in defining the ecosystem mean response to climate, anomalies, and the effects of aggregation of CO2 exchange observations to monthly and longer time scales. 

Harvard Forest has been a net sink for CO2 each year of the study, sequestering on average 2.3 Mg C ha-1 yr-1. Variations in annual NEE were dominated by changes during  the growing season, and were roughly normally distributed with two outliers (1998 and 2001). Analysis using the ecophysiologically-based empirical model (Model-0) showed that instantaneous ecosystem response to PAR and T precisely defines the hourly scale variability of NEE during the growing season, but not during the dormant season. Upon aggregation to seasonal and longer intervals, little variability
 in NEE is attributable to fast response to T and PAR, or to other commonly used predictor variables such as deep soil moisture, soil temperature and canopy phenology. Instead, processes acting on longer time scales, such as forest stand development, emerge as possible drivers of long-term NEE. 
Analysis of IBIS-2 output for Harvard Forest showed good agreement with the long-term mean NEE, but also revealed several offsetting errors in simulation of ecosystem R and GEE, arising from basic assumptions of temperature dependence (R), soil moisture dependence and phenology (GEE). Implications of these findings for simulation modeling of NEE under climate change scenarios are discussed

.  
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I. Introduction

Global carbon-budget studies indicate a significant terrestrial sink for atmospheric CO2 over the past two decades [Battle et al. 2000; Houghton et al., 2001].  This sink has varied inter-annually and correlates with global scale climate variations [McGuire et al., 2001; Houghton et al., 2001; Randerson et al., 1999; Braswell et al., 1997]. Strong evidence from multiple independent studies, employing diverse data sources, indicates that a major fraction of this global carbon sink is located in northern mid-latitude terrestrial ecosystems [Hicke et al., 2002; McGuire et al., 2001; Myneni et al., 2001; Battle 2000; Keeling et al., 1996; Tans et al., 1990]. However, the magnitude and controlling mechanisms f are not well understood [NACP, 2002; Schimel et al., 2001]. In particular, the relative importance of climate variability and change, stimulation by rising CO2 or by deposition of nutrients, land use history, and past disturbances in driving terrestrial carbon exchange remain poorly characterized. The critical question whether current carbon uptake is a transient response to some environmental change, or a fundamental shift in fundamental rates has not been resolved. Successful prediction of future CO2 growth rates and the development of strategies for managing carbon sequestration require identifying, , the 
drivers controlling carbon exchange in northern mid-latitude terrestrial ecosystems and quantifying and modeling the response.  

Net ecosystem exchange of CO2 (NEE) is the small difference between two large fluxes, ecosystem respiration (R) and gross ecosystem exchange (GEE) of CO2, and a perturbation 
in one of these components could result in a dramatic carbon-cycle feedback on the climate system and terrestrial biosphere. Under the assumption that respiration is controlled by temperature, climate warming is anticipated to increase R, in particular the decomposition of soil organic matter [refs
]. Many studies on the terrestrial carbon-cycle response to climate change predict that increases in R will exceed gains in productivity associated with increasing temperatures and CO2 fertilization, with the net result being a positive feedback to climate system [Raich & Schlesinger 1992; Raich & Potter, 1995; Kirschbaum 1995; Schimel et al. 1994; Cao & Woodward , 1998]. However
, significant debate exists over whether R or GEE dominates variation in current terrestrial carbon exchange [Janssens et al. 2001; Valentini et al. 2000]. Predictions of climate-driven changes in R exceeding those in GEE are highly dependent on the assumed sensitivity of ecosystem respiration to temperature [Jones et al. 2003;+ others]. Recent studies have questioned the extent to which temperature controls ecosystem respiration [Giardina & Ryan, 2000; Hogberg et al. 2001]. Likewise, the appropriate model representation of CO2 fertilization effects observed in FACE 
experiments remains uncertain. 

In addition to temperature, R and GEE also respond to a host of other environmental and biological drivers. An extensive body of field studies has identified soil moisture, detritus loading and quality, nutrient availability, living biomass, ecosystem productivity and seasonal carbon allocation patterns as drivers of R. CO2 fertilization, soil moisture, 
nutrient status, cloud cover and aerosol loading have been recognized as drivers of photosynthetic uptake in various field and greenhouse studies. [need refs here]. However, process-based terrestrial ecosystem models typically represent the variability of respiration as a function of temperature (and soil moisture as well for decomposition), where the temperature relationship (usually a Q10 style 
dependence) is often is derived from annual data sets. Common drivers of photosynthesis in process-based ecosystem models include ambient atmospheric CO2 concentration, intercepted flux of photosynthetically active radiation (PAR
), foliar N, and moisture availability. [need refs here 
]. 

In an effort to improve understanding of the role of northern, mid-latitude forests in sequestering atmospheric CO2 and to gain insight into the factors that will drive carbon exchange in the future, we report a 12 year study of CO2 exchange over a New England mixed deciduous forest, measured using the eddy-covariance technique. While long-term NEE at Harvard Forest have been reported previously [Barford et al., 2001; Goulden et al., 1996a&b; Wofsy et al., 1993], the current study provides a detailed report of CO2 exchange and environmental variables for the entire measurement period (1992-2003), and a quantitative analysis of the data set using a simple ecophysiologically-based model (Model-0). This empirical approach to defining the mean relationship between climate forcing ecosystem CO2 exchange 
was compared with output from a more detailed, process-based land-surface and ecosystem model (IBIS-2).

The data analysis and modeling study described in this paper had three goals :  (1) to quantify the instantaneous (hourly) ecosystem response  to controlling climatic variables (temperature and sunlight) averaged over the decade, (2) to identify and quantify the mechanisms responsible for seasonal and inter-annual deviations of ecosystem carbon exchange from the decade mean climate response, and (3) to identify long-term trends in carbon exchange and quantitatively attribute any identified trends to long-term ecological, environmental and/or climate trends
.  The study has produced a statistical, ecophysiologically-based zero-order model of carbon exchange at Harvard Forest (i.e. Model-0). The long-term, internally consistent data set for Harvard Forest provides very precise values for the mean short-term ecosystem responses (goal 1), which can be subtracted from measurements integrated over hourly, daily, seasonal annual, or decadal intervals to define the anomalies and trends. These deviations from the mean ecosystem behavior provide the key to the analysis goals (2) and (3). The zero-order 
empirical models quantify the decadal mean ecosystem fast response to climatic forcing and provide a multivariate baseline to help identify the mechanisms driving short term deviations and long term trends in NEE, R, and GEE. Variability not directly attributable to short term climate forcing is characterized and discussed with respect to key ecological 
factors (e.g. biomass dynamics, nutrient status) identified as probable drivers of carbon exchange at Harvard Forest. The 
overall ability of Model-0 to diagnose means, anomalies and trends in CO2 exchange, and the emergent relationships between CO2 exchange and controlling climate and biological factors was further evaluated 
by comparison with the performance of IBIS-2 for the same period at Harvard Forest. IBIS-2 uses a much more mechanistic, process-based approach to simulate CO2 fluxes. IBIS-2 and similar models are used to simulate future ecosystem CO2 fluxes under climate change scenarios (refs), thus the successes and failures of IBIS-2 relative to a local, empirical modeling approach may inform future studies of climate change

.

II. Observations

A. The Site

NEE, water and energy fluxes, and associated meteorological variables were measured at the Harvard Forest Environmental Measurment Site (HFEMS), established in 1989 and located on the Prospect Hill tract of Harvard Forest  (42.538N, 72.171W, elevation 340 m) [Goulden et al., 1996b; Wofsy et al, 1993].  The area surrounding the tower is dominated by red oak (Quercus rubra) and red maple (Acer rubrum), but includes scattered stands of Eastern hemlock (Tsuga canadensis), and white (Pinus strobus) and red (P. resinosa) pine. The forest contains 120 Mg C ha-1 above ground with large areas occupied by 60 to 70-year-old trees [Barford 2001; Pyle 2003].  Nearly continuous forest extends for several km west of the tower, the predominant wind direction (Fig. 1). The forested swamp located N, NW of the tower was inundated 
in 2000 by beaver colonization. Although the pond was abandoned the following year, water level is still elevated.  In the summer of 2000
, a selective, commercial harvest took place on a 43 ha parcel of privately owned land located 300 m to the S – SE of the tower, which is largely outside of the dominant direction. The selective harvest removed 42.3 m3 ha-1 of timber and 8.5 – 11.1 Mg C ha-1 of above ground biomass (AGBM).          

In 1993, forty plots for ecological studies were established in stratified-random positions along eight, 500 m transects running SW and NW from the tower [Barford et al., 2001; see also Fig. 1]. Transects were chosen to match the dominant wind directions relative to the tower. Ongoing ecological studies include measurement of above ground woody increment, leaf litter mass and chemistry, observations of tree mortality and recruitment, coarse woody debris surveys, and chamber soil respiration measurements during the growing season. Periodic measurements have been made of leaf area index (LAI) and green foliage chemistry, and a recent study measured the respiration of coarse woody debris 
. 

B. Flux measurements

The eddy-covariance technique is used to measure fluxes of CO2, momentum, and sensible and latent heat at 30 m at the HFEMS [Goulden et al., 1996b; Wofsy et al, 1993].  In addition, the mixing ratio of CO2 within the canopy is measured at 8 levels (z = 29, 24, 18, 12, 6, 3, 1, 0.3 m
).   The flux of photosynthetically active radiation (PAR) is measured above and below (13 m) the canopy. Vertical profiles of air temperature and relative humidity are measured at 85 levels from the canopy top down to 2.5 m.  Soil temperature is measured using an array of 6 thermistors buried at the base of the litter layer and two additional thermistors at 20 cm and 50 cm depths. Up-welling and down-welling PAR, total short wave radiation, and long wave radiation are measured by colleagues from the Atmospheric Science Research Center (ASRC) at SUNY-Albany [Moore et al., 1996]. 
Radiation measurements obtained by the ASRC group have been essential for filling gaps in the PAR data set, and the existence of 3 sensors for measuring above-canopy down-welling solar radiation has allowed us to ensure the  long-term stability of PAR measurements (see Appendix A
).         

C. Time Integrated Data

Characterizing many key features of the terrestrial carbon cycle requires measurements of carbon exchange and driving climate variables integrated on monthly to decadal time scales. Summation of hourly NEE to these intervals requires estimates of carbon exchange when data are missing due to power outages, equipment failure or invalid data. Equipment failure and data rejection reduce the average annual data coverage of our NEE measurements to about 50%, a fraction typical of continuous eddy covariance measurement sites [Falge et al., 2001a]. Hourly NEE data are shown in Figure 2. Aggregation of the hourly NEE measurements is performed using rigorously tested time-integration algorithms that estimate missing hourly NEE observations in several different ways, in effect an ensemble estimation approach (see below). Nighttime observations of NEE are used to estimate daytime ecosystem respiration (R, NEEnight = R) proximate in time, enabling the inference of gross ecosystem exchange of CO2 (GEE = NEE – R). Uncertainties and potential biases in annual sums of NEE, R and GEE, were estimated by comparing three variants of time integration algorithms: non-linear regression, look-up tables, and diel mean cycle [Appendix B (this paper), Falge et al. 2001a&b]. 

