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Abstract

The question of how machines can be endowed with the abil-
ity to acquire and robustly manipulate commonsense knowl-
edge is a fundamental scientific problem. Here we formu-
late an approach to this problem that we call knowledge infu-
sion. We argue that robust logic offers an appropriate seman-
tics for this endeavor because it supports provably efficient
algorithms for a basic set of necessary learning and reason-
ing tasks. We observe that multiple concepts can be learned
simultaneously from a common data set in a data efficient
manner. We also point out that the preparation of appropriate
teaching materials for training systems constructed according
to these principles raises new challenges.

Introduction
Perhaps the most important advance that might be made
to make computers more useful to humans is that of em-
powering them with the ability to acquire and manipulate
commonsense or unaxiomatized knowledge. Knowledge in-
fusion is a particular approach to handling unaxiomatized
knowledge. We define it here to mean any process of knowl-
edge acquisition by a computer that satisfies the following
three properties:

1. The stored knowledge is in such a form that principled
reasoning on it can be carried out computationally feasi-
bly. In particular two or more pieces of knowledge can be
chained together so as to derive a conclusion, and the con-
fidence in the conclusion that is justified can be estimated
in a principled way.

2. The stored knowledge and principled reasoning are such
that the reasoning is robust to errors in the inputs to the
system, to uncertainty in the knowledge, or to the grad-
ual changes in the truth of various pieces of knowledge.
Robustness is ensured and brittleness avoided by means
of a large-scale continuous process of learning from an
environment.

3. The knowledge acquisition can be done automatically on
a massive scale, and simultaneously for many concepts,
being permitted both by the computational efficiency of
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the algorithms as well as by their economy in the use of
external data.
In this paper we propose a theoretical basis for knowl-

edge infusion in terms of robust logic. Knowledge infusion
based on robust logic can be distinguished from other cur-
rent approaches to reconciling learning and reasoning, in
three important respects. First it provides a common seman-
tics for both the learning and the reasoning. Second it places
at the forefront the criterion of the existence of efficient, in
particular polynomial time and data efficient, algorithms for
all aspects of the process, including learning, reasoning and
dealing with multiple objects and relations. Third, its goal
is quite ambitious - in contrast with the term “knowledge
extraction” as widely used - its aim includes the extraction
from data of knowledge that will be useful in contexts not
foreseen at the time of the extraction.

In this paper we discuss five issues.
First, we describe the algorithmic approach and point out

that the robust logic is able to address the necessary chal-
lenges because it has an appropriate semantics, and also be-
cause it incorporates a quantitative notion of working mem-
ory.

Second, we observe that beside algorithmic issues there is
the additional problem of preparing data or, in our terminol-
ogy, teaching materials, for such systems.

Third, in knowledge infusion there is no one fixed target
for the learning - one needs to attempt to learn as many tar-
gets as possible from the available data. The question arises
as to the needed sample complexity of simultaneously learn-
ing many concepts from the same data set.

Fourth, if we are assuming that the source of knowledge is
data, the question arises as to why we need reasoning at all.
Can answers to all queries be derived equally well by mem-
orizing all the data, and answering each query as it arises by
analyzing the data anew, as suggested in Khardon and Roth
(1997)?

Lastly, for completeness, we briefly describe a simplified
robust logic on which such systems might be based.

Knowledge Infusion
Knowledge infusion was first outlined as a goal in (Valiant
2000a) where an architecture for systems for achieving it
was described. It was soon realized that some more foun-



dational work was required to define a semantics for knowl-
edge infusion, and (Valiant 2000b) took a first step in that
direction by introducing robust logics. In particular, the lat-
ter paper described polynomial time algorithms for both the
learning and reasoning processes there described, and, per-
haps most importantly, a common semantic basis for both.

The philosophical approach we use can be summarized
very simply as follows: We adapt the semantics of learn-
ing so that it also applies to the reasoning problem. Good
empirical performance on previously unseen examples is the
accepted criterion of success in supervised learning. It is ex-
actly this criterion that we believe needs to be achieved for
reasoning systems to be viewed as robust.

The most immediate theoretical problems that have to be
addressed are:

1. Knowledge infusion has both a logical aspect needed for
reasoning, as well as a statistical learning aspect needed
to ensure that the knowledge base is maintained robustly
so as to resist errors and inconsistencies. A common se-
mantics is needed that works for both aspects.

