A Rigorous Extension of the Schönhage-Strassen Integer Multiplication Algorithm Using Complex Interval Arithmetic

Thomas Steinke Raazesh Sainudiin

Department of Mathematics and Statistics
University of Canterbury
Christchurch, New Zealand

tas74@student.canterbury.ac.nz r.sainudiin@math.canterbury.ac.nz
Disclaimer

- Somewhat applied...
- ...but some nice ideas.

Big picture:
- We have a theoretically-great algorithm.
- The algorithm requires real computation.
- In practice the algorithm isn’t so fantastic.
- We use interval arithmetic to “fix” the real computation problems...
- ...to get a “better” algorithm.
Motivation & Background for fast multiplication
Discrete Fourier Transform
Fast Fourier Transform
Polynomial Multiplication
The Schönhage-Strassen Algorithm
Containment Sets
Conclusion
Further Work
Motivation & Background

- Multiplying large numbers can be time-consuming if done often enough.
- Computers work with 1024-bit numbers regularly for cryptography.
- Long multiplication takes $O(n^2)$-time to multiply two n-bit numbers.
- In 1952 A. Kolmogorov conjectured that there is no faster algorithm than $O(n^2)$.
- In 1960 A. Karatsuba found an $O(n^{\log_2(3)}) = O(n^{1.58})$-time algorithm.
- In 1970 A. Schönhage and V. Strassen find an $O(n \log(n)^3)$-time algorithm. They also find an $O(n \log(n) \log(\log(n)))$-time algorithm.
- In 2007 M. Fürer found an $n \log(n)2^{O(\log^*(n))}$-time algorithm.
The Discrete Fourier Transform

- Maps \mathbb{C}^n to \mathbb{C}^n.
- Primitive roots of unity. $\omega_n = e^{\frac{2\pi i}{n}}$.

Given a vector $\mathbf{a} = (a_0, a_1, a_2, \cdots, a_{n-1}) \in \mathbb{C}^n$.
- Interpret \mathbf{a} as a polynomial $f_{\mathbf{a}}(z) = a_0 + a_1 z + a_2 z^2 + \cdots + a_{n-1} z^{n-1}$.
- The discrete Fourier transform (DFT) of \mathbf{a} is $\hat{\mathbf{a}} = (f_{\mathbf{a}}(\omega_n^0), f_{\mathbf{a}}(\omega_n^1), f_{\mathbf{a}}(\omega_n^2), \cdots, f_{\mathbf{a}}(\omega_n^{n-1}))$.
- The DFT can be represented by a matrix.
Suppose that \(n \) is even and \(a \in \mathbb{C}^n \).

\[
\hat{a}_i = f_a(\omega_n^i) = a_0\omega_n^0i + a_1\omega_n^1i + \cdots + a_{n-1}\omega_n^{(n-1)i}
\]

\[
= \left(a_0(\omega_n^2)^0i + a_2(\omega_n^2)^1i + \cdots + a_{n-2}(\omega_n^2)^{(n/2-1)i} \right)
\]

\[
+ \omega_n^i \left(a_1(\omega_n^2)^0i + a_3(\omega_n^2)^1i + \cdots + a_{n-1}(\omega_n^2)^{(n/2-1)i} \right)
\]

Let

\[
a_{\text{even}} = (a_0, a_2, \cdots, a_{n-2}) \in \mathbb{C}^{n/2},
\]

\[
a_{\text{odd}} = (a_1, a_3, \cdots, a_{n-1}) \in \mathbb{C}^{n/2}.
\]

Then

\[
\hat{a}_i = (\hat{a}_{\text{even}})_i + \omega_n^i (\hat{a}_{\text{odd}})_i
\]
The Fast Fourier Transform 2

Using

\[\hat{a}_i = (\hat{a}_{\text{even}})_i + \omega_n^i (\hat{a}_{\text{odd}})_i \]