The carbon exchange “gap-filling” methods employed in this study have been developed and implemented for the purpose of estimating sums of carbon exchange on time scales of a month or longer. The calculation of time-integrated NEE is not intended to generate gap-filled data sets for modeling, and the development of Model-0 used only actual observations of hourly NEE. An additional, non-parametric
, time-integration technique has been employed to compare temporally aggregated model-predicted and observed NEE (Appendix B).  ???       
Gap-filling of missing climate observations is also necessary to obtain a time-integrated climate data set for analyzing carbon exchange measurements. Gap-filled data sets of hourly PAR and air temperature were required in order to apply the non-linear regression and look-up table time-integration methods to the hourly NEE observations (Appendix B). The climate drivers of primary concern in this study were solar radiation (PAR), air and soil temperature, precipitation, and soil moisture. A gap-filled climate variable data set of hourly PAR and air temperature, and daily precipitation was assembled for this study (Appendix A). Continuous soil moisture measurements at Harvard Forest are not available for the entire 1992-2003 period. Instead, soil moisture profiles measured at the site between 1997-1999 [Savage and Davidson, 2000] were used to parameterize a simple two-layer bucket type soil hydrology model (see Section III.B). Growing season soil moisture for the study was reconstructed with the calibrated soil hydrology model. The entire climate driver data set is available at […insert ftp site.].    

III. Modeling and Analysis

A. Model-0
The basic zero-order model (Model-0) uses the homogeneous, internally consistent Harvard Forest NEE and climate data set and begins with the assumption that within a given season, variations of NEE on the hourly time scale reflect primarily the instantaneous ecosystem response to temperature and sunlight. The Model-0 equation defines the ecosystem response to climatic forcing (EQ.1). Parameters a1 and a2 represent mean respiration and define its short-term temperature response, respectively, and parameters a3 and a4 define the response of canopy photosynthesis to light. The driving variables are air temperature at 2.5 m (T), its seasonal mean (<T>mean ), and above-canopy PAR. 

EQ. 1

[image: image1.wmf]  

NEE

=

a

1

+

a

2

T

-

T

[

]

+

A

+

PRI

*

a

3

*

PAR

a

4

+

PAR


An additional driving variable that captures the observed development of the canopy
, the PAR ratio index (PRI), is included in the late spring 
(Appendix C). 

To parameterize Model-0, nine years (1992-2000) of hourly, u* filtered - NEE, T, and PAR observations were sorted into 8 phenologically defined “seasons”, each 25 to 125 days in length (Appendix C). During the dormant seasons (late fall and winter), the ecosystem dependence on PAR was simplified to a linear response (a3*PAR).  A non-linear least-squares procedure was used to derive a set of the optimized Model-0 parameters (Figure 3, Table 1) for each season (a total of 30 parameters, {ai,m}, where i= 1-3, m=1-8 and {a4,m}, m =1-6). 

The parameters {ai,m}, estimated using Model-0 (Fig. 3) have clear biophysical significance.  For instance, the mean monthly respiration parameter, a1, increases approximately linearly with monthly mean temperature <T>mean, reflecting increasing metabolic rates and increased living biomass in warmer months.  Savage and Davidson [2001] observed that respiration is depressed due to limited soil moisture in late summer, relative to early summer, an effect that clearly emerges in the model parameters {a1,m} (Fig. 4).  The ratio -a3/a4 corresponds to canopy quantum yield at low sun angles, and Model-0 provides values (0.05 to 0.06) in agreement with expectations based on maximum quantum yields for C3 plants (0.06 to 0.07) [Farquhar et al., 1980], allowing for photon reflection and absorption by soil and stems.

The land cover surrounding the HFEMS is quite
 heterogeneous (Fig. 1) and the observed carbon exchange characteristics vary depending on the sector of the tower footprint being sampled. The influence of wind direction was explored using a modified version of Model-0 (Appendix D). 

B. Model-0 and soil moisture
Analysis of CO2 flux data shows that daytime Model-0 residuals integrated over seasonal intervals are 
significantly correlated with soil moisture only in the mid-summer, but not during other seasons. There was no significant correlation between ecosystem respiration (nighttime NEE, observed or hourly Model-0 residuals) and soil moisture in any season, although small-scale (chamber) studies have identified soil moisture as an important factor influencing soil respiration at Harvard Forest [Savage and Davidson, 2001].Previous analyses of CO2 fluxes and climate data [Freedman et al., 2001] and leaf level studies [Cavender-Bares and Bazzaz, 2000] at Harvard Forest have indicated the importance of drought stress limitations on photosynthesis under certain conditions. Therefore, we used Model-0 to assess the role of soil moisture quantitatively at Harvard Forest.  

1. Bucket model of soil moisture

Soil moisture profiles have been measured at two locations in the vicinity of the HFEMS tower since 1997 [Savage and Davidson, 2000].  Soil water content was measured as ca. 6 hour averages using TDR probes inserted horizontally into the soil at 4 levels, in both well drained upland and poorly drained wetland soil plots located 150 m NW and 150 m SW of the HFEMS tower, respectively [Savage and Davidson, 2000].  We used soil moisture profiles for1997-1999) to parameterize a simple two-layer bucket-type soil hydrology model, intended to capture the relative variability of soil moisture at Harvard Forest during the growing season. 

The algorithm design is loosely based on the water balance methodology used to calculate Palmer soil drought indices [Palmer, 1965], with the soil profile divided into a shallow “surface layer” and a deep “under layer” (Fig. 5). Model simulations of surface layer and under layer volumetric soil moisture content span the growing season (DOY 100-300) with a 5-day time step. Five-day sums of latent heat flux, measured on top of the HFEMS tower, and precipitation, measured at a meteorological station 1.5 km away, are used to drive the bucket model. Four adjustable model parameters define (1 and 2) the water capacity of the soil in each layer, (3) the flux of water between the soil and the atmosphere, and (4) the transport of water from the surface layer into the under layer.  Two additional model parameters control water loss from the under layer during periods of extreme water depletion. The depth of the bucket model layers were fixed to match the depth of the soil moisture profiles measurement pits, and the bucket model parameters were optimized to fit the in-situ soil moisture observations [Savage and Davison, 2000].  An independent set of model parameters was derived (Table 2) for each soil moisture type (well-drained soil and poorly-drained soil). Parameters were optimized using the genetic algorithm [Carroll, 2000].  

2. Modified Versions of Model-0
Simulated soil moisture time series from the two-layer bucket model (described above) were used to drive three modified versions of Model-0 for Harvard Forest (Model-0a, b, c; Appendix E), in order to define the effects of variability in soil moisture and to explore the best model representation of these effects. The Model-0a equation includes a function of soil moisture that may be interpreted as an additional respiration term and was designed to test for a soil moisture role in regulating ecosystem respiration (i.e. A in Eq 2, below).  
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In Model-0a, (sfc is the soil moisture deficit of the surface layer in mm H2O, and a5 is a fitted parameter.

The Model-0b equation simulates soil moisture stress on photosynthesis by multiplying the GEE term by a soil moisture stress factor (i.e. B) [Foley et al., 1996]. 
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In this case, (f is the under-layer soil moisture expressed as a fraction of field capacity, and a6 and a7 are fitted parameters
.

The third modified form of Model-0 (Model-0c) uses a hydraulic resistor-type algorithm to calculate canopy water potential [Jones, 1978], which is then integrated into the basic Model-0 equation. Water retention curves [Savage and Davidson, 2000] were used to convert the hydrology model-estimated volumetric soil moisture to matric potential ((S). The daily canopy water potential was assumed to behave periodically and is calculated using Eq. 4.  The canopy matric potential ((C) was included as an additional term in the original Model-0 equation that modifies gross carbon assimilation (Eq. 5).  Equations 4 and 5 were solved iteratively to obtain the optimized parameter set {a1,…, a5; C, D}.

EQ. 4

[image: image5.wmf]  

d

Y

C

dt

=

Y

S

-

Y

C

(

)

*

C

-

D

*

E

; where
[image: image6.wmf]  

E

=

1

+

a

5

*

Y

C

{

}

*

a

3

*

PAR

a

4

+

PAR


(2)

EQ. 5
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In the hydraulic resistor equation, EQ. 4, (S and (C are the matric potential of the soil and canopy, respectively; the product DE is the canopy water transpiration rate, and C is the RC 
time constant for refilling the canopy with water. Model-0c uses GEE as a proxy for the canopy transpiration flux and parameter D is equivalent to (/c, where c is the canopy water capacitance and ( is the canopy water use efficiency. The parameter a5 
controls the direction and magnitude of the (C influence on NEE. 

Fitted parameters and further description of the modified models (Model-0a, b, c) are presented in Appendix E, with results summarized in Figures 6 and 7
.

C. IBIS-2

IBIS-2 and most biophysical models for NEE produce a representation of the mean ecosystem response (e.g. carbon exchange with the atmosphere) to changing environmental conditions above (e.g. cloudiness, precipitation, temperature, wind, humidity), below (e.g. soil water and temperature) and within (e.g. CO2, temperature, light, water, wind) a vegetative canopy at a specific geographic “point”. To calculate this ecosystem response, IBIS (version 2.6) utilizes several sub-models within a hierarchical conceptual framework (i.e. Figure 1 in Kucharik et al., 2000), which is organized with respect to the sub-models’ characteristic temporal scale:  

Land Surface Processes. The land surface sub-model simulates the energy, water, carbon, and momentum balance of the soil-plant-atmosphere system at a half-hourly time step using the LSX land surface scheme of Pollard and Thompson (1995).  IBIS-2 includes two vegetation layers with eight potential forest plant functional types (PFTs) in the upper canopy, and two grass (cool and warm season) and two shrub PFTs in the lower canopy.  The model state description includes six soil layers of varying thicknesses to a 4-m depth (0-10, 10-25, 25-50, 50-100, 100-200, 200-400 cm), which are parameterized with biome-specific root biomass distributions of Jackson et al. (1996), and varied soil texture and corresponding physical attributes.  Physiologically-based formulations of leaf-level photosynthesis (Farquhar et al., 1980), stomatal conductance (Ball, 1988; Collatz et al., 1991, 1992) and respiration (Ryan, 1991) control canopy exchange processes. Leaf-level photosynthesis is scaled to the canopy level by assuming that photosynthesis is proportional to the absorbed photosynthetically active radiation (APAR) within the canopy. 