2. A theory of knowledge infusion has to provide efficient
computational solutions in an area where there are at least
three separate identifiable sources of potential exponen-
tial complexity: learning (even in a propositional setting),
reasoning (even in a propositional setting), and handling
multi-object or relational representations.
In order to address (1) we have rules that may be chained

as logical rules, but their semantics is that of learning. A
rule, which may have been either preprogrammed or learned,
is not assumed to be true in any logical sense. Instead it is
constantly tested against examples observed in the world and
the degree of belief that is justified in it depends empirically
on how often it is found to be true.

In order to address (2) we have to have a learning frame-
work that allows relational expressions but is nevertheless
polynomial time bounded. Learning in a relational setting
has been explored in a variety of contexts (Haussler, 1989;
Quinlan, 1990; Lavrac et al. 1991; Kramer et al. 2001;
Cumby and Roth, 2002, 2003; Valiant, 1985.) It clearly of-
fers some challenges, both computational and conceptual,
beyond those of propositional learning.

The proposed formalism is based on Valiant (2000b) and
is, very briefly, of the following form. The rules learned are
equivalences. The right hand sides are simple predicates.
The left hand sides may be complex conditions, typically
a linear inequality in terms of features that are themselves
conjunctions of basic relational predicates with local quan-
tifications. The rules, though equalities, may be chained to-
gether in reasoning. Polynomial time algorithms exist for
both learning and sound and complete reasoning, in senses
there defined, provided the base relations have constant ari-
ties.

An important aspect of this robust logic is that it adapts
the notion of “working memory” from cognitive science
(Miller, 1956; Newell 1987; Miyake and Shah, 1999) into
mathematical logic and learning theory. In this new for-
malization, existential and universal quantifications are over
objects in the working memory, and not an unlimited and

ill-specified world. Using learning algorithms one aims to
learn rules that are highly reliable on the distribution of the
contents of the working memory, which we call scenes.

Working memory can be viewed as having two important
roles. First, it makes the computations internal to a cogni-
tive system possible. This role may be thought of as loosely
analogous to that of registers in computer hardware, in pro-
viding rich computational capabilities on a limited amount
of data locally brought together, capabilities which would be
too onerous to be feasible without this limitation. Second, it
restricts and localizes the system’s view of the outside world
to a window that is small enough that it provides a domain
that is learnable. It is this second role that we emphasize
here. In robust logic this second role is exploited to provde
for algorithmic efficiency in learning and reasoning, inde-
pendent of any assumptions about how the first role might
be implemented in cognition.

Teaching Materials
The first task, the one we emphasize in this paper, is that of
understanding the algorithmic possibilities and limitations
inherent to knowledge infusion. There is, however, the ad-
ditional problem of understanding how best to create teach-
ing materials for such systems. This choice of terminology
is made in acknowledgement of the fact that enormous ef-
forts are expended by humans in preparing such materials
for every stage of human education. We interpret this to
mean that even if a system has viable algorithms for knowl-
edge infusion, as presumably humans have, there is still the
need for carefully prepared teaching materials. Hence, we
believe that even when the algorithmic issues are well un-
derstood, substantial problems may remain with regard to
creating teaching materials. In particular, one expects that
the content of such materials will need to be organized into
layers. The system may need to learn one layer well before
it can learn the next layer.

Learning Many Concepts Simultaneously
From Few Examples

When presented with a scene it is legitimate to view it as
an example of every concept that occurs in it, and a coun-
terexample of every concept from a given vocabulary that
does not. Knowledge infusion therefore raises fundamental
issues regarding the efficiency with which knowledge can be
extracted from data, in the case that the same piece of data
is to be used to learn many concepts simultaneously.

One basic question is whether when one learns N distinct
functions, rather than just one, does one need more, say N
times as many, examples? The fortuitous answer is that the
number of examples needed increases little with the number
of target functions.

In computational learning theory the question of how
much time and how many examples are needed for learn-
ing a single propositional concept from a concept class has
been studied extensively (Valiant, 1984; Blumer et al. 1989;
Ehrenfeucht et al. 1989). The definitions and some sim-
ple results can be easily adapted to the problem of learning
many concepts simultaneously.



Definition For a polynomial m(n, ε, δ) in arguments
n, 1/ε, 1/δ, algorithm L is an m(n, ε, δ)-PAC learning al-
gorithm for concept class C iff for any n, ε, and δ, any
distribution D of inputs over n variables, and any function
c ∈ C with n variables, after seeing m(n, ε, δ) random ex-
amples from D,L will with probability at least 1 -δ output
a hypothesis for c of accuracy at least 1- ε. Also, L is an
m(n, ε, δ,N)− simultaneous− PAC learning algorithm
for C if for any D after seeing m(n, ε, δ,N) random exam-
ples, it can with probability at least 1 - δ learn a set of N
hypotheses for N arbitrary concepts c1, · · · , cN ∈ C, each
one accurate to at least 1- ε.