- ‘Divide and Conquer’ algorithm. \(O(n \log(n)) \) complex additions and multiplications needed. (\(n \) must be a power of 2.)
- The inverse discrete Fourier transform is given by
 \[a_i = \frac{1}{n} f_\hat{a}(\omega_n^{-i}). \]
- The inverse discrete Fourier transform can also be computed using \(O(n \log(n)) \) operations.
Take two polynomials $f_a(x)$ and $f_b(x)$. We want to multiply them to get $f_c = f_a \cdot f_b$. Then

$$c_i = \sum_j a_i b_{i-j}.$$

But

$$\hat{c}_i = f_c(\omega_n^i) = f_a(\omega_n^i) f_b(\omega_n^i),$$

$$= \hat{a}_i \hat{b}_i.$$

So we can calculate \hat{c} without calculating c.
This leads to a fast polynomial multiplication algorithm:

1. Calculate \hat{a} and \hat{b} in $O(n \log(n))$-time.
2. Calculate \hat{c} in $O(n)$-time.
3. Calculate c in $O(n \log(n))$-time.

Overall, we can multiply in $O(n \log(n))$-time – much better than $O(n^2)$.
Multiplying integers is a special case of multiplying polynomials. Integer multiplication is polynomial multiplication followed by carries.

The Schönhage-Strassen Algorithm

1. Start with two integers expressed as vectors of digits \(a \) and \(b \).
2. Choose a suitable \(n \).
3. Compute \(\hat{a} \) and \(\hat{b} \) using the fast Fourier transform.
4. Compute \(\hat{c} \) using \(\hat{c}_i = \hat{a}_i \hat{b}_i \).
5. Compute \(c \) using the inverse fast Fourier transform.
6. Perform carries on \(c \).
7. Now \(c = a \times b \).
Problem: Computers cannot do exact complex arithmetic.

- Computers can do approximate complex arithmetic.
- We know that \(c \) must be a vector of integers.
- So we round to the nearest integer. e.g. \(1.1 + 0.1i \) is rounded to 1.
- As long as the error is small enough, this will give the correct answer.

Question

How can we be sure that the error is small enough for rounding to give the correct answer?
Question

How can we be sure that the error is small enough for rounding to give the correct answer?

- It can be proved that $O(\log(n))$-bit floating point numbers will suffice.
- In practice we have fixed 52-bit (double) floating point numbers.
- We can avoid the problem by doing the Fourier transform over a finite ring ($\mathbb{Z}_{2^{2n}}$). But this is tricky.
- We can use containment sets to guarantee correct answers.
If \(x \in S \), then we say \(S \) is a **containment set** (for \(x \)).

During computation we may not be able to compute \(f(x) \) exactly but usually we can find a small containment set for \(f(x) \).

- e.g. \(\frac{1}{3} \in [0.333, 0.334] ; \sqrt{2} \in [1.414, 1.415] ; \)
- \(x, y \in [0, 1] \implies x + y \in [0, 2] \) i.e. \([0, 1] + [0, 1] \subset [0, 2] \)

We can go through the entire polynomial multiplication algorithm this way and compute a containment set for the answer.

We end up with an interval/rectangle that definitely contains the answer.

The diameter should be fairly small. It should only contain one integer, which allows us to guarantee the correct outcome.
\[[a, \bar{a}] + [b, \bar{b}] = [a + b, \bar{a} + \bar{b}] \]
\[[a, \bar{a}] - [b, \bar{b}] = [a - \bar{b}, \bar{a} + b] \]
\[[a, \bar{a}] \cdot [b, \bar{b}] = \min\{ab, a\bar{b}, \bar{a}b, \bar{a}\bar{b}\}, \max\{ab, a\bar{b}, \bar{a}b, \bar{a}\bar{b}\} \]
\[[a, \bar{a}] / [b, \bar{b}] = [a, \bar{a}] \cdot [1/b, 1/b], \text{ if } 0 \notin [b, \bar{b}] . \]
Containment Sets 3

A Rigorous Extension of the Schönhage-Strassen Integer Multiplication
End result: An algorithm that guarantees its output, unlike a naïve implementation.

If we cannot guarantee a correct result, we have to increase the precision and try again. (Or use a different algorithm.)

The speed of this algorithm is a constant multiple of that of the naïve implementation.
Conclusion 2

A Rigorous Extension of the Schönhage-Strassen Integer Multiplication
Further Work

- Results are promising.
- Optimise the implementation to see how it compares to other fast multiplication algorithms.
- More accurate calculation of $\omega_n = e^{\frac{2\pi i}{n}}$.
- Circular containment sets – better for rotation/multiplication by ω_n.