Vegetation Dynamics – IBIS-2 can simulate changes in vegetation structure on an annual time step by allowing plants to compete for light and water from common resource pools. The competition between plants is driven by differences in resource availability (light and water), carbon allocation, phenology (evergreen, deciduous), leaf-form (needle-leaf, broadleaf), and photosynthetic pathway (C3 vs. C4) (Foley et al., 1996; Kucharik et al., 2000). However, to compare with observations in this study, the forest canopy height, maximum leaf area index (LAI), tree species composition and phenological characteristics (date of budburst and leaf fall) were prescribed using observations from Harvard Forest (Kucharik et al., 2005
).

Soil Biogeochemistry – IBIS-2 accounts for daily flows of carbon and nitrogen through vegetation, detritus, and soil organic matter similarly to the CENTURY model (Parton et al., 1987) and the biogeochemistry model of Verberne et al. (1990). The current version of the model does not account for leaf nitrogen effects on photosynthesis, nor the effects of herbivory or disease on LAI and accumulated biomass.

IBIS-2 was driven by observed 30-minute meteorological data from Harvard Forest (1992-2003), consisting of air temperature, downward shortwave radiation, wind speed, and relative humidity. Precipitation data were only available at a daily time step; thus, half-hourly data were derived by dividing the daily values by 48. Downward longwave radiation 
was calculated using Brutsaert’s formulae (Brutsaert, 1975). For the purposes of parameterizing leaf-level photosynthesis, the maximum rate of carboxylation (Vcmax) was set at 55 mol m-2 s-1 (at 15ºC; Williams et al., 1996). Observed soil texture information was used for model simulations at WB
. Dominant soil textural information (sand/silt/clay fractions) was obtained from the STATSGO dataset (Miller and White, 1998).  The atmospheric CO2 concentration was set constant at 360 ppm for all simulations.
IV. Results

A. Core Observations

NEE

Harvard Forest acted as a net sink for CO2 on the annual time scale, sequestering an average of 2.3 Mg C ha-1 yr-1 during 1992-2003, with a range of 1.0 to 4.7 Mg C ha-1 yr-1 (Fig. 8 and Table 3). The 
NEE values in Figure 8 and Table 3 are the mean of the 3 time integration methods tested in this analysis and represent our best estimate of NEE annual sums. Annual sums of NEE based on the three time-integration methods agree to within 0.3 Mg C ha-1 yr-1 for all years except1998, where the range is 0.4 Mg C ha-1 yr-1 (Fig. 9)
; this spread serves as an estimate for the uncertainty due to gap-filling in annual sums of NEE at Harvard Forest. Estimates 
of long-term carbon uptake (12 year sums) differ by less than 2% (27.6 to 28.0 Mg C ha-1).  

R and GEE

Ecosystem respiration is observed directly at night, and also in daytime during the bulk of the dormant season (DOY 341-80

). Nighttime observations of NEE are used to estimate daytime, non-dormant season respiration (R, NEEnight = R) proximate in time, enabling inference of gross ecosystem exchange of CO2 (GEE = NEE – R, see below). The non-linear and look-up table time-integration techniques estimate daytime R using a relationship between the observed nighttime NEE and temperature, while the diurnal gap-filling method uses an average of the observed nighttime NEE, without adjustment for temperature. Estimates of cumulative ecosystem respiration are commonly derived using a Q10-style 
dependence of R on temperature and the current study has relied in part on R-T relationships to estimate time-integrated R and GEE. This approach is well justified for the spring and fall when the relationship between observed R (nighttime NEE) and T (Tair or Tsoil) is generally robust, but may not be appropriate in the summer and winter when temperature is a poor predictor of hourly R (Fig. 10). The extrapolation of an assumed nighttime relationship between R and T to estimate daytime R may result in an overestimate 
of time-integrated R (and therefore the magnitude of GEE).  This potential bias in cumulative R was explored by modifying the diel mean cycle integration algorithm to estimate daytime R as a function of T
. Sums of annual R based on the two approaches agree within 10% (data not shown), an upper limit for the bias in R associated with the assumption of T- dependence
. 
Annual sums of R and GEE derived using the three time integration methods are given in Figure 11
. The range in annual sums yielded by the three gap-filling methods serves as an uncertainty estimate for the true annual sums of R and GEE. Note that the high R in 1993 is the result of a unique extended period of very high respiration in winter (cf. Fig. 2), which tends to mask a distinct increasing trend amounting to ~20% over the 12 years of data. An opposite trend of similar magnitude is noted for GEE, leaving NEE almost constant. The rate of increase in GEE and R, ~2.2%/yr, is about 2x the rate of increase in aboveground woody biomass (Fig. 13). Residuals from the trends are negatively correlated between R and GEE in 1993 and 1998, but they were positively correlated in 2001, resulting in a notable excess of CO2 uptake that year.
Variability and Trends

Interannual variations 
of NEE appear to be driven by growing season processes (Figure 12). With the exception of 1993, variations in NEE annual sums closely track growing season NEE, and annual anomalies of NEE from the 12-year mean are highly correlated with anomalies in growing season NEE (r2 = 0.72, p-value < 0.001). Extreme CO2-exchange years 1998 and 2001 were +45% and -200% of the 12 year mean, respectively, and these NEE anomalies were driven by GEE (Table 3 and Figs. 8, 13
). 
Although the annual sum of ecosystem respiration in 2001 was near average, the annual sum of GEE was the largest of the 12-year data set, indicating that enhanced photosynthesis drove the large net uptake of CO2. Conversely, weak GEE in 1998 resulted in anomalously low net carbon uptake, despite below-average ecosystem respiration..

B. Empirical Modeling Results 

1. Model-0

Hourly time scale

During the growing season, Model-0 precisely defines the hourly scale ecosystem behavior across the decade, with the phenological index providing an important signal in the late spring (Figs. 14 & 15, Table 1). The growing-season hourly variability of NEE is dominated by the strong photosynthetic response to sunlight. During the winter, photosynthetic activity is negligible and little relationship exists between the hourly variability of NEE and air temperature and PAR; and Model-0 does not successfully predict ecosystem variability. While the winter season does display significant variability in hourly NEE within and across years, the hour-scale NEE observations exhibit none of the diel variability that would be expected of an ecosystem responding instantaneously to PAR and temperature (Fig. 16
).  

Aggregation

Model
-0 accounts for ~80% of the variance in 9 years 
(1992-2000) of hourly NEE observations; this is the fraction explained by the instantaneous ecosystem response to hourly variations in PAR and T. Variance not explained by Model-0 indicates the 
influence of short time scale processes not included in the model (e.g. clouds), deviations of the physiological parameters in the model, longer-term factors including soil moisture, delayed climatic impacts (e.g. decay of prior-year litter fall), and possibly, ecologically driven trends (e.g. biomass accumulation
). This unexplained variance is highly significant for 
the ~38000 data points in the study.

Upon aggregation to seasonal intervals the fraction of variability explained by Model-0 declines (Table 4,Fig 17). Model-0 is still able to capture a significant fraction of the variance of NEE for daily to seasonal time scales from the date of soil thaw through the early summer. However, during the second half of the growing season, other mechanisms acting on time scales greater than hourly appear to dominate the seasonal-scale variability of NEE (Figs. 18, 19). Model-0 captures the general annual cycle of NEE as well as some of the multi-day scale variability (Fig. 20), and for the spring and early summer seasons, the seasonal scale, inter-annual variability of NEE is well described by Model-0 (Table 4, Fig. 21).
 

The 

Model-0 seasonal-scale predictions of NEE were dramatically improved for the spring by consideration of phenology and wind direction. In the early spring, inter-annual variability in the frequency of E and SW winds significantly influenced the seasonal mean NEE.  When wind sector was included as a factor, Model-0 residuals were dramatically reduced and the zero-order model precisely described the season scale early spring ecosystem behavior (Figs. 20-22). Conifers are not evenly distributed around the tower (Fig. 1) and the differences in NEE between stands with conifers and those without will be most dramatic in the spring when confers are active and the deciduous trees are still dormant. Later in the season when deciduous trees have filled in the canopy the differences between sectors will be less dramatic.  In 
the late spring, the phenology index dramatically improved Model-0. Figure 19a shows that with the exception of 1998, the observed and Model-0 seasonal mean NEE are in excellent agreement. Implicit in the phenology index is the assumption that the fully developed canopy is equivalent from year to year (see above), and this worked well for all years except 1998.     

2. Soil moisture 

The introduction of the soil moisture terms (i.e. Model-0a, b) improved model performance only for the mid-summer. In both model formulations the optimized soil moisture-related parameters were positively associated with carbon uptake, i.e. more net uptake of CO2 with higher-than-average soil moisture. Optimized parameters and calibration statistics for Model-0a and Model-0b are given in Appendix E. Both models captured the seasonal scale variability of NEE (Fig. 23
), but failed to describe the diel NEE cycle, which is characterized by reduced net uptake in the afternoon (Fig. 24). The afternoon depression of NEE may reflect the net impact of a host of processes including stem and root resistance under dry conditions, increased respiration due to higher temperatures (soil, leaf, bole), increased respiratory metabolism associated with the translocation of assimilated carbon, and reduced stomatal conductance due to soil moisture constraints.   

The Model-0c predictions are a significant improvement over the basic Model-0 on the day and season timescales, yielding 30% and 45% reductions in RMSE, respectively (Table 5).  Model-0c captures ca. 50% of NEE variation on the daily time scale and 70% of the seasonal scale inter-annual variability 
(Fig 26, Table 5). (Note: when Model-0c is optimized using observed latent heat flux ( E, results are essentially the same, see below).