Proposition If there is an m(n, ε, δ)-PAC learning al-
gorithm L for concept class C then there is an
m(n, ε, δ∗, N )-simultaneous-PAC learning algorithm for C,
where m(n, ε, δ∗, N) = m(n, ε, δ∗/N).

Proof We take a sample of m(n, ε, δ) random examples
fromD and on this common set apply L to learn each of the
N target functions in turn. Then the probability of obtaining
a hypothesis with error greater than ε is at most δ for each
one, and the probability of getting such an error in any one
of the N hypotheses is, by the union bound, at most Nδ.
Substituting δ∗ = Nδ gives the result. �

This observation is already very encouraging since it says
that the cost of simultaneous learning of N concepts to con-
fidence δ∗ is simply that of learning a single concept to a
higher confidence of δ∗/N . In the well-known bounds on
sample complexity this requires a multiplicative increase of
at most logN , and often much less. This is illustrated by
the following case of attribute efficient learning. Littlestone
(1988) showed that for learning disjunctions of at most k
variables out of a set of n variables there is a polynomial
time O(k logn) mistake bounded algorithm. From this it
follows by applying a general conversion to PAC learning
(Littlestone, 1989; Schurmans and Greiner, 1995) that there
is a O((1/ε)(k logn+ log(1/δ)))-PAC learning algorithm.
Hence, we can deduce the corollary that:

Corollary Disjunctions of at most k variables out of a
set of n variables have a O((1/ε)(k logn + log(N/δ)))-
simultaneous-PAC learning algorithm.

In the standard setting Littlestone’s result has the conse-
quence that when we are to learn a function of n variables
the sample size dependence on n is only logarithmic, as op-
posed to the general linear lower bound (Ehrenfeucht, et al.
1989). The restriction needed is that each concept depends
on only a few, namely k, of the n variables. This k appears
as a factor in the bound, but provides a great saving if it is
small, constant or logarithmic, say. The simultaneous ver-
sion expressed by the corollary above states the following:
whenN concepts are to be learned simultaneously, the num-
ber of examples needed goes up by at most a factor of two
if N < nk, and by at most an additive (logN)/ε in general.
We note that Littlestone’s result, is more general than stated
here, and applies not just to disjunctions but to certain more
general linear separators. The PAC translations for that class
convert to simultaneous learning results in a similar way.

The phenomenon that attribute-efficient learning is possi-
ble even in the simultaneous learning setting we regard as an
essential prerequisite for cognitive computations. It is also
fundamental to our implementation of knowledge infusion,
in which variables proliferate according to general combina-
torial schemas.

While the simple arguments above are satisfying, we go
on here to spell out what happens in the more general case
that some of the concepts we attempt to learn do not lie in the
class of concepts that the learning algorithm at hand is able
to learn. This addresses the practical problem that among
the many concepts that may be targets, some may be too
complex for the algorithm with respect to the features, while
others may be learnable. We formulate a Simultaneous Oc-
cam Theorem for this general case. In particular, we shall
observe, that the now classical Occam bounds (Blumer, et
al. 1987) on sample size hold unchanged for any value N .
Thus, to this level of analysis, we are at liberty to reuse the
same sample set to learn any number of concepts. This ob-
servation provides some explanation, we believe, of how it
is possible, for humans to learn apparently so much from
experiences that are relatively so few though possibly com-
plex.

In formulating this result we will go the further step of
considering error measures that are appropriate when the
function learned is unbalanced. First we note that the sim-
plest way of measuring the error of a hypothesis h is to say
Error(h) = Prob[h(x) 6= f(x)], where f is the true function
that is being learned, and probabilities are taken over ran-
dom draws of an example x from distribution D. If f is not
balanced, so that it is true very rarely, then it is useful to
measure error using:

Precision(h) = Prob[h(x) = f(x) = 1]/Prob[h(x) = 1],
Recall(h) = Prob[h(x) = f(x) = 1]/Prob[f(x) = 1],

and to define Precision Error(h) = 1 − Precision(h), and
Recall Error(h) = 1− Recall(h).

