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ScienceDirect
At present there is no generally accepted theory of how

cognitive phenomena arise from computations in cortex.

Further, there is no consensus on how the search for one

should be refocussed so as to make it more fruitful. In this short

piece we observe that research in computer science over the

last several decades has shown that significant computational

phenomena need to circumvent significant inherent

quantitative impediments, such as of computational

complexity. We argue that computational neuroscience has to

be informed by the same quantitative concerns for it to

succeed. It is conceivable that the brain is the one computation

that does not need to circumvent any such obstacles, but if that

were the case then quantitatively plausible theories of cortex

would now surely abound and be driving experimental

investigations.
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Introduction
That computing is the right framework for understanding

the brain became clear to many soon after the discovery of

universal computing by Turing [1], who was himself

motivated by the question of understanding the scope

of human mental activity. McCulloch and Pitts [2] made a

first attempt to formalize neural computation, pointing

out that their networks were of equivalent expressive

power to Turing machines. By the 1950s it was widely

recognized that any science of cognition would have to be

based on computation.

It would probably come as a shock to the earliest pioneers,

were they to return today, that more progress has not been

made towards a generally agreed computational theory of

cortex. They may have expected, short of such a generally

agreed theory, that today there would at least exist a

variety of viable competing theories. Understanding cor-

tex is surely among the most important questions ever
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posed by science. Astonishingly, the question of propos-

ing general theories of cortex and subjecting them to

experimental examination is currently not even a main-

stream scientific activity.

It is not that the computational perspective was ever

abandoned. It was well articulated by David Marr [3],

who split the problem into three levels: ‘Computational
theory: What is the goal of the computation, why is it

appropriate, and what is the logic of the strategy by which

it can be carried out? Representation and algorithm: How

can this computational theory be implemented? In

particular, what is the representation for the input and

output, and what is the algorithm for the transformation?

Hardware implementation: How can the representation and

algorithm be realized physically?’ This widely quoted

passage is, of course, very general and could pass as a

mission statement for computer science itself.

Our review here is informed by the observation that since

Marr’s time computer science has made very substantial

progress in certain quantitative directions. The following

four phenomena are clearly critical for the brain: communi-

cation, computation, learning and evolution. Over the last

few decades all four have been subject to quantitative

analysis, and are now known to be subject to hard quan-
titative constraints (see [4] for a general exposition). First

there is the obvious cost of communication: if we desire to

be able to communicate any n-bit message we will need to

be able to send n bits. Second there is computational

complexity: if we have some information and can define

what processing we wish done on it, that processing may

have an unaffordable cost in terms of operations even if we

have at hand all the information and can precisely define

the desired processing. A third level is learning — even if

the desired processing can be achieved by an efficient

computation, acquiring a program for it from examples or

other behavior presents further impediments. Fourth, if we

wish to acquire this program by Darwinian evolution then

we encounter even more obstacles.

We do not believe that there can be any doubt that the

theory sought has to be computational in the general

sense of Turing. The question that arises is: In what way

does Marr’s articulation of the computational approach

fall short? Our answer is that, exactly as in any other

domains of computation, a successful theory will have to

show additionally, how the quantitative challenges that need to
be faced are solved in cortex. If these challenges were non-

existent or insignificant then plausible theories would

now abound and the only task remaining for us would

be to establish which one nature is using.
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An augmented computational framework
If, as we believe, cortex is addressing this quartet (com-

putation, learning, evolution and communication) with

subtlety, then two additional requirements need to be

added to those of Marr for any successful theory. First, it
has to incorporate some understanding of the quantitative
constraints that are faced by cortex. Second, as in other

domains of computing, this quantitative understanding

has to be articulated in terms of models of computation
appropriate to the problems at hand and the chosen levels of
analysis.

This augmented set of requirements is quite complex in

that many issues have to be faced simultaneously. We

suggest the following as a streamlined working formu-

lation for the present:

(i) Specify a candidate set of quantitatively challenging

cognitive tasks that cortex may be using as the

primitives from which it builds cognition. At a

minimum, this set has to include the task of

memorization, and some additional tasks that use
the memories created. The task set needs to

encompass both the learning and the execution of

the capabilities in question.

(ii) Explain how, on a model of computation that

faithfully reflects the quantitative resources that

cortex has available, instances of these tasks can be

realized by explicit algorithms.

(iii) Provide some plausible experimental approach to

confirming or falsifying the theory as it applies to

cortex.

(iv) Explain how there may be an evolutionary path to

the brain having acquired these capabilities.

To illustrate that this complex of requirements can be

pursued systematically together we shall briefly describe

the framework developed for this by the author [5]. It

targets a particular class of tasks called random access tasks,
to be executed on the neuroidal model of computation,

using a positive representation and a particular style of

algorithms called vicinal algorithms. Other researchers

who have sought to understand cortex have generally

not placed quantitative computational goals center stage.

We shall make references to some recent examples

[6�,7�,8�,9�] in order to contrast some of the currently

pursued alternatives.