The improvement in seasonal mean NEE is dramatic in dry years (‘95,’98,’99). Under dry conditions, Model-0c predicts the observed afternoon depression of NEE and captures the mean NEE diurnal cycle (Fig 27a & 28a) with striking precision. During wet years, there is no systematic depression in afternoon NEE; some years exhibit little difference between morning and afternoon NEE (e.g. 1994, see Fig 27b & 28b), while others display a reduction in afternoon uptake (e.g. 2000). 
The 
canopy matric potential ((C) is estimated using the model-calculated gross photosynthesis as a proxy for the canopy transpiration rate. As a result we do not expect the magnitude of the model-estimated canopy matric potential to represent a “true” value. However, the shape and relative amplitudes of the canopy matric potential diel cycles should closely reflect the true canopy behavior.  Model-0c estimates of canopy matric potential for extreme soil moisture years (1999 dry / 1994 wet) are shown in Figure 25. The diel pattern of the estimated canopy matric potential ((C) is as expected – the canopy matric potential is maximum around sunrise, begins to decrease with the commencement of photosynthetic activity, reaching a minimum value around sunset, when the canopy begins to recharge. The amplitude of the diurnal (C cycle is dramatically larger in 1999 compared with 1994; particularly in the first half of the mid-summer when the under layer soil moisture is at less than 40% of field capacity in 1999, and near saturation in 1994. While the (C diurnal pattern is as expected, the magnitude is exaggerated, the maximum has a large offset (ca. -2.5 MPa) relative to the soil matric potential and the minimum values significantly exceed those typically observed for drought conditions. This likely results from the use of GEE as a proxy for canopy evapotranspiration, an approach that explicitly assumes constant water use efficiency across the entire time period.  When Model-0c was optimized using the observed latent heat flux as an index of evapotransipration, the maximum simulated values of (C approach (S as expected (offset ca. -0.5 MPa), and the minima agree better with observations [Cavender-Bares and Bazzaz, 2000 ].  

The 
Model-0c analysis provides very strong evidence of soil moisture constraints on photosynthetic uptake during dry years.
  Increased ecosystem respiratory response to temperature may also contribute to the afternoon depression of NEE observed during the dry years.  In addition, Davidson and Savage [2001] have observed increased soil R during relatively dry conditions in the sector of poorly drained soils at Harvard Forest (NW of the HFEMS
).

3. GEE and R

Seasonal Model-0 predictions of NEE, R, and GEE were compared with the observations on hourly and seasonal time scales (Fig 29a &b)
. With the exception of the spring seasons, Model-0 captures little of the observed variability of R on either the hour or season time scale. This finding agrees with the results of Section ??, where it was shown that R was dominated by fast response to temperature only during the spring (and in some years during the fall). In general, ecosystem respiration on the hour time scale is not controlled by ecosystem response to temperature, but by other factors not included in Model-0 (e.g. ecosystem productivity, seasonal carbon allocation patterns, soil moisture), and therefore Model-0 captures little of the observed variability in R
.  

The variability of hourly GEE is well described by Model-0, but the model is a poor predictor of the inter-annual variability of seasonal GEE. By assuming that fast-response to temperature controls the variability of R, Model-0 fails to separate GEE and R properly, i.e. some of the variability in hourly NEE is improperly attributed to GEE in Model-0. During the growing season, the strong fast-response of observed GEE to PAR dominates fluctuations in R and dictates the hourly variability of NEE, hence, even though R and GEE are not accurately separated in Model-0, the model performs equally well in predicting both daytime NEE and GEE on the hour time scale (Fig. 29a). However, upon aggregation to the seasonal time scale, the R/GEE separation error emerges (Fig. 29b).  

At night, NEE = R, and the Model-0 error in predicting R can be isolated. If we assume the nighttime seasonal mean error in Model-0 R is a good estimate of the ecosystem R attributed to GEE in Model-0, i.e. the separation error, then subtracting this error from the seasonal predictions of GEE should yield a reasonable estimate of the properly separated Model-0 predicted GEE. When the Model-0 predicted seasonal mean GEE is adjusted using the estimated separation error, ca. 50% of the observed inter-annual variability of GEE is captured (Fig. 29c). This result indicates ecosystem fast-response to PAR, modulated by spring phenology (late spring) and soil moisture (mid summer), plays a significant role in the observed seasonal inter-annual variability of GEE.

C. IBIS-2 Results

IBIS-2 simulations of carbon exchange are shown as annual (calendar year, Fig. 37) and monthly (Fig. 38) sums. The IBIS-2 simulations reproduce well the 12-yr annual mean NEE observed at Harvard Forest (observed and IBIS-2 both -2.3 Mg C ha-1 yr-1), while failing to capture the inter-annual variability of NEE (Fig 37a). The stellar agreement between the IBIS-2 annual mean NEE simulations and the Harvard Forest observations results from large offsetting seasonal biases. IBIS-2 produces a significantly amplified annual cycle of R compared to HF observations (Fig 38b). The dormant season efflux predicted by IBIS-2 is consistently below the observed R, by 1.4 Mg C ha-1 yr-1 on average (Fig 38b & 39a). The large underestimate in dormant season R is offset by the positive bias in growing season R  (1.7 Mg C ha-1 yr-1 on average, Figs. 38b & 39b). 
  

The IBIS-simulated springtime canopy development is 
significantly 
premature compared with in-situ LAI and phenological observations 
[Kucharik et al. 2005], resulting in spring GEE of roughly 1 Mg C ha-1 greater than the observed (Fig 39e). This result is likely due to the observations used to prescribe the IBIS phenology, which were made during a year with early budbreak (1998, Fig. 31
). 

The use of T as a primary driver for ecosystem R in IBIS results in a significantly amplified annual cycle of model-simulated R compared to HF observations.
 The IBIS cold bias in the winter soil temperatures (as much as -3.5ºC [Kucharik et al. 2005]) may also contribute to the model’s dormant season underestimate of R. The IBIS-simulated surface soil temperatures drop below 0ºC for much of the winter, in contrast to observations which indicate temperatures typically remain at least 1-2ºC above freezing 
[Kucharik et al. 2005]. IBIS heterotrophic R is effectively zero in the mid-winter and autotrophic R is extremely weak. The dormant season efflux predicted by IBIS is consistently well below the observed, by roughly -2 Mg C ha-1 yr-1 on average. Despite the explicit representation of carbon pools and the sophisticated treatment of land-surface physics (including 8 soil layers), IBIS is unable to capture the hourly, monthly or seasonal scale variability of dormant season R
. This result is consistent with the results of the simple empirical model and data analysis presented above.  

V. Discussion 

A.  Variability of Carbon Exchange (hour, seasonal, annual)

Air temperature, PAR, phenology (late spring), soil moisture (mid-summer), and wind direction (early spring) explain most of the variability of NEE on the hourly to seasonal time scales, from soil thaw through mid-summer. In the late summer and early fall, PAR and air temperature dictate NEE variability on the hourly time scale, but seasonal scale variability appears to be regulated by other factors. Circumstantial evidence suggests that fall phenology is an important driver of the inter-annual variability of NEE in the late summer and early fall
. 

The 
observed inter-annual variability of growing season NEE and GEE is significantly correlated with the mean short-term response of the ecosystem to sunlight, temperature, and soil moisture. The mean ecosystem climate response defined by Model-0 explains ca. 40% (50%) of the inter-annual variability in growing season NEE (GEE) (Figures 17, 29c). However, the variability of dormant season NEE exhibits little correlation with PAR and temperature on hourly to annual time scales (Tables 1, 4). During the dormant season ecosystem respiration is poorly predicted by temperature on the hourly time scale (Fig. 10) and photosynthetic activity is negligible.  

Variations in annual NEE closely track uptake in the growing season (Fig. 12), and were roughly normally distributed with two outliers, 1998 and 2001. Extreme CO2 exchange years 1998 and 2001 were +45% and -200% of the 12-year mean, respectively. In both 1998 and 2001, the NEE anomalies from the long-term mean were driven by GEE (Table 3 and Fig. 8, 13). Detailed analysis of these extreme years underscores both strengths and weaknesses in the data-based approach to understanding ecosystem-atmosphere CO2 exchange, as presented below. Of particular interest is the use of Model-0 to dissect CO2 exchange anomalies and make partial attribution to climate forcing vs. ecological factors.

Annual extrema
1998

Growing season GEE in 1998 was 1.7 Mg C ha-1 below the 12-yr mean, leading to a growing season NEE deficit of  +1.2 Mg C ha-1, in spite of early canopy emergence in the spring (Fig. 31) and below normal ecosystem R for the year (-0.4 Mg C ha-1). While the Model-0 analysis indicates about half of the early summer NEE anomaly (0.4 of 0.7 Mg C ha-1) is due to low insolation and cool temperatures, in general the growing season uptake deficit observed in 1998 is largely a consequence of reduced photosynthetic efficiency. In the late spring, GEE and net uptake are significantly less than anticipated based on PAR, temperature, and canopy development (Fig 19a), and the below-average photosynthetic efficiency continues throughout the growing season (Fig. 32a). The Model-0c simulations indicate that water stress may account for the low photosynthetic efficiency observed in the mid-summer of 1998. However, the good agreement between model and observations may be partly coincidental in this instance, as the low photosynthetic efficiency begins in the late spring and is prominent in June and July when the under layer soil moisture is still above average (Fig. 7). 

Mid-growing season green foliage samples of oak collected at Harvard Forest, on a tract near the HFEMS [Magill, 2002, Ollinger 2002], indicate the foliar N content in 1998 was low for the 1992-2002 period, although not significantly different from the mean. Canopy data (LAI, foliage) suggests the low GEE observed in 1998 may be linked to ecological stress or trauma that damaged the foliage or retarded canopy development. In-situ measurements of LAI show the canopy development in 1998 appears to be stunted in early June. Oak green foliage samples [Magill, 2002, Ollinger 2002] had significantly elevated lignin content in 1998, which may be an indicator of stress. The high level of foliage lignification and the LAI observations suggest an external stress or traumatic event (e.g. frost, storm damage, acute pollutant exposure) may have stunted canopy development, leading to the anomalous carbon exchange observed in 1998.  Such canopy physiological stress responses are not commonly included in models of ecosystem carbon exchange, but environmental stress on plant communities is predicted to increase concomitant with climate change [IPCC? Other refs].    

2001

Net carbon uptake by Harvard Forest in ecological year 2001 was more than twice 
the 12-yr mean.  Ecosystem R was average in 2001, and GEE alone accounts for the anomaly in NEE. Prior to canopy emergence, the cumulative sum of NEE in ecological year 2001 was tracking  the 12-yr mean (Fig 30). Canopy development in 2001 was the earliest of the 12-yr record (Fig 31) and the start of the growing season was 9 days earlier than the 12-year mean (defined by date of maximum cumulative NEE
). The late spring of 2001 was the most productive late spring of the study period and the large net uptake can be explained largely by canopy development and ecosystem fast response to PAR and T during the time of year when days are long and the sun is high in sky. The early canopy development and favorable spring weather conditions were responsible for roughly 20% of the anomalous NEE observed in ecological year 2001 (0.5 of 2.3 Mg C ha-1). 