Simultaneous Occam Theorem Suppose examples are
drawn from a domainXn over variables x1, · · · , xn accord-
ing to a fixed unknown distribution Dn. Suppose that we
have a list F = {f1, · · · , fN} of target functions to learn
where each one classifies some function fk(Yk) according to
the values of Yk where Yk is a subset of {x1, · · · , xn}. Sup-
pose that A is a learning algorithm that when given labeled
examples from Xn returns hypotheses h1, · · · , hN from a
class Hn for the functions in F . Suppose that in one ex-
periment a set S of m randomly and independently chosen
examples from Xn was drawn, and on this set the learning
algorithm A returned hypotheses for F such that for some
nonempty subset H∗ of these hypotheses, all the hypotheses
in H∗ predict all the sample points in S correctly. Then for
any m > (1/(2ε))(log2 |Hn| + log2(1/δ)) and any ε < 1

2 ,
if, for every hi ∈ H∗, ϕi = Prob[hi(x) = 1],

(i) Prob[There is some hi ∈ H∗ with error(hi) > ε] < δ,
(ii) Prob[There is some hi ∈ H∗ with precision error(hi) >
ε/ϕi] < δ, and



(iii) Prob[There is some hi ∈ H∗ with recall error(hi) >
ε/(ϕi − ε)] < δ.

Proof The probability that any fixed function h ∈ Hn that
has error greater than ε agrees with all m examples in a set
S drawn randomly and independently fromXn according to
probability distributionDn is less than (1−ε)m. Since there
are |Hn| such possible functions it follows that the probabil-
ity that even one of the possibly many functions h ∈ Hn

that have error greater than ε agrees with S is, by the union
bound, less than |Hn|(1 − ε)m. But this last quantity is
clearly upper bounded by δ if (1/δ)|Hn|(1− ε)m < 1. Tak-
ing natural logarithms gives

loge(1/δ) + loge |Hn|+m loge(1− ε) < 0.

Then the required

m > (1/(2ε))[log2 |Hn|+ log2(1/δ)]
follows since - loge(1 − ε) = ε + ε2/2 + ε3/3 + · · · <
(2 loge 2)ε if ε < 1

2 .

By definition,

Error(h) = Prob[h(x) = 1 &f(x) = 0]
+ Prob[h(x) = 0 &f(x) = 1].

Also Precision(h) equals
Prob[h(x) = f(x) = 1]/Prob[h(x) = 1]
= (Prob[h(x) = 1]− Prob[h(x) = 1]&f(x) = 0])

/Prob[h(x) = 1]
= 1− Prob[h(x) = 1&f(x) = 0]/Prob[h(x) = 1]
≥ 1− ε/ϕ,
and result (ii) follows, for otherwise (i) would be contra-
dicted.

Finally Recall(h) equals
Prob[h(x) = f(x) = 1]/Prob[f(x) = 1]
= (Prob[f(x) = 1]− Prob[f(x) = 1&h(x) = 0])/

Prob[f(x) = 1]
= 1− Prob[f(x) = 1&h(x) = 0]/Prob[f(x) = 1]
≥ 1− ε/(Prob[h(x) = 1]− Prob[f(x) = 0&h(x) = 1])
≥ 1− ε/(ϕ− ε),

and result (iii) follows. �
We note that there are no assumptions on the source of

data except that they are drawn from a fixed distribution.
Surprisingly, this bound on m does not depend on the size
of H∗. Consider, for example, the case that (1/ε), log |Hn|
and log(1/δ) and hence m, are all polynomially bounded in
terms of the number of variables n, but F is exponentially
large in terms of n. Suppose that after a run of the algorithm
an exponentially large subset H∗ of predicted hypotheses
turn out to agree exactly with the sample. Then we are justi-
fied in having high confidence 1−δ in every single one of the
even exponentially many hypotheses that are found to agree
with the training set. This applies also to parts (ii) and (iii)
which require estimates of the fraction of the distribution on
which the various hi ∈ H∗ have value 1.

We interpret the above observations as strong evidence
that knowledge infusion does not require an inordinate
amount of data.

Are Rules Superfluous?
We now discuss the following fundamental question: If we
have access to observations why can we not make predic-
tions directly from the observations rather than first learn
rules and then make deductions. For example, learning
A ⇒ B and B ⇒ C from examples, and then chaining
these two rules together on an instance for which A holds is
superfluous if the data that provides overwhelming evidence
forA⇒ B andB ⇒ C both holding also provides the same
evidence for A⇒ C holding. Khardon and Roth (1997) of-
fer a theory of “learning to reason,” in which reasoning is
made redundant in some such sense. Here we discuss three
justifications for the value of rules in the current context.