Positive representations
In order to specify computational tasks in terms of input-

output behavior one needs to start with a representation

for each task. It is necessary to ensure that for any pair of

tasks where the input of one is the output of the other

there is a common representation at that interface. Here

we shall take the convenient course of having a common
representation for all the tasks that will be considered, so

that their composability will follow.
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In a positive representation [5] a real world item (a concept,

event, individual, etc.) is represented by a set S of r
neurons. A concept being processed corresponds to the

members of S firing in a distinct way. More precisely, as

elaborated further in [10], if more than a fraction b (e.g.

88%) of S fire then the concept is definitely being pro-

cessed, if fewer than fraction a (say 30%) then the concept

is not being processed, and the system is so configured

that the intermediate situation almost never occurs. We

note that for any computational theory with specific

algorithms one needs some definition of representation

as specific as this.

Positive representations come in two varieties, disjoint,
which means that the S’s of distinct concepts are disjoint,

and shared, which means that the S’s can share neurons.

Disjointness makes computation easier but requires small r
(such as r = 50) if large numbers of concepts are to be

represented. The shared representation allows for more

concepts to be represented (especially necessary if r is very

large,suchasseveralpercentofthetotalnumberofneurons)

but can be expected to make computation, without inter-

ference among the task instances, more challenging.

Random access versus local tasks
We believe that cortex is communication bounded in the

sense that: (i) each neuron is connected to a minute

fraction of all the other neurons, (ii) each individual

synapse typically has weak influence, in that a presynaptic

action potential will make only a small contribution to the

threshold potential needed to be overcome in the post-

synaptic cell, and (iii) there is no global addressing

mechanism as computers have. We call tasks that poten-

tially require communication between arbitrary memor-

ized concepts random-access tasks. Such tasks, for example,

an association between an arbitrary pair of concepts, are

the most demanding in communication and therefore

quantitatively the most challenging for the brain to rea-

lize. The arbitrary knowledge structures in the world will

have to be mapped, by the execution of a sequence of

random access tasks that only change synaptic weights, to

the available connections among the neurons that are

largely fixed at birth.

We distinguish between two categories of tasks.

Tasks from the first category assign neurons to a new

item. We have just one task of this type, which we call

Hierarchical Memorization and define it as follows: For any

stored items A, B, allocate neurons to new item C and

make appropriate changes in the circuit so that in future A
and B active will cause C to be active also.

The second category of tasks make modifications to the

circuits so as to relate in a new way items to which neurons

have been already assigned. We consider the following

three. Association: For any stored items A, B, change the
www.sciencedirect.com
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circuit so that in future when A is active then B will be

caused to be also. Supervised Memorization of Conjunctions:
For stored items A, B, C change the circuits so that in

future A and B active will cause C to be active also.

Inductive Learning of Simple Threshold Functions: for one

stored item A learn a criterion in terms of the others. This

third operation is the one that achieves generalization, in

that appropriate performance even on inputs never before

seen is expected.

The intention is that any new item to be stored will be

stored in the first instance as a conjunction of items

previously memorized (which may be visual, auditory,

conceptual, etc.) Once an item has neurons allocated, it

becomes an equal citizen with items previously stored in

its ability to become a constituent in future actions. These

actions can be the creation of further concepts using the

hierarchical memorization operation, or establishing

relationships among the items stored using one of the

operations of the second kind, such as association. The

latter operations can be regarded as the workhorses of the

cognitive system, building up complex data structures

reflecting the relations that exist in the world among the

items represented. However, each such operation

requires each item it touches to have been allocated in

the first instance by a task of the first kind.

Random access tasks are the most appropriate for our

study here since, almost by definition, they are the most

challenging for any communication bound system. For

tasks that require only local communication, such as

aspects of low-level vision, viable computational solutions

may be more numerous, and quantitative studies may be

less helpful in identifying the one nature has chosen.

We emphasize that for the candidate set it is desirable to

target from the start a mixed set of different task types as

here, since such sets are more likely to form a sufficient

set of primitives for cognition. Previous approaches have

often focused on a single task type [11–13], such as the

storage of bit patterns in classical associative memories.

The neuroidal model
Experience in computer science suggests that models of

computation need to be chosen carefully to fit the pro-

blem at hand. The criterion of success is the ultimate

usefulness of the model in illuminating the relevant

phenomena. In neuroscience we will, no doubt, ulti-

mately need a variety of models at different levels.

The neuroidal model is designed to explicate phenomena

around the random access tasks we have described, where

the constraints are dictated by the gross communication

constraints on cortex rather than the detailed compu-

tations inside neurons.

The neuroidal model has three main numerical

parameters: n, the number of neurons, d the number of
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connections per neuron, and k, the minimum number of

presynaptic neurons needed to cause an action potential

in a postsynaptic neuron (in other words the maximum

synaptic strength is 1/k times the neuron threshold). Each

neuron can be in one of a finite number of states and each

synapse has some strength. These states and strengths are

updated according to purely local rules using computa-

tionally weak steps. Each update will be influenced by

the firing pattern of the presynaptic neurons according to

a function that is symmetric in those inputs. There is a

weak timing mechanism that allows the neurons to count

time accurately enough so stay synchronized with other

neurons for a few steps.