High GEE, average R, and the resulting high net uptake, continued throughout the growing season. CO2 uptake was particularly strong in the mid summer, exceeding the 12-yr mean by nearly 40% (0.70 Mg C/ha). The mid summer was warm and sunny, with adequate precipitation to maintain moderate soil moisture (Fig 7) however, the Model-0c analysis indicates that only 25% (0.2 Mg C/ha) of the mid summer NEE anomaly can be attributed to climatic conditions (Table 6
). The 2001 growing season persisted four days
 beyond the mean end-of-growing-season date (defined by minima in cumulative NEE), an assessment corroborated by independent phenological observations at Harvard Forest [O’Keefe, 2003]. Assuming the four “extra” growing season days are typical of 2001 summer days
, 0.2 Mg C ha-1 may be attributed to the extension of the 2001 growing season. The unusually early start and extended duration of the growing season and favorable summer weather conditions explain 40% (ca. 0.9 of 2.3 Mg C ha-1) of the 2001 NEE anomaly. 

The large net uptake of 2001 appears to have resulted from a combination of favorable climatic conditions and ecological or environmental factors that increased canopy photosynthetic efficiency. The lack of foliar chemistry data and LAI times series 
measurements for 2001 prevents us from attributing the 
observed enhanced canopy photosynthetic efficiency toincreased foliar N or leaf area..  An analysis conducted using the PNet model (which estimated 2001 foliar N based on the long-term trend) found that anomalies in foliar N may have been partly responsible for the uptake anomalies observed in both 2001 (high N)  and 1998 (low N) [Ollinger 2005 ?]. In addition, measurements of peak LAI suggest the leaf area in 2001 was higher than that of previous years, and 1998 was lower. 

B. Long-term Carbon Exchange Trends

Harvard Forest has been a net sink for CO2 each year, sequestering an average of 2.3 Mg C ha-1 yr-1, for a total of ca. 28 Mg C ha-1 during 1992 – 2003. The twelve years of CO2 exchange data show an unambiguous trend of increasing R and GEE; ~2% yr-1 (Fig. 13). The trends in R (0.2±0.1 Mg C ha-1 yr-1) and GEE (0.3±0.1 Mg C ha-1 yr-1) are statistically significant (p < 0.05).  GEE appears to be increasing slightly more rapidly than R, but the trend in NEE (GEE + R) is not statistically significant. 

The secular trend in annual R and GEE has been driven by growing season carbon exchange (Fig 33a-b). Daytime Model-0c NEE residuals demonstrate that the course of increasing photosynthetic uptake is not a result of trends in sunlight, soil moisture, or temperature (Fig 33d). Observations of nighttime NEE show the observed trends are not an artifact of R and GEE separation (Fig 33e). There is no significant R and GEE trend in the spring (Fig 34a), although the course of October GEE and R suggest a possible extension in the terminal end of the growing season (Fig 34b). However, the strong mid growing season trend in R and GEE, and lack of a significant trend early in the growing season indicates that the observed long term increase in annual R and GEE is not driven by an increase in the length of growing season length. 

Increasing Biomass

The long-term increase in ecosystem R and GEE may reflect increasing ecosystem metabolism associated with an aggrading, mid-successional forest. Above ground biomass at Harvard Forest is increasing ca. 1% yr-1 (1.1 Mg C ha-1 yr-1,
 Fig 13), accounting for roughly half the net uptake during 1992 - 2003. An increase in live biomass 
is expected to result in a rise in photosynthetic uptake, through increased leaf area, and enhanced growth and maintenance respiration

.    

Such an ecosystem response to increased biomass would have the largest magnitude and most distinguishable signal during the growing season, in agreement with the observed trend. Greater leaf area would increase the fast response to climate forcing, realized as enhanced photosynthetic efficiency. Likewise, the respiratory cost associated with biomass maintenance and growth is greatest in the growing season due to high temperatures and peak physiological activity. Inter-annual variability in springtime canopy emergence and the onset of senescence may be expected to obscure the long-term trend during these transitional periods.  

Evidence demonstrating linkage between the long term R and GEE trend and ecosystem biomass, beyond the coincident increase in above ground biomass and R and GEE, is sparse. Measurements of leaf area index (LAI) are available for only the last five years of the carbon exchange record [Pyle, 2003; Gower, 2002
], but they indicate a significant increase over this period. The LAI increase during 1998-2002 is highly correlated with GEE and daytime Model-0 residuals (Fig 35), but the limited duration of the LAI record prohibits drawing any general conclusions regarding the role of LAI in the 12 year GEE trend. 

Nutrient availability may also have contributed to the trend in carbon exchange. Measurements of green foliage (1988-1999, 2002) and litter chemistry (1988-1999) [Aber and Magill, 2001; Magill 2001; Ollinger 2002] indicate a long-term trend of increasing green foliage nitrogen content and nitrogen translocation (Fig 36). 

C. Implications for Carbon Cycle – Climate Changes Studies

Under conditions of climate change, the mean ecosystem responses to environmental variables may change due to physiologic stress or changing species composition [other factors? Refs]. Therefore, simulations of ecosystem function under climate change scenarios often utilize highly mechanistic, process-oriented models that require relatively little parameterization using local observations (i.e. IBIS-2). The comparison of Model-0 with IBIS-2 simulations was intended to assess the skill of a mechanistic model at a range of time scales. Simulations for Harvard Forest revealed both important similarities and salient differences. Model-0 generally performed better at the hourly time scale in the growing season, reflecting its “local” parameterization. Both models performed poorly at seasonal and longer time scales, where the mechanistic treatment was expected to do much better due to its treatment of carbon pools. The skill of both empirical Model-0 and the mechanistic IBIS was limited by the treatment of ecosystem respiration, which in both cases was parameterized as a function of  temperature. It is also noteworthy that each model has its own kind of “GEE vs R” error: IBIS-2 produced offsetting errors in GEE and R that led to agreement with observed annual average NEE, even though neither GEE, R, nor NEE were accurately simulated in any month.  The fitting procedure to obtain Model-0 produced errors in the separation of R and GEE within NEE. The systematic errors in IBIS could lead to significant prognostic errors when the model is in climate change scenarios.
The quantitative analysis of 12 years of NEE measurements at Harvard Forest indicates that a Q10-style 
dependence of R on temperature should be carefully considered
. This is a common assumption underlying simulation of ecosystem respiration by IBIS-2, and many other models of terrestrial ecosystem carbon exchange. Our findings demonstrate that short-term ecosystem R at Harvard Forest is not sensitive to temperature outside the seasonal transition periods (spring and fall). Despite explicit representation of carbon pools and the sophisticated 
treatment of land-surface physics, IBIS captures little of monthly or longer timescale variability of dormant season or summer R. While a more accurate simulation of dormant season soil temperatures in IBIS may reduce the negative bias in R, the failure of IBIS to capture the variability of dormant season R suggests the representation of soil respiration in IBIS (as in Model-0 and in many other models of terrestrial ecosystem carbon exchange) is flawed. The significant T-dependence in model formulations of R may significantly 
hamper the ability of terrestrial ecosystem models to simulate accurately changes in R under various climate-change scenarios.   

Hollinger et al. (ref?) recently proposed that the failure of prognostic ecosystem models results in part from insufficient representation of biogeochemical pools, or stocks. These stocks vary on monthly and longer timescales (e.g. leaf area, stored photosynthate, available soil N, etc.). For example, IBIS-2 contains detailed descriptions of multiple soil carbon pools, and stock size and turnover of leaves, stems and roots, but more processes may need to be represented before such models perform well at seasonal and longer time scales. These processes include the role of foliar N on photosynthesis and heterotrophic respiration, the allocation of photosynthate to storage or to tissues, the effects of herbivory, disease and fire or storm damage, and the effects of stand growth
.
 In particular, evaluation of the influence of longer-term stocks on R in mid-latitude forests is needed, since this basic component of net carbon sequestration appears to depend relatively little on short- term climate variability. In general, the results of this study point to the paucity of knowledge about ecosystem behavior at inter-annual and longer time scales, and the need to improve both local-scale parameterization and process formulation of prognostic ecosystem models
.

Appendix A

Climate Drivers

Supplemental climate data - daily precipitation totals, snowfall, and minimum and maximum air temperature have been obtained from the Shaler and Fisher meteorological stations (located X m from the tower and  station) and several surrounding weather stations[NCDC]. Hourly and daily precipitation and cloud cover data from Orange Airport (< 10 km N-NW from tower) for April 1995 forward have also been used [NCDC].  

1. PAR.

When available, gaps in the hourly above-canopy PAR data set were filled using PAR measurements taken by the ASRC group on the HFEMS tower.  For periods in 2001 when measurements are not available from either the Harvard or ASRC PAR instruments, the hourly global solar radiation measurements from the Fisher meteorological station (operational in February, 2001) were used to estimate above- canopy PAR at the EMS site. When the ASRC and Fisher radiation data are included, only 1135 hours of PAR observations are missing for the entire Nov 1991 – Dec 2002 time period. These remaining gaps in hourly PAR data were filled using the mean diurnal PAR cycle for a 30-day window centered on the day with missing data.  

2. Air Temperature.

Missing hourly measurements in the 27 m and 2.5 m air temperature data set were filled using appropriately adjusted measurements from adjacent levels in the air temperature profile, the sonic anemometer, or the Fisher meteorological station.  Prior to the establishment of Fisher meteorological station, when profile or sonic anemometer data was unavailable, the daily mean air temperature measured at Shaler meteorological station and the 10 – year mean diurnal temperature cycle for a 30 day window centered on the day with missing data were used to estimate missing hourly air temperatures. 

3. Precipitation.

Daily precipitation totals were obtained from the Fisher and Shaler meteorological station records. Missing data in the Fisher and Shaler precipitation records was filled using a distance weighted average of several surrounding meteorological stations [NCDC]. Station locations and weighting factors are given in Table A1. 

Appendix B

Gap-filling and time-integration

Equipment failure and data rejection reduce the average annual data coverage of our continuous eddy covariance measurements of NEE to about 50%, a fraction typical of continuous eddy covariance measurement sites [Falge et al., 2001]. A malfunctioning data acquisition system resulted in the loss of canopy CO2 storage data for two extended periods in 1997 and 2002, while occasional malfunctioning of the CO2 profile sampling system created additional, shorter duration gaps in the canopy CO2 storage data set. For periods lacking canopy CO2 storage data, hourly NEE (NEE = FCO2 + change in canopy CO2 storage) was derived by summing FCO2 observations with a seasonally varying, hourly mean storage term. 