First, we illustrate one aspect of the probabilistic seman-
tics of reasoning in robust logic. Consider the two simple
rules:

A ∨ · · · ≡ B (1)
and

(B ∧ C) ∨ · · · ≡ D. (2)
If these have been learned to accuracy 99% then that

means that on a random natural scene drawn from the given
distribution the probability that one side is satisfied but not
the other is less than 1%. The deduction process of the ro-
bust logic will chain these rules together to deduce that for
a random scene from the same distribution for which A ∧C
holds, D will hold also. This is justified in the sense that
even if the two rules are not independent but arbitrarily cor-
related, it follows from a simple union bound argument that
the conclusion must hold with error at most the sum of the
errors of the two rules, namely 2%.

A robust logic based system can be viewed as performing
a thought experiment when chaining. It is not given a com-
plete scene but one where some of the features have been
“obscured” and it has to deduce what these values are likely
to be in natural cases. Suppose that B holds for 10% of the
distribution, and of these instances a half are accounted for
byA being also true (i.e. A holds for 5% of the distribution.)
Suppose thatD holds for 18% of the distribution, and of this
a third (6% of the distribution) is accounted for byB∧C. In
this case the system will make the deduction thatD holds, if
both A and C hold, even though the fraction of the distribu-
tion on which A and C both hold may be arbitrarily small,
and too small for any direct observations as to whether D
holds for those instances.

The above example shows that deduction in robust logic
has the following semantics: For situations that are too rare
to observe the deduction will effectively assume that the rel-
evant rules are probabilistically independent, but for situa-
tions that are frequent enough to observe, the logic will pro-
tect against invalid conclusions. In the case of the above
example, if on 3% of examples A and C both hold but D is
false, then at least one of the rules (1) or (2) has error greater
than 1%, and it would have been erroneous to learn it.

With this backdrop, we now list three reasons for why rea-
soning is useful in our setting, even when learning is avail-
able.



First, as we illustrated in the example, while the robust
logic protects against drawing false conclusions in situations
in which there is significant statistical evidence to the con-
trary, it also chains rules to derive conclusions in situations
that are too infrequent for the statistics of the data to strongly
support a deduction. In those cases the rules effectively in-
voke some independence assumptions, in an arguably plau-
sible manner.

Second, the robust logic learns equivalence rules of cer-
tain forms. In any resulting deduction, some rule equivalent
to chaining several of the simple rules that have been learned
may be implicitly invoked. In the previous paragraph we
pointed out that this implicit rule may not be statistically
supported by the data. Another possibility is that it is too
complex to be predicted directly from the data using a given
algorithm.

Third, if programmed rules are allowed as inputs to the
system in addition to the training data, then reasoning can-
not be immediately supplanted by learning. For example, in
a natural language setting useful equivalents of programmed
rules are dictionaries, of synonyms or antonyms, for exam-
ple. There is the issue of how the programmed rules are to
be interpreted in the robust logic. In general they can be up-
dated in the same way as learned rules. However, in the case
of dictionaries, for example, a simple progmatic approach is
to regard them as always true and not subject to updating by
learning. Then in learning other rules, instead of learning
from the input scenes directly one can augment the scenes
by deriving all consequences of them using the programmed
rules, and regard the distribution of augmented scenes so
produced as the training set for the learned rules.

Finally, we note that while the strength of the robust logic
described is that it has a principled semantics, we do not ad-
vocate that pragmatism be avoided altogether when building
systems based on it. For example, deductions about a predi-
cate typicaly will be made on scenes where the truth-value of
the predicate is unknown, rather than known but obscured.

A Simplified Robust Logic
For completeness we describe here a simplified of robust
logic that, we believe, is a good basis for knowledge infusion
systems.

We consider a fixed set R of t base relations Ri of arities
α(i) respectively, where all the α(i) ≤ α. A scene con-
sists of n generic token objects A = {a1, · · · , an}, and a
vector L that for all Ri ∈ R and all nα(i) substitutions of
token objects for the α(i) arguments of Ri states whether
Ri holds for that substitution. The components of L have
values “1” or “0” indicating the case of Ri for each com-
bination of objects, e.g., one component of L may indicate
R7(a2, a3, a8) = 0.

The examples input to our learning and reasoning systems
will be such scenes, each derived, for example, from a natu-
ral language sentence or paragraph. Before we proceed with
the rest of the formalism we need to explain our treatment
of incomplete information in this simplified system:

We shall interpret a value 1 inL as “determined to be true”
and a value 0 as “unspecified or determined to be false.” The

learning algorithm will therefore take inputs of this form and
make predictions according to these two categories. Note
that if for each relation we add a second relation that repre-
sents its contrary then we can express the “determined to be
false” case also. Then, in effect, a three-valued logic will be
realized using two binary variables for each relation.