Vicinal algorithms: incremental addition of
functionality
In [5,14] it is shown that algorithms for the four random

access tasks described above can be performed on the

neuroidal model with realistic values of the numerical

parameters. The algorithms used are all of the vicinal
style. Their basic steps are all local in that they only

change synaptic strengths between pairs of neurons that

are directly connected. Yet they need to achieve the more

global objectives of random access. In order that they be

able to do this certain graph theoretic connectivity prop-

erties are required of the network. The property of

expansion [15], that any set of a certain number of

neurons have between them substantially more neighbors

than their own number, is an archetypal such property.

(This property, widely studied in computer science, was

apparently first discussed in a neuroscience setting [16].)

The vicinal algorithms for the four tasks considered here

need some such connectivity properties. In each case

random graphs with appropriate realistic parameters have

it, but pure randomness is not necessarily essential.

The role of random graphs has been studied in a variety of

neural models. Abeles [17], has hypothesized synfire

chains for communication between different parts of

cortex. In general, random access tasks as we have

described them, where communication has to be estab-

lished between arbitrary sets of neurons, are difficult to

support in networks with plausible parameters by synfire

chains of any significant depth.

We note that vicinal algorithms allow some modularity of

operation, if the changes to the circuit are initiated at the

neurons involved with the relevant memories. Alternative

approaches, including classical associative memories [11–
13,18,19], often have a more global memory mechanism

where there is less identifiable modularity in the execu-

tion of a task instance.

Incremental lifelong learning
Over a lifetime humans can accomplish large numbers of

learning tasks, whether of facts, concepts or skills.

Further, they can preserve the functionality of tasks
Current Opinion in Neurobiology 2014, 25:15–19
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Table 1

Some features deemed here critical for any general theory of

cortical computation

Desirable Undesirable

Incremental lifelong learning:

new item can be learned

without retraining on

previous ones.

Retraining necessary even

when only one item to be added.

Concepts may be defined

hierarchically.

Flat memory space.

Arbitrary knowledge

structures allowed.

Knowledge structures restricted

by architecture.

Mixed set of basic tasks

are supported

simultaneously.

Only single task supported.

Resources of neuron

numbers, synapse numbers,

and synaptic strengths are

all accounted for quantitatively

Resources assumed free.
learned decades earlier, even after tens of thousands of

acts of learning in the intervening years. Expert knowl-

edge, whether of vocabulary or chess openings, has been

estimated to comprise hundreds of thousands of facts.

Any theory of cortex needs to be able to explain how such

numbers of individual acts of learning may be performed

in succession without degrading the lasting effectiveness

of the earlier ones. This is a quantitative question which

we present as a challenge that any theory needs to meet to

be considered viable. The study in [10] is the only one we

know where large scale learning of such a mixed set of

tasks has been shown feasible.

Hippocampus
Hippocampus in mammals is believed to be essential for

the acquisition of new episodic or declarative concepts.

One would expect that any theory of cortex would explain

what indispensable computation hippocampus performs

for cortex and the specifics of the interaction between the

two. The theory posited in [20] is that for hierarchical

memorization hippocampus identifies the set of neurons

in cortex at which the new memory is to be located.

Evolution
A theory should not make requirements on cortex for

which there is no plausible explanation for how any

evolutionary path could have led to it. Theories that

apparently require the interconnections to reflect the

structure of the knowledge that is represented would

appear to require additional explanations. In contrast,

theories that explain how a randomly connected set of

neurons running simple local algorithms can already

compute something useful place a much lighter burden

on evolution [10].

Experimental validation
For any theory to be useful there needs to be a path

towards testing it experimentally. For each of the three
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random access tasks, Association, Supervised Memoriza-

tion of Conjunctions, and Inductive Learning of Simple

Threshold Functions, one can in principle test directly

whether cortex is capable of it. Each of the task specifica-

tions requires for arbitrary sets of neurons such as A, B, C,

that a certain training regimen (corresponding to the

learning algorithm for the task instance) produces a

certain subsequent behavior (e.g. that action potentials

in one subset will cause action potentials in another.)

Such specifications can be tested in cortex fairly directly.

If such arbitrary sets A, B, C are stimulated according to a

suitable training regimen, and subsequently when the

sets are also recorded from the desired behavior observed,

then one has demonstrated that cortex is at least capable

of performing the specified task. Ref. [21] describes an

existing relevant study.

Conclusion
We believe that neuroscience will go through a stage in

which quantitative computational theories and their

experimental validation will be pursued in a more inte-

grated way than hitherto. The approach described here

illustrates a possible way forward. It emphasizes that the

concepts to be memorized and manipulated often have a

hierarchical relationship with each other, that explicit

means of allocating neurons to new concepts needs to

be specified, that multiple kinds of tasks need to be

explained within a consistent framework, and that

executions of long sequences of such tasks need to be

supported (Table 1). The particular tasks considered

here, hierarchical memorization together with some

further operations on memorized items, are suggested

as a minimum basis. How more complex tasks can be built

from these, or from an augmented basis set, remain

subjects for future investigation.
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