Uncertainties and potential biases in annual sums of NEE, R and GEE, were estimated by comparing three variants of time integration algorithms: non-linear regression, look-up tables, and diel mean cycle [Falge et al. 2001a;b]. The non-linear regression technique is based on combining a Van’t Hoff function for temperature dependence of respiration with a Michaelis-Menten function to account for photosynthetic response to light. Observations of NEE, PAR and temperature (T) are used to optimize the equation parameters for approximately 30 day periods, and missing observations of NEE are estimated using the optimized equation. The look-up table method divides the data set into approximately two-month periods and classifies observations of NEE according to PAR and T. For each period, observed NEE was averaged according to class, creating a table from which missing NEE observations could be estimated based on environmental conditions (PAR and T). The diel mean cycle method divides NEE data into 5-day blocks within a 15-day window. Valid NEE observations were averaged by hour of the day, and missing NEE data for the 5-day block were estimated using the mean for the appropriate hour. If needed the 15-day window was expanded to ensure at least 3 valid NEE data for each hour of the 24 hours.  

Non-linear Regression

Non-linear regression techniques typically involve the use of a temperature function   (e.g. Lloyd and Taylor, 1994) and a light response curve (e.g. Falge et al., 2001), representing ecosystem respiration and photosynthetic carbon assimilation, respectively. For gap filling daytime hours we have employed the sum of a Van’t Hoff function (term 1, EQ. B1) and a Michaelis-Menten function (term 2, EQ. B1), while the gap filling of nighttime hours used a Michaelis-Menten function alone (i.e. set term 2 in EQ. B1 = 0).  

EQ. B1                         
[image: image8.wmf]
The complete time period from Oct. 28, 1991 through Dec. 31, 2002 was divided into 10 day blocks.  For a 30-day window about the center of each 10-day block, valid observations of FCO2, PAR, and T, were used in to optimize the parameters in EQ. O1, which then provided an estimate of missing FCO2 during the 10-day block. Daytime and nighttime were treated separately. During the dormant season, term 2 of EQ. O1 was simplified to a linear PAR response. Respiration during the night and dormant season (DOY 341 – 60) was taken as the gap filled NEE (observed or estimated FCO2).  Daytime R outside the dormant season was estimated using term 1 of EQ. O1 optimized using nighttime data. Employing FCO2 (not NEE) to estimate R introduces a systematic bias. Daytime estimates of ecosystem respiration are based on nocturnal observations of NEE (= R). Figure 2 shows that using nighttime observations of FCO2 as a basis for estimating R will result in a systematic underestimate. The correction for this bias is discussed below (see Section II.E).    

Look-up Table

The look-up table method [Falge, et al., 2001] involved dividing the data set into approximately two-month periods and for each period creating a table from which missing FCO2 could be estimated based on environmental conditions. For each two-month period daytime hours were assigned to different classes of air temperature (defined on 4 (C intervals) and  PAR (defined on  ca. 150 umol/m2/s intervals) while nighttime hours were classified by air temperature alone (defined on 2 degC intervals). Mean values of FCO2 were then calculated for each class of PAR & Tair (or Tair for nighttime observations).  Gaps in the look-up tables were filled using linear interpolation. Missing hourly FCO2 observations were filled using the appropriate look-up table. Nocturnal and dormant season (DOY 341 – 80, December 7 – March 21) daytime FCO2 was taken as the ecosystem respiration (i.e. R = FCO2). Respiration during the growing season daytime was estimated using the nighttime look-up table with linear interpolation to higher temperatures. Bias in the R estimate related to the use of FCO2 instead of NEE, and application of the appropriate correction are addressed in Section II. F.

Diel Cycle

The data set was divided into 5-day blocks and for a 15-day window about each 5-day block, valid FCO2 observations were averaged by hour of the day. When necessary, the 15-day window was expanded to ensure a minimum of 3 valid FCO2 observations for each hour of the day for the averaging period.  Missing FCO2 observations for a given 5-day block were estimated using the appropriate hourly mean. Windows of variable width about the 5-blocks were tested. Nocturnal and dormant season (DOY 341 – 80, December 7 – March 21) daytime FCO2 was taken as the ecosystem respiration (i.e. R = FCO2). Daytime, growing season R was estimated as the mean of the gap filled, nighttime FCO2 for a given five day bin; R is assumed to be independent of temperature. Bias in the R estimate related to the use of FCO2 instead of NEE, and application of the appropriate correction are addressed in Section II. F.

Non-parametric gap filling  

In order to compare temporally aggregated modeling predictions with observed NEE, we have employed a non-parametric gap filling scheme which is independent of Model-0 drivers (i.e. PAR and T, see below). Valid, u* - filtered observations of FCO2 and canopy CO2 storage were averaged by hour of the day according to five day bins, creating five-day aggregates. Gaps in the five-day aggregates were filled using bivariate interpolation.  Similarly, five-day aggregates of Model-0 predicted NEE were also created, using only hours when valid, u* - filtered FCO2 observations were available. For each five-day aggregate of observed storage, a constant was added to each hour to ensure canopy storage of CO2 summed to zero for that five day period, while preserving the diel pattern.  Five-day aggregates of observed NEE were created via summation of the FCO2 and CO2 storage five-day aggregates.   

Table B1. 

	Calendar

Year
	Annual†

	
	NEE
	R
	GEE

	1992
	-1.6
	10.1
	-11.7

	1993
	-1.8
	11.8
	-13.6

	1994
	-1.7
	10.6
	-12.4

	1995
	-2.8
	9.7
	-12.5

	1996
	-1.9
	11.3
	-13.3

	1997
	-1.6
	12.4
	-14.0

	1998
	-1.6
	10.6
	-12.1

	1999
	-2.1
	11.9
	-14.0

	2000
	-2.6
	11.9
	-14.5

	2001
	-4.3
	12.1
	-16.4

	2002
	-2.7
	12.4
	-15.1

	2003
	-2.1
	13.2
	-15.4

	Mean
	-2.2
	11.5
	-13.7

	1(
	0.8
	1.1
	1.4


Table B1.  Calendar year sums of NEE, R, and GEE at Harvard Forest from 1992–2003. † Data are in MgC ha-1 yr-1 .
Appendix C

Explanation of Seasons

The ecological year begins with the late fall season (DOY 301-340) which covers final descent of the ecosystem from the growing season into the long period of winter dormancy from early December into early April designated as the winter seasons (DOY 341-100). The early spring season commences shortly after the mean thaw date of the soil in the vicinity of the HFEMS tower and begins the ecosystem transition from dormant season to growing season.  During the early spring season, thawing soils and daily mean air temperatures exceeding 4 degC allow for the onset of regular conifer photosynthesis; the snow cover ends and canopy deciduous foliage begins to emerge (see Fig 4).  The canopy changes rapidly in the late spring when the bulk of canopy development occurs. By DOY 160 the leaf area is near the annual maximum (see Fig 4) and ecosystem is a net sink for CO2.  The period beginning with the time of full canopy development through the onset of senescence, roughly DOY 161 – 250, is the peak growing season.  Carbon uptake reaches the annual maximum, and following a brief plateau begins a gradual decline coincident with decreasing insolation, foliar aging and the approach to minimum soil moisture. The peak growing season has been divided into the seasons of early and mid summer.  

The complex ecosystem transition from mid growing season into winter dormancy has been captured with 3 seasons.  The late summer season coincides with the onset of  senescence, signaled by the increase in canopy PAR albedo from the broad summer minimum [Fitzjarrald, 2002; Moore et al. 1996], typically beginning around DOY 250. The daily mean ecosystem uptake of CO2 begins a rapid decline between DOY 250 – 260, with the ecosystem usually becoming a net source of CO2 by DOY 280, around the time when the foliage is at peak color [O’keefe] and the PAR ratio starts to decrease rapidly, signifying a canopy loss of leaf area.  Fifty percent of leaf fall typically occurs by DOY 300 for the dominant canopy species (red oak; DOY 285 for red maple, O’Keefe [ 2002] ). The early fall season runs from the later portion of the senescence period until leaf abscission is well under way (DOY 276 -  300). 

The onset of canopy emergence and rate of canopy development is highly variable from year to year, according to ground-based [O’keefe, 2002], and remote sensing [refs] phenological observations, in agreement with the PAR ratio (the midday ratio of above-canopy PAR to below-canopy PAR) measured at the HFEMS tower. The majority of canopy development occurs during the late spring and a PAR ratio index (PRI) was developed to account for inter-annual variability in canopy development:  

EQ. C1                                         
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In EQ. C1, PR is the daily, lowess smoothed PAR ratio, and PRmin and PRmax are the PAR ratio prior to  (DOY 90-120) and after completion of canopy development (DOY 170-205), respectively. The annual minimum and maximum PR are used to compute the PRI for each late spring, an approach that assumes the fully developed canopy is equivalent from year to year. The PRI ranges from 0 to 1 during the late spring and is set to 1 during other seasons. Late spring PRI for years 1992-2002 is given in Figure 4.    

Appendix D

Model-0 and wind direction 

At the HFEMS site, above-canopy flow is from the west ca. 70% of the time. Northwest and SW winds have roughly equal frequency on an annual basis, with NW flow dominating in the fall and winter, and SW flow dominating in the summer. The variability of carbon exchange with footprint sector and the influence seasonal scale climate patterns that may introduce inter-annual variability in footprint sampling were explored employing a modified version of Model-0, which includes wind direction, classified according to E (0-180), SW (180-270), as a factor, EQ. C1. A set of optimized parameters was derived for each season (a total of 64 parameters), using an approach similar to that employed to obtain the base Model-0 parameters (see Section III.A).   

EQ. C1
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In EQ. C1: for east wind wd2=wd3=0, for southwest wind wd2=1, wd3=0 , and for northwest wind wd2=0, wd3=1.

Appendix E

Soil moisture algorithms

Two modified forms of the Model-0 equation were explored in an initial investigation of the soil moisture – NEE link at Harvard Forest. The first modified Model-0 equation, Model-0B, includes a function of soil moisture that may be interpreted as an additional respiration term (EQ. A4) and was designed to test for a soil moisture role in regulating ecosystem respiration.  A third realization of Model-0, Model-0C (EQ. A5), multiplies the GEE term of the Model-0 equation by a soil moisture stress factor [Foley et al., 1996].  

The modified versions of Model-0 employ volumetric soil moisture, the soil moisture measure estimated with the soil hydrology model. However, soil moisture impacts soil respiration and photosynthesis through the soil water matric potential ((), which has a power law dependence on volumetric soil moisture and is expressed via soil water retention curves. Soil water retention curves have been measured for several soil plots at Harvard Forest [Savage and Davidson, 2000], but for the initial soil moisture – NEE modeling exercise we employed exponential functions of volumetric soil moisture which mimic to some extent the ( -Ψ relationship.      

 EQ. A4
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 EQ. A5
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In EQ. A4 and A5 parameters a1..a4 and the drivers T, <T>, PAR, and PRI are defined as in the  Model-0 equation (see above). The terms B and C define response to soil moisture in Model-B and Model-C, respectively. (sfc is the soil moisture deficit of the surface layer in mm of H2O, (f is the under layer soil moisture in terms of fractional field capacity (0-1), and a5, a6, a7 are fitted parameters. Using nine years (1992-2000) of hourly, u* filtered - NEE, T, PAR and reconstructed soil moisture observations, optimized parameters were derived for both models 0B and 0C for the early, mid, and late summer seasons using a non-linear least squares routine.