When analyzing reasoning we use the further notion of
partial information, that of obscuring. An obscured scene is
a scene in which some of the components of L have been
replaced by the third value “obscured”. When we test the
success of a deduction algorithm for making correct predic-
tions on a relation Ri, we obscure a possibly known com-
ponent of L, such as R7(a2, a3, a8), and see whether that
obscured information can be accurately predicted by the de-
duction process applied to the other components of L. We
note that in standard PAC learning the target variable to be
predicted can be viewed as obscured in the training process
in exactly this sense.

LetD be a distribution on the vectors L over such scenes.
It corresponds to the distribution of natural examples that
arise from the world as perceived in the mind’s eye of one
agent. In this simplified RL we assume here that D is sym-
metric under permutations of the token objects, reflecting
the total absence of structure among the tokens.

A rule q is of the form ∀x1, ∀x2, · · · , ∀xα(i) [lhs ≡ rhs]
where rhs is of the form Ri(x1, x2, · · · , xα(i)) and lhs has
the same set x1, x2, · · · , xα(i) of free variables and is some
expression q from some permitted universeE of expressions
involvingR. We call the class of such rules (E,R)-rules.

An independently quantified expression, or IQE, for a re-
lation T , of arity three for example, is of the form e =
∆x∆y∆zT (x, y, z) where each occurrence of ∆ may be ei-
ther an existential quantifier ∃, or a null quantifier. Further,
the non-null quantifiers, here the existential ones, are totally
independent of any other IQE. In other words, those of the
variables x, y, z that have an existential quantifier are local
to just the one relation T . The remaining variables are the
free variables. Both bound and free variables refer only to
tokens in the scene. For any one unobscured scene, any IQE
such as e = ∃x∃zT (x, y, z), and any binding of the free
variables of e, in this case y, to the objects in the scene, a
Boolean truth value is determined therefore.

Now given a set of base relations R we shall define a
schema of IQEs as follows: We consider a bounded num-
ber of ways of conjoining members of R each with some
quantification, but with a common set of free variables. For
example

{R1(x), ∃yR2(x, y), ∃yR3(y)R4(x, y),

∃y∃zR5(x)R6(y)R7(x, y, z)}
is such a schema having four forms, with the common free
variable x. A schema of IQEs for R is then the set of such
quantified conjunctions with all possible combinations of
substitutions of members of R with the appropriate arities
as specifed by the forms allowed in the schema. Each form
specifies a combination of the syntax allowed for a T and
the syntax of its quantifiers.



The class of (E,R)-rules that will form the basis
of our RL can now be defined. To obtain E from
a base set of relations R we generate all possible
members of a specific schema of IQEs (e.g. schema
{R1(x), ∃yR2(x, y), ∃yR3(y)R4(x, y)}) and let E be a
class of Boolean functions that is easily learned and has this
set of IQE’s as its Boolean variables.. A very convenient
choice of learning algorithm is Littlestone’s Winnow (Little-
stone, 1987) since this has provably good learning properties
and performs well in practice on natural data sets (Golding
and Roth, 1999). In that caseE will be linear threshold func-
tions. In general, if we apply a propositional learning algo-
rithm to the Boolean vector of values of all possible IQEs
of schema, then we can exploit the propositional learning
algorithm in the normal way, and all its properties, such as
sample bounds, attribute-efficiency and resilience to errors
will be inherited in the relational domain.

Thus rules of the specified kind can be learned that are
accurate in the PAC sense on the distribution of possible
scenes. It is shown in (Valiant 2000b) that these rules can be
chained to derive deductions about individual scenes. The
chaining process is sound and complete in a defined sense.
For efficient computaition one needs that all the base rela-
tions have bounded arities, say α ≤ 3. Given this one as-
sumption all the learning and reasoning processes require
only polynomially bounded resources in terms of the num-
ber of tokens, the number of base relations, and the inverse
of the errors that are to be tolerated.

The simplified robust logic described here can be ex-
tended in various natural ways. The treatment in (Valiant,
2000b) can be viewed as an extension in the following four
directions: preconditions are allowed for each rule, the dis-
tribution D need not be symmetric, bindings need not be
one-to-one, and universal quantifiers are allowed in addition
to existential quantifiers.
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