Table E1

	Parameter
	Model-0B
	Model-0C

	a1
	3.0
	4.8

	a2
	0.22
	0.21

	a3
	-31.8
	-33.9

	a4
	531
	541

	a5
	-0.012
	NA

	a6
	NA
	6.92

	a7
	NA
	0.21

	RMSE
	4.46
	4.36

	MAE
	3.19
	3.09

	Slope
	1.00
	1.00

	Int
	-0.01
	0.00

	rsq
	0.802
	0.812


Table E1. Optimized Model-0B/C parameters and calibration statistics. Model-0B/C calibrated using hourly observations of u* - filtered NEE, PAR, and T for DOY 301, 1991 through DOY 300, 2000. season = Model-0 season (see Appendix C), range = DOY range for Model-0 season, N = number of valid observations used in calibration. 

Units of : a1 [(moleCO2 m-2 s-1]; a2 [(moleCO2 m-2 s-1 degC-1]; a3 [(moleCO2 m-2 s-1]; 

a4 [(mole-photons m-2 s-1];  a5 [(moleCO2 m-2 s-1];  <T>mean [degC]; a6, a7, (f  are unit less 

<obs> = mean of observations, RMSE = root mean square error, MAE = mean absolute error, 
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var(res) = variance of residuals, var(obs) = variance of observations

Table E2

	
	N
	<pred>
	MAE
	RMSE
	a0
	a0.se
	a1
	a1.se
	R
	rsq

	
	
	
	
	
	hour
	
	
	
	
	

	Model-0B
	1944
	-4.10
	2.31
	3.13
	0.20
	0.08
	1.05
	0.01
	0.94
	0.89

	Model-0C
	1944
	-4.10
	2.17
	2.97
	0.18
	0.07
	1.05
	0.01
	0.95
	0.90

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	season
	
	
	
	
	

	Model-0B
	9
	-4.10
	0.35
	0.41
	0.90
	1.09
	1.22
	0.26
	0.87
	0.73

	Model-0C
	9
	-4.10
	0.25
	0.29
	1.10
	0.67
	1.27
	0.16
	0.95
	0.86


Table E2. Mid-summer Model-0B and Model-0C predicted NEE vs. observed NEE for hour, day, and season time scale. Date based on five-day aggregates (see text). Statistics based on inter-comparison Model-0 with observations for DOY 301, 1991 through DOY 300, 2000. pts = number of valid observations used in calibration. Units of  <pred>, MAE :  [(moleCO2 m-2 s-1]; 

a0 and a1 (a0.se & a1.se)  = intercept and slope (standard error) for linear regression of  Model-0B/C predicted NEE vs. observed NEE ( NEEobs = a0 + a1*NEEpred) 

<pred> = mean of predictions, RMSE = root mean square error, MAE = mean absolute error, 

r = correlation coefficient


[image: image16.wmf]
var(res) = variance of residuals, var(obs) = variance of observations

 To improve simulation of the physiological response of the ecosystem to soil moisture in the mid-summer, a hydraulic resistor-based model of canopy water potential was coupled with a modified Model-0 equation (EQ. A2a & b). The data sets for NEE and driving variables (Ψ, PAR, T) were divided into 5-day aggregates, each of 24 hours (Appendix B). Water retention curves [Savage and Davidson, 2000] were used to convert the hydrology model-estimated volumetric soil moisture to matric potential (ΨS). The daily canopy water potential was assumed to behave periodically and is estimated using EQ. A2a.  The canopy matric potential ((C) was included as an additional term in the original Model-0 equation that modifies gross carbon assimilation (EQ. A2b).  Equations A2a and A2b were solved iteratively to obtain the optimized parameter set.

EQ. A2a

[image: image17.wmf](

)

E

A

B

dt

d

C

S

C

*

-

*

Y

-

Y

=

Y


(2)

EQ. A2b
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In EQ. A2a 
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In the hydraulic resistor equation, EQ. A2a, ΨS and ΨC are the matric potential of the soil and canopy, the product EA is the canopy water transpiration rate, and B is the RC time constant for refilling the canopy with water. Model-I uses GEE as a proxy for the canopy transpiration flux and parameter A is equivalent to (/C, where C is the canopy water capacitance and ( is the canopy water use efficiency. The parameter a5 controls the direction and magnitude of the ΨC influence on NEE. 
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� EMBED Equation.3  ���








�PAGE \# "'Page: '#'�'"  ��That still doesn’t really sound exciting, but we can ponder some more on it


�PAGE \# "'Page: '#'�'"  �Page: 1���should not be called a modeling study—it’s a data synthesis and modeling (IBIS) study.


�PAGE \# "'Page: '#'�'"  �Page: 1���be specific, and present some crowing and definite results


�PAGE \# "'Page: '#'�'"  �Page: 1���we should be quantitative—it’s not really that little!


�PAGE \# "'Page: '#'�'"  �Page: 1���we don’t really derive new quantitative information about this – this is basically point of view expressed by Barford et al., without quantification.  Forest stand development is not given in IBIS either.  But we do know some things about T sensitivity of GEE and R that are new.  Those are the things that go here.


�PAGE \# "'Page: '#'�'"  �Page: 2���A capsule summary is needed here.


�PAGE \# "'Page: '#'�'"  ��Abstract is probably too long. Some detail can be cut. Focus instead on the highlights


�PAGE \# "'Page: '#'�'"  ��modeling the drivers, or modeling the response? 


�PAGE \# "'Page: '#'�'"  �Page: 4���coupled…but may become decoupled on short—or medium time scales


�PAGE \# "'Page: '#'�'"  ��


�PAGE \# "'Page: '#'�'"  ��It is illogical that R can exceed GEE for very long. Once the available pool of �Carbon is used up R cannot exceed GEE.  Do these studies make any comment about the time scale for the feedback they predict?


�PAGE \# "'Page: '#'�'"  ��Specify m)(ore explicitly, and provide references. ‘…. Effects observed in growth chamber and free-air CO2 enrichment (FACE) studies [Bazzaz? Who has summarized the FACE work?]


�PAGE \# "'Page: '#'�'"  �Page: 4���This missies the point—G and R are coupled (no G, no R), but there is a question of time scale.  they can be uncoupled for significant period, in the case of some soil organic matter, 1000s of years. All of this discussion relates to “short” time scales, viz. seasonal, annual, decadal.


�PAGE \# "'Page: '#'�'"  ��See later note about my dislike for this terminology. In this context do we need to specify the temp relationship that the models use, Is it even true that exponential is usually used, and is it fair to suggest that most use annual response to derive T function?


�PAGE \# "'Page: '#'�'"  ��If you call it a flux here it ought to be called PPFD


�PAGE \# "'Page: '#'�'"  �Page: 5���Need more than references here—we have to have a really good understanding of what is in fact being done, and tack on the references.


�PAGE \# "'Page: '#'�'"  ��The highlighted phrase needs to be fixed


�PAGE \# "'Page: '#'�'"  �Page: 5���This is a good start for the paper


�PAGE \# "'Page: '#'�'"  �Page: 5���good for the abstract!


�PAGE \# "'Page: '#'�'"  �Page: 5���explain:  no pools!


�PAGE \# "'Page: '#'�'"  �Page: 5���…and environmental [soil moisture]?


�PAGE \# "'Page: '#'�'"  ��This is a good place to note that absence of pools in zero order model could be a contributor to the anomalies. This point can foreshadow a more detailed discussion later. It is an important result that so much of variance can be explained without considering the pools (that is the interpool allocation is mostly at steady state), but small deviations from steady state allocation are the drivers for longer-term patterns that we identify


�PAGE \# "'Page: '#'�'"  ��was the capability of model-0 evaluated by comparison, or were model-0 and IBIS  contrasted? In the end you find flaws in both.


�PAGE \# "'Page: '#'�'"  �Page: 5���what we are really doing is testing the IBIS response functions for time scales where model 0 is relevant.  Thus this discussion needs to be re-focused on the actual goals of the IBIS part.


�PAGE \# "'Page: '#'�'"  ��No, this doesn’t inform future studies of climate change, but provides a different constraint on the models and can point to where the models need to be improved


�PAGE \# "'Page: '#'�'"  ��swamp didn’t really expand, but the forested boggy part was inundated, drowning the trees.


�PAGE \# "'Page: '#'�'"  ��Not only in summer, much harvesting was in winter. Was summer of 2000 the first growing season after the harvest or the start of harvest?


�PAGE \# "'Page: '#'�'"  ��Is Wendy’s paper submitted? Cite it or her senior thesis.


�PAGE \# "'Page: '#'�'"  ��Check the heights I think they are wrong


�PAGE \# "'Page: '#'�'"  ��We don’t use this anywhere so I don’t think it needs to be included in description


�PAGE \# "'Page: '#'�'"  ��now further checked by inclusion 


�PAGE \# "'Page: '#'�'"  ��what is this, is there a 4th method?


�PAGE \# "'Page: '#'�'"  ��Not only the oaks are above the 12m sensor it is fair to consider what is above the sensor as the canopy, and what is below it as the subcanopy


�PAGE \# "'Page: '#'�'"  ��autumn also? Or explain why it isn’t necessary


�PAGE \# "'Page: '#'�'"  ��what does quite mean? Compared to some sites HF is really pretty homogeneous


The forest surrounding the tower has variable composition and drainage status (Fig. 1) Observed carbon exchange characteristics vary with local wind direction as different sectors of the tower footprint are sampled.


�PAGE \# "'Page: '#'�'"  ��if this is the seasonal sum, it needs to be made clear that it is, in order to distinguish from the hourly data noted in next sentences


�PAGE \# "'Page: '#'�'"  ��same a6 is in equation 2?


�PAGE \# "'Page: '#'�'"  ��Need to define RC time constant, or just call it a time constant, but really should define what you mean in terms of what kind of equation the time constant if for (e.g. exponential or something else that informs the reader what it means when t=C


�PAGE \# "'Page: '#'�'"  ��are all the a with same number the same parameter? It looks like they might not be.


�PAGE \# "'Page: '#'�'"  �Page: 11���Not all of these panels are needed, but some are.


�PAGE \# "'Page: '#'�'"  �Page: 11���What about carbon allocation?


�PAGE \# "'Page: '#'�'"  �Page: 12���These data are available, but from Dave Fitzjarrald’s group, not Wofsy group. Correct! (scw)


�PAGE \# "'Page: '#'�'"  �Page: 12���WB?


�PAGE \# "'Page: '#'�'"  �Page: 12���This sentence could go in the Fig 8 and Table 3 captions instead of the main text.


�PAGE \# "'Page: '#'�'"  �Page: 12���This figure is not needed


�PAGE \# "'Page: '#'�'"  ��It would work to put these couple sentences that summarize the agreement between filling routines in the methods section.


�PAGE \# "'Page: '#'�'"  �Page: 12���Cite confirmation using extrapolation of daytime data to 0 light.


�PAGE \# "'Page: '#'�'"  ��I’ve computed the zero intercepts for a large block of the data and compared it to nighttime R. This comparison is made in the draft paper by Hadley et al.


�PAGE \# "'Page: '#'�'"  ��Is it Q10 or exponential temperature relationship that is used. 


Q10 is a manipulation of exponential function over the narrow physiologically relevant temperature range  In any case the function should be defined or call it an exponential relationship, Q10-style doesn’t have an unambiguous meaning. 


�PAGE \# "'Page: '#'�'"  ��I don’t have figure 10 here to look at. Is it obvious from it that a fit will overestimate R?


�PAGE \# "'Page: '#'�'"  ��I think this section isn’t clear about what you did


�PAGE \# "'Page: '#'�'"  �Page: 13���confusing—which approach did not assume R=R(T)?


�PAGE \# "'Page: '#'�'"  ��Do we need to show all three? Comparison of filling methods is not new. You just said in previous paragraph that the three methods agreed well and gave an estimate of uncertainty associated with filling. No need to repeat. Better estimate of uncertainty for filling is to consider the uncertainty in the parameters (at least for the non-linear method)


What is the range of annual NEE if you just use the parameters +/- std dev and the observed T and PAR – no real NEE at all.


�PAGE \# "'Page: '#'�'"  ��Variability or variations


�PAGE \# "'Page: '#'�'"  �Page: 13���Fig 13 should have on it only the biomass change, with a trend line and slope given in %/yr (around 1. %/yr; Ref. to Fig. 13 has been moved up, 


�PAGE \# "'Page: '#'�'"  ��redundant


�PAGE \# "'Page: '#'�'"  ��though bear in mind that it could still be responding to soil temperatures that are not varying on a simple 24-hour cycle.


�PAGE \# "'Page: '#'�'"  �Page: 14���This paragraph doesn’t belong under the “aggregation” heading…


�PAGE \# "'Page: '#'�'"  ��Perhaps an astoundingly good result for zero-order model that does not allow allocation between pools. Implies that the various carbon pools are largely at some steady state so that instantaneous responses are largely in control


�PAGE \# "'Page: '#'�'"  �� Can note here the influence of ‘pools’ that are not included in a zero-order model


�PAGE \# "'Page: '#'�'"  ��perhaps variation in the physiological responses from the mean should be mentioned explicitly. Variation in the response functions isn’t quite covered by the points already made.  Variation in the response includes things like changes in nutrients, maybe a better canopy because it got a head start one year, or decreased because it got frosted, caterpillars, and so on


clouds are going to accounted for by PAR, but do you mean differences in direct/diffuse light?


�PAGE \# "'Page: '#'�'"  �Page: 14���How is the significance evaluated?


�PAGE \# "'Page: '#'�'"  �Page: 14���These figures show rather complex model—data comparisons that need a different level of discussion here.  Also, I think the r2 in Fig. 17 is probably not computed correctly.  It should be directly from model vs data and not a fit of residuals to a line.


�PAGE \# "'Page: '#'�'"  �Page: 14���


�PAGE \# "'Page: '#'�'"  �Page: 14���The wind idea doesn’t really go with the rest of the para., and should be moved to the next para or left in Appendix D.


�PAGE \# "'Page: '#'�'"  ��We have computed some fractional abundance of conifers/deciduous based on litter collections in the sectors. I think the presence of conifers is the major factor, they are in the NW sector. The upland soils are going to warm faster than the wetland soils. Furthermore water level is high in spring and the wetland will be flooded, so if anything the swamp respiration ought to be reduced.


The difference between sectors will be most dramatic in spring when one sector is active with abundant conifers and the other is still bare canopy. Later when all sectors have  canopy they will not be as different. With the right explanation the sector dependence is a key point that ought to stay in text and not be relegated to appendices


�PAGE \# "'Page: '#'�'"  �Page: 14���separate panels for M0/M0B and M0C.


�PAGE \# "'Page: '#'�'"  �Page: 15���Fig 25 ?  Fig. 26, Model-I = Model 0C??


�PAGE \# "'Page: '#'�'"  �Page: 15���This section needs to be reconsidered, and it does not seem to belong here.


�PAGE \# "'Page: '#'�'"  �Page: 15���Again, this para seems like discussion.


�PAGE \# "'Page: '#'�'"  �Page: 15���a take-home message….


�PAGE \# "'Page: '#'�'"  ��Yes but the respiration in the well drained soils was decreased. Whose to say what the balance will be when you add it all up. On balance I think maybe there are more patches that have depressed respiration. It is only the margins around swamp that will have enhanced respiration


�PAGE \# "'Page: '#'�'"  �Page: 16���r2 is never negative; using are using a different metric that needs defined.


�PAGE \# "'Page: '#'�'"  ��Need to consider this point and discuss it some more. Clearly individual soil elements are responding to temperature, but we find that the integrated WHOLE-ECOSYSTEM respiration does not. Is that because we don’t use the right temperature in the model?, is the temperature variation of soils too small in summer to drive a diel pattern – (maybe it is more synoptic?), or is it an aggregation problem that individual elements respond to temperature, but the temperature patterns for each element aren’t in phase, and the responses are different, so when you add them up across the footprint you get noise. I think it is important to make this distinction between complete lack of temperature response or independent temperature responses that are not coherent, thus the overall result appears to be lack of temperature response





�PAGE \# "'Page: '#'�'"  �Page: 16���No idea what is being said here


�PAGE \# "'Page: '#'�'"  �Page: 16���looks important, but I don’t follow the procedure.  I think you are using modeled GEE, ignoring modeled R, and comparing to “observed” GEE using observed NEE and R.  If so, it seems as though this might be done straight off, or at least referred to above, and explained more clearly here.  It is interesting, showing that the Model-0 errors attach more to modeling R as a T function than to errors in modeling G.  This is highly relevant to the IBIS discussion and a cogent summary is needed here..


�PAGE \# "'Page: '#'�'"  �Page: 17��� never mind…


�PAGE \# "'Page: '#'�'"  �� What is significant here? Better instead make a quantitative statement; premature by how much?


�PAGE \# "'Page: '#'�'"  ��Whose phonological observations? Are we using theOkeefe data set here?


�PAGE \# "'Page: '#'�'"  ��Why is the model run with a fixed date for budbreak. It ought to be simple to use the right date. It’s not fair to bash the model for getting the GEE wrong when the inputs to model are known to be wrong.


�PAGE \# "'Page: '#'�'"  �Page: 17���Based on looking at recent ED simulations, this may have as much to do with allocation as with T parameterizations.


�PAGE \# "'Page: '#'�'"  ��Note that this is due to snowcover and when the forest does not have a snowpack, the soils do freeze. Why not fix the model to have a snowpack for insulation? It isn’t the physiology that is wrong for this aspect of discrepancy, but the meteorology module that doesn’t simulate insulation by snowcover.


�PAGE \# "'Page: '#'�'"  ��See note above.  The treatment of soil layers and their temperature in winter clearly lacks some obvious and  essential sophistication, and it’s not fair to bash the model as much as this sentence does.


�PAGE \# "'Page: '#'�'"  �� Where have we introduced any of this idea?  See note above that we should explain why not using PRI in the fall as well as in spring


�PAGE \# "'Page: '#'�'"  �Page: 17���On the other hand, these next 3 para’s read more like results than discussion…


�PAGE \# "'Page: '#'�'"  ��But in previous section you quote it as 200%, which is exactly equal to twice. Which is it?


�PAGE \# "'Page: '#'�'"  ��What is this definition. Would it make more sense to describe the definition as the inflection point in cumulative NEE trace?


�PAGE \# "'Page: '#'�'"  �Page: 19���could be the lead-in


�PAGE \# "'Page: '#'�'"  �Page: 19���seems like too much for 4 days in fall.


�PAGE \# "'Page: '#'�'"  ��That wouldn’t be a good assumption. Clearly days are shorter and sun is lower than in mid summer, and the canopy has probably begun to senesce. Don’t make this assumption, reviewers will laugh


�PAGE \# "'Page: '#'�'"  �Page: 19���where are data for 2000 and 2002 (I have 1998-99).


�PAGE \# "'Page: '#'�'"  ��Nothing ever limits ability to speculate, but absence of data can prevent us from proving anything. What about litter mass at end of year. We ought to have that for almost all years. Mid-summer LAI was not always done, nor were leaves always collected.


�PAGE \# "'Page: '#'�'"  ��What measurements of peak LAI?


�PAGE \# "'Page: '#'�'"  �Page: 20���move up to the data section


�PAGE \# "'Page: '#'�'"  �Page: 20���Is this not an estimate including belowground?


�PAGE \# "'Page: '#'�'"  ��An increase in above ground woody biomass doesn’t have to be an increase in live biomass doesn’t have to be an increase in live biomass. Probably live increases a little bit. Assuming the live part of tree is a constant-width annulus of cambium and sapwood the live part should increase with circumference


�PAGE \# "'Page: '#'�'"  �Page: 20���Is there any evidence for increasing leaf areas?


�PAGE \# "'Page: '#'�'"  ��If this is happening we should observe it in the litter inputs – lets look! If litter hasn’t been going up, then this explanation should be deleted.


�PAGE \# "'Page: '#'�'"  �Page: 20���Where do I get these data?


�PAGE \# "'Page: '#'�'"  �� According to the discussion it wouldn’t matter what function you used since there isn’t any dependence at all. 


�PAGE \# "'Page: '#'�'"  �Page: 21���For Chris—is this actually what is emerging in IBIS?  Is there an allocation issue?


�PAGE \# "'Page: '#'�'"  ��But it isn’t sophisticated physics if there isn’t an insulating snow pack


�PAGE \# "'Page: '#'�'"  ��too many significants in this sentence


�PAGE \# "'Page: '#'�'"  ��is it that more processes are needed, or is the problem that we can only guess about allocation between pools without some way to measure the distribution of fixed carbon within the plant. We can’t model accurately what we can’t observe.


�PAGE \# "'Page: '#'�'"  �Page: 22���Not sure this really does it.  Some models try to represent all of these.


�PAGE \# "'Page: '#'�'"  �Page: 22���Fair comment—but I think something more synthetic is needed